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ABSTRACT

This study aims to evaluate the impact of climate change on the surface water hydrology of the Gopad river basin in India. The outputs of four

CMIP6 Global Climate Models have been downscaled using the statistical downscaling method to the basin level. A comparative analysis for

the accuracy achieved in the bias correction for the combination of GCM and downscaling method has been performed before utilising the

downscaled weather parameters for hydrological study. The MIROC6 and ACCESS-CM2 were found best for the simulation of precipitation

and temperature, respectively. The Distribution Mapping and Variance Scaling methods have shown better accuracy w.r.t other statistical

methods. The impact of climate change has been found significant since the temperature has been observed to be increased by 3.16 °C

by the end of 2060; meanwhile, there is an average decrease of 9.2% in the annual rainfall from the baseline. The peak runoff has increased

while there is a significant decrease in the groundwater recharge. Further, hydrologically critical subbasins (HCS) have been delineated based

on the runoff, groundwater recharge, and baseflow. Most HCS was observed to be situated in the upper Gopad river basin, representing the

area’s pristine conditions.
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HIGHLIGHTS

• The ACCESS-CM2 and MIROC6 are more accurate for the study area.

• The Variance Scaling and Distribution Mapping methods have shown better accuracy than others.

• A rise in average temperature has been observed, while there is a decrease in annual rainfall from the baseline.

• The area with less human intervention has proven to be hydrologically critical for the Gopad river basin.
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1. INTRODUCTION

Water availability considerably influences the ecology, power generation and human activities within a river basin. The stored
water in the aquifer feeds the river as base flow and percolates deeper as deep aquifer recharge. Precipitation and temperature
are the most influential variables in a hydro-environmental system. As a result, monitoring their changes in the future might

assist decision-makers in dealing with issues such as drought, flash floods, and high evapotranspiration. Most parts of the
world have documented the effects of climate change on hydrologic processes such as streamflow, baseflow, surface
runoff, and evapotranspiration. According to Richmond and Yohe (Melillo et al. 2014), extreme precipitation occurrences

in the Midwest USA have increased over the previous century, resulting in increased surface runoff and streamflow. Further-
more, as climate forecasts show, the frequency and amplitude of such extremes may continue to climb in the coming decades
(Sun et al. 2016).

Hydrologically Critical Subbasins (HCS) are areas significantly contributing to hydrological variables. Several watershed
hydrogeological parameters, such as soil, slope, soil moisture content, topography, rainfall intensity, rainfall depth and fre-
quency, all are transient and significantly influence the characteristics of subbasins (Needelman et al. 2004). Field

methods (Mehta et al. 2004) and surface water modelling approaches (Niraula et al. 2013) have been utilised to find the criti-
cal areas for runoff and nutrients. Apart from runoff, the groundwater recharge and baseflow contribution of a subbasin are
significant factors for water resource management, and these parameters should also be analysed. The low groundwater
recharge areas are better for runoff generation but contribute less to groundwater storage. The majority of groundwater

flow is replenished by the areas of high groundwater recharge which are limited. These pristine areas with high percolation
rates are critical for the basin.

The sixth phase of Coupled Model Intercomparison Projects (CMIP) is now available with daily simulation output of 58

General Circulation Models (GCMs) across the globe. Regarding the number of modelling organisations’ participation, the
number of future scenarios considered, and the number of different experiments undertaken, CMIP6 (Eyring et al. 2016)
marks a significant increase over CMIP5. CMIP6 future climate forecasts include enhanced emissions, improved model para-

meterisation, land use scenarios, and physical processes, among other things, all driven by scenarios based on shared
socioeconomic paths (SSPs) (Eyring et al. 2016). In the simulation of distinct climate variables in different regions,
CMIP6 GCMs have shown both better and worse performance than CMIP5. The performance of CMIP6 and CMIP5 in simu-

lating the Indian summer monsoon rainfall was inconsistent in a comparative study by Gusain et al. (2020). However, the
performances of CMIP6 models in the simulation of global temperature extremes, diminishing precipitation and droughts
have been found to be superior (Rivera & Arnould 2020).

The uncertainties in the GCMs from different sources, including mathematical formulation, assumptions, model resolution

and calibration technique, limit the use of all available GCMs for climate projection in a different region (Sun et al. 2018).
Therefore, the models must be compared for their ability to project local climate scenarios. The statistical downscaling of
GCMs output is the most inexpensive method to cater for the demand of ongoing climate impact studies. However, these

methods are frequently tainted with limitations and errors due to assumptions and approximations associated with each
method (Maraun et al. 2019). A comparative assessment of the relative accuracy in the downscaling bias correction is
required before utilising the GCMs data for hydrological modelling.

Forecasts from climate models have been coupled with hydrologic models to estimate the potential consequences of cli-
mate change on water systems (Mohammed et al. 2015). Recently, Muto et al. (2022) used an ensembled climate dataset
to the SWAT (Soil & Water Assessment Tool) model to quantify the climate change impact on the hydrology of the
Tokoro River Basin. Kumar et al. (2022) studied the climate impact on the upper Betwa River catchment with the SWAT

model and found a decrease in the annual rainfall and surface runoff for all scenarios. In India, the SWAT model has
been used extensively with downscaled GCM data to study the impact of climate change on the hydrology of a basin
(Sharannya et al. 2018). All these studies show a notable increase in rainfall intensity in the monsoon period and an increase

of 1 °C–3 °C in the air temperature.
The novel methodology has been implemented in the Gopad River basin to delineate the critical source areas (critical sub-

basins) for streamflow under the impact of climate change. The accuracy of CMIP6 models, along with the statistical

downscaling methods, has also been compared. Four GCMs have been selected based on the performance study done by
Kamruzzaman et al. (2021) (ACCESS-CM2 (Australian Community Climate and Earth-System Simulator), INM-CM5-0 (Insti-
tute of Numerical Mathematics, Russia), ACCESS-ESM1-5 (Australian Community Climate and Earth-System Simulator),
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and MIROC6 (Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental

Studies, and Japan Agency for Marine-Earth Science and Technology, Japan)). The climate model outputs have been down-
scaled by statistical methods, and the parameters have been used as weather parameters input in a calibrated SWAT model.
The hydrological simulation outputs have been analysed to find the hydrologically critical areas (subbasins) for runoff,

recharge and baseflow contribution.
2. STUDY AREA

Gopad river is located in the heart of the Sone River basin, encapsulating an area of 6,036.3 km2 (Latitude 24° 40ʹ to 23° 20ʹ;
Longitude 81° 40ʹ to 82° 40ʹ) (Figure 1). The area is more or less pristine compared to other river basins in the Sone River

watershed. The site is sparsely populated, and most of the area is forest and grassland (64.43%). Also, about 10% of the
Figure 1 | Study area.
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area is barren or sparsely vegetated with seasonal grass. Agricultural activities are limited to the lower part of the basin (23.5%

of the total basin area). It is a perennial river which receives its lean period discharge from the adjoining aquifers as base flow.
There has not been any study on hydrology and the impact of climate change.

The precipitation data from the Indian meteorological department (IMD) (Pai et al. 2014) shows a mixed trend of yearly

precipitation with a mean yearly rainfall of 1,117 mm from 1980 to 2020. The rainfall has shown a variation of a minimum of
734 mm (2017) to a maximum of 1,753 mm (1994). Maximum rainfall occurs during the southwest monsoon season. The
monsoon season, which lasts from June to September, accounts for 89% of the annual rainfall. The month of July is the wet-
test of the year. Only 11% of the yearly rainfall occurs between October and May. The temperature begins to rise in early

February and reaches its peak in May. In June, the daily mean maximum temperature is 43 °C. The monsoon usually arrives
around the middle of June, bringing a significant temperature reduction. In general, January is the coldest month of the year.
The humidity is lowest in April, around 35% during the southwest monsoon; the humidity is higher due to heavy rains, reach-

ing a maximum of about 85% in August. Because of the high temperatures, the humidity drops again in October, and the
monsoon retreats. The daily mean annual relative humidity of the area is 66%.
3. METHODOLOGY

3.1. Climate dataset

GCMs are among the most advanced techniques, using transient climate simulations to simulate climatic conditions on Earth

for the next hundreds of years. The GCMs under CMIP6 (O’Neill et al. 2016) for this study have been selected based on the
comparison performed by Kamruzzaman et al. (2021). Four GCMs (ACCESS-CM2, INM-CM5-0, ACCESS-ESM1-5, and
MIROC6) have been downscaled to IMD 2D grid resolution (0.25°� 0.25°) with bilinear interpolation. The bias correction

has been performed by statistical methods, using IMD 2D gridded dataset for three SSPs (SSP1 based on RCP-2.6, SSP2 based
on RCP-4.5 and SSP5 based on RCP-8.5). The IMD has developed the gridded data for the research community’s needs by
interpolating the gaged data by inverse distance weighted method.

3.2. Statistical downscaling

The downscaling of the simulation outputs of GCM has been performed using five widely used statistical methods (1. Linear

scaling (LS), 2. Local intensity scaling of precipitation (LI), 3. Power transformation (PT), 4. Variance scaling (VS) and 5. Dis-
tribution mapping (DM)) (Figure 2). The foundation for linear scaling bias correction is the perfect agreement between the
monthly mean of observed and simulated values. Precipitation is adjusted using the ratio of long-term monthly mean observed
and historical run data. In contrast, the temperature is adjusted using an additive term based on the difference between the

long-term monthly mean observed and the historical run. Because linear scaling only compensates for monthly mean bias, it
cannot correct wet-day frequency and intensity biases.

The local intensity scaling is a stepwise method to correct the biases due to the mean as well as both wet-dry frequencies

and intensities of precipitation time series. In this study, the threshold precipitation in the LI method varied from 0.05 to
1.15 mm for different GCMs. The larger variation indicates a large number of low precipitations simulated events. The scaling
factor is much higher for ACCESS-CM2 and ACCESS-ESM1-5, varying from 0.19 to 40.2 (higher values are more dominant

from May to September). The scaling factor for MIRO-C6 and INM-CM5-0 varies from 0.29 to 4.87 (higher values are more
dominant from August to October). The factor is more consistent for MIRO-C6, varying around 0.38–1.24. This represents
that MIRO-C6 is much more consistent in estimating precipitation than other GCMs, as those overestimate the rainfall

intensity.
Power transformation utilises mean as well as variance for the correction of discrepancies. As a result, a non-linear correc-

tion with an exponential form (a.Pb) is used to precisely modify the variance statistics of a precipitation time series (Leander
et al. 2008). A 90-day frame centred on the interval is used to estimate parameter b on a monthly basis. The coefficient of

variation (CV) of the corrected daily simulated precipitation (Pb) and the CV of the observed daily precipitation (Pobs) for
each month are compared to estimate parameter b.

Chen et al. (2011) described a similar method to Power Transformation known as ‘variance scaling,’ which can be used to

incrementally adjust the mean and variance of temperature time series. First, the mean of the simulated time series is adjusted
using linear scaling. The mean-corrected historical and future scenario runs are then adjusted to a zero mean on a monthly
basis. Distribution mapping aims to match the observed distribution function to the distribution function of RCM-simulated
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Figure 2 | Flow chart of the research work.
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climatic variables. This may be accomplished by developing a transfer function that shifts the precipitation and temperature
occurrence distributions. The downscaled average temperature and precipitation have been presented in Figure 3.
3.3. Evaluation statistics for statistical downscaling and SWAT model calibration

Multiple accuracy metrices provide a complete picture of the model performance since each metric provides different
insights. A total of four accuracy metrices (RMSE, PBIAS, NS and R2) have been used for the evaluation of SWAT model
performance and the accuracy assessment of downscaling methods (Figure 4) to reduce the bias associated with each metric.
3.3.1. RMSE

Root mean squared error (RMSE) is an established way to quantify the error of a predictive numeric model. Simply, it calcu-
lates the deviation (spread) of error between the actual and forecasted datasets. Mathematically it can be represented as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

(Qi, obs �Qi,sim)
2

n

vuut (1)

where Qi,sim are the simulated values (discharge or climate parameter); Qi, obs is observed values of the parameter (discharge

or climate parameter), and n is the number of observations available for analysis. It is widely applied to compute the predic-
tion error since it is: (1) A single number to judge from the training to the deployment phase of a model. (2) Representing the
relative size of the error from each iteration to the next and not just the absolute magnitude of the error.
://iwaponline.com/jwcc/article-pdf/14/5/1723/1251844/jwc0141723.pdf



Figure 3 | Variation of precipitation, minimum temperature and maximum temperature for IPCC scenarios (SSP1, SSP2, and SSP5) along with
the historical data.
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3.3.2. PBIAS

The average tendency for the simulated data to be higher or smaller than the observations is represented by per cent bias

(PBIAS). Zero is the best value, whereas smaller magnitude values suggest better simulations. Positive numbers suggest
that the model is underestimated, whereas negative values indicate that the model is overestimated.

PBIAS ¼ 100�

Pn
i¼1

(Qobs �Qsim)i

Pn
i¼1

Qsim,i

(2)

where Q is a variable (discharge, temperature or precipitation), ‘obs’ and ‘sim’ represent observed and simulated data,
respectively.
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Figure 4 | Accuracy variation among all the grid points in the Gopad river basin.
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3.3.3. Nash–Sutcliffe efficiency (NS)

One of the reliable measures to assess the predictive skill of hydrological models, NSE normalises model performance into an
interpretable scale. It is described as:

NS ¼ 1�

Pn
i¼1

(Qobs �Qsim)
2
i

Pn
i¼1

(Qobs,i � �Qobs)
2
i

(3)
://iwaponline.com/jwcc/article-pdf/14/5/1723/1251844/jwc0141723.pdf
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where Q is a variable (discharge, temperature or precipitation), ‘obs’ and ‘sim’ stand for observed and simulated data, respect-

ively. �Qobs is the mean of the observed variable. The numerator of Eq (3.29) is the sum of the squares of the residuals. In
contrast, the denominator is the sum of squares of the simulated values about the mean of the simulated values, representing
the overall variation of the observed values about the mean (worst value¼�∞; best value¼ 1).
3.3.4. R2

The coefficient of determination (R2) is a statistical measure for linear regression models that indicates the proportion of var-
iance in the response variable(s), which is illustrated by the independent variable(s). In other words, it measures the
combined dispersion against solo dispersion of the observed and simulated series and the wellness of fit of a regression

model. Usually, the higher the R2 value, the better the regression model fits observations.

R2 ¼

Pn
i¼1

(Qobs,i � �Qobs)(Qsim,i � �Qsim)
� �2

Pn
i¼1

(Qobs,i � �Qobs)
2 Pn
i¼1

(Qsim,i � �Qsim)
2

(4)

where Qsim is the simulated ith value, and the Qobs element is the observed ith value (worst value¼ 0%; best value¼ 100%).
3.4. Hydrological modelling and calibration

3.4.1. SWAT model

SWAT (Arnold et al. 2012) is a physically based, computationally efficient watershed-to-basin scale surface water long-term

yield model developed by Dr Jeff Arnold for Agricultural Research Service, USA. The SWAT (Soil and Water Assessment
Tool) model is a widely-used hydrological model for assessing the impact of land use and management practices on water
resources. The stream flow for mid-range, dry and low flows is better simulated by SWAT as compared to other models
(Tegegne et al. 2017).

The basin is divided into several sub-basins. All input information is grouped into five categories: climate; hydrologic
response units (HRUs); ponds/wetlands; groundwater, and main channel or reach, draining the subbasin. Within the subba-
sin, land regions are grouped into HRUs with certain combinations of soil, land cover, and management. SWAT simulates the

watershed hydrology based on climate, water quality, soil and land cover parameters in two major divisions. The first is the
land phase of the hydrologic cycle, which is based on the water balance equation:

SWt ¼ SW0 þ
Xt

i¼1

(Rday �Qsurf � Ea �wseep �Qgw) (5)

where SWt is the final soil water content (mm H2O), SW0 is the initial soil water content on the day i (mm H2O), t is the time
(days), Rday is the amount of precipitation on the day i (mm H2O), Qsurf is the amount of surface runoff on the day i (mm

H2O), Ea is the amount of evapotranspiration on the day i (mm H2O), wseep is the amount of water entering the vadose
zone from the soil profile on the day i (mm H2O), and Qgw is the amount of return flow on the day i (mm H2O).

The second phase is the routing phase of the hydrologic cycle. SWAT estimates the loadings of water, sediment, nutrients,

and pesticides to the main channel, which are then channelled through the watershed’s stream network. SWAT simulates the
change of chemicals in the stream and streambed in addition to tracking mass movement in the channel.

In the present study, the Gopad river basin is delineated to Shuttle Radar Topography Mission (SRTM) Digital Elevation
Model (DEM). For flatter terrain in the lower part of the basin, the main stream is manually digitised and burned to the DEM

to remove errors due to flat topography in stream delineation. The watershed was delineated with a threshold flow accumu-
lation of 1,000 hectares of draining area. A total of 53 subbasins and stream reaches, along with the subbasin parameters
(length, width, area, elevation), have been calculated. The land use data has been prepared with Landsat 8 imagery using

maximum likelihood classification. The soil data is imported from Harmonized World Soil Database (HWSD) by the
Food and Agriculture Organization (FAO) of the United States. The land cover and soil data have been used along with
four slope classes (,5%, 5–10%, 10–15%, .15%) to calculate the HRUs based on dominance criteria. Climate data has
om http://iwaponline.com/jwcc/article-pdf/14/5/1723/1251844/jwc0141723.pdf
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been imported from Indian Meteorological Department (IMD) 2D gridded data and converted to SWAT input txt file. The

model is simulated for 1975–2006 with five year warmup period (Figure 5).

3.4.2. Calibration

The SWAT Model has been calibrated with observed monthly mean river discharge using Sequential Uncertainty Fitting
(SUFI-2) in SWAT-CUP (Abbaspour 2019). SWAT-CUP provides an interactive graphical user interface to calibrate SWAT

model parameters with multiple observation data. The Nash-Sutcliffe objective function has been optimised with 4,000 iter-
ations. 16 parameters with five soil properties of the different layers have been optimised. Among the optimised parameters,
CN2 (Curve Number) has been the most sensitive (Figure 6), followed by GWQMN (threshold depth of water in the shallow

aquifer required for return flow to occur) and GW_REVAP (Groundwater revap coefficient). The optimised parameters
ranked according to their sensitivity are represented in Table 1. The mean monthly discharge data at Bahri gauge station (sub-
basin 3) from 1980 to 2007 has been used for calibration. The discharge at the given gauge site has shown mixed variation

over the measured time period, in accordance with the rainfall in the area, with a peak discharge as high as 1,400 m3/sec and
as low as 2 m3/sec.

3.5. Simulation with future climate data

The GCMs outputs have been downscaled with the help of the CMhyd tool. The IMD 2D gridded data has been utilised as

observed data for bias correction. All the downscaled data has been analysed for accuracy compared to the IMD data. The
most accurate method and GCM model combination are used to estimate the future IPCC scenarios (SSP1, SSP2 and SSP5).
The downscaled time-series precipitation and temperature have been used to simulate the calibrated SWAT model. In this

research, the downscaled precipitation from MIROC6 GCM with the help of power transformation and temperature from
ACCESS-CM2 downscaled with distribution mapping has been used for SWAT simulations.

3.6. Hydrologically critical subbasins

The source of dry weather flow in the Gopad River is majorly satisfied by the base flow. The subbasins contributing signifi-
cantly to the baseflow are critical and need to be preserved for the flow of the Gopad river. The runoff, recharge, and baseflow
contribution from each subbasin has been analysed based on runoff or recharge generated per unit of rainfall. Threshold
Figure 5 | SWAT Model of Gopad river basin; the value represents the average basin surface water budgets for the simulation period
(1975–2006).
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Figure 6 | SWAT calibration summary statistics and observed vs simulated discharge at Bahri gauge station.

Table 1 | Parameters after SWAT model calibration

Rank Parameter Minimum Maximum Fitted Value

1 CN2.mgt � 0.255 0.048 � 0.143

2 GWQMN.gw 0.00 2,734.664 510.698

3 GW_REVAP.gw 0.099 0.2 0.167

4 GW_DELAY.gw 217.935 500.00 483.146

5 REVAPMN.gw 0.00 287.447 149.401

6 CH_K2.rte 0.01 95.717 9.126

7 ESCO.hru 0.589 0.796 0.605

8 OV_N.hru 0.082 0.447 0.286

9 SLSUBBSN.hru � 0.791 0.069 � 0.776

10 ALPHA_BF.gw 0.284 0.453 0.395

11 SURLAG.bsn 8.536 24.00 21.382
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values of 0.082, 0.402 and 0.488 have been used to identify the subbasins with runoff/rainfall, groundwater recharge/rainfall

and baseflow/streamflow ratios as the critical subbasins. The threshold corresponds to the 50th percentile value of the
respective ratios. The subbasins critical for all three ratios were identified as hydrologically critical subbasins for the study
area.
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4. RESULTS

4.1. Evaluation of GCMs and downscaling methods

Although the GCMs were selected based on the work of Kamruzzaman et al. (2021), A comparison of the accuracy has been

performed to evaluate the performance of all the models, as well as the downscaling methods, to the area under study. The
observed climate variables have been used to calculate the NS, R2, and RMSE for all the models and methods. Precipitation
data has been obtained by downscaling the ‘pr’ variable to the IMD 2D grids. It is observed that MIROC6 has the least RMSE

(107.19 cm) and highest R2 (0.52) as compared to other GCMs. The prediction capability of INM-CM5-0 is also comparable to
MIROC6 for an Indian semi-arid environment. Among all the methods used to downscale the precipitation, LS has proven to
be more accurate for MIROC6. Although for other models, the accuracy is highly variable. The PT method has shown con-

sistently high accuracy matrices for all models. In this study, the PT method has been utilised to downscale the precipitation
values.

The temperature values were obtained by downscaling the ‘tasmax’ and ‘tasmin’ parameters of GCM, which correspond to

the maximum daily temperature and minimum daily temperature, respectively. The prediction accuracy of the GCMs, along
with the statistical methods, are consistently high in all the combination (GCM and downscaling method) (Tables 2–4).
ACCESS-CM2 has shown slightly better accuracy with VS (R2¼ 0.89) method for maximum temperature. For minimum
Table 2 | Accuracy scores (average basin values) for different methods for the bias correction of downscaled monthly precipitation from
different CMIP6 GCMs

DM LI LS PT

NS R2
RMSE
(mm/month) NS R2

RMSE
(mm/month) NS R2

RMSE
(mm/month) NS R2

RMSE
(mm/month)

ACCESS-CM2 0.09 0.34 137.54 � 0.97 0.23 199.46 � 0.96 0.23 199.01 0.24 0.45 124.25

ACCESS-ESM1-5 � 0.07 0.33 147.01 � 1.04 0.24 203.08 � 1.04 0.24 203.21 0.00 0.37 141.68

INM-CM5-0 0.01 0.40 139.88 0.11 0.41 133.61 0.15 0.42 130.66 0.26 0.46 121.85

MIROC6 0.37 0.49 113.00 0.42 0.51 108.11 0.43 0.52 107.19 0.41 0.50 109.53

Table 3 | Accuracy scores (average basin values) for different methods for the bias correction of downscaled maximummonthly mean temp-
erature from different CMIP6 GCMs

DM LS VS

NS R2 RMSE (oC/month) NS R2 RMSE (oC/month) NS R2 RMSE (oC/month)

ACCESS-CM2 0.87 0.88 1.81 0.82 0.83 2.17 0.89 0.89 1.70

ACCESS-ESM1-5 0.87 0.87 1.85 0.75 0.78 2.55 0.89 0.89 1.71

INM-CM5-0 0.87 0.87 1.84 0.81 0.83 2.21 0.88 0.88 1.75

MIROC6 0.85 0.86 1.96 0.56 0.66 3.36 0.86 0.86 1.90

Table 4 | Accuracy scores (average basin values) for different methods for the bias correction of downscaled minimum monthly mean
temperature from different CMIP6 GCMs

DM LS VS

NS R2 RMSE (°C/month) NS R2 RMSE (°C/month) NS R2 RMSE (°C/month)

ACCESS-CM2 0.95 0.95 1.34 0.93 0.93 1.65 0.95 0.95 1.39

ACCESS-ESM1-5 0.95 0.95 1.34 0.93 0.94 1.59 0.94 0.94 1.50

INM-CM5-0 0.95 0.95 1.34 0.91 0.92 1.84 0.94 0.94 1.54

MIROC6 0.95 0.95 1.39 0.93 0.93 1.62 0.94 0.94 1.49
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temperature, the accuracy achieved by DM with ACCESS-CM2 (R2¼ 0.95) outputs is slightly higher than other combinations.

The accuracy for temperature prediction is relatively high for all the combinations, which is manifested by the seasonality of
the data. All the models with the bias correction method are recommended for the downscaling of temperature except the LS
method since the accuracy achieved is relatively low with respect to other methods (Table 3).

4.2. Impact on basin hydrology

The climate variables have been analysed for the deviation from the baseline scenario. The baseline values of the variables
have been determined by predicting the climate data with the LSTM algorithm (Long-Short Term Memory), with observed

daily precipitation and temperature data from 1975 to 2020. The deviation from the baseline climate has been analysed
for all three scenarios (SSP1, SSP2 and SSP5). The SSP1 is characterised by more precipitation from 2030 to 2043; after
that, there is a deficiency in rainfall. SSP2 and SSP5 have shown continuous deficiency of as much as 529 mm in rainfall

from the baseline. The results suggest a decrease in the rainfall period, hence increasing the intensity of rainfall. The maxi-
mum temperature has shown a variable increase of 1.23 °C–3.16 °C for SSP1. The net change in temperature change for
SSP2 and SSP5 is more or less equal, which has shown an increase in maximum temperature of 2.51 °C. The minimum temp-

erature has shown a change of 2.94 °C, 2.51 °C and 2.50 °C for SSP1, SSP2 and SSP5, respectively. The minimum temperature
has a steady increase (1.41–2.74 degrees from baseline) from 2030 to 2038 for SSP1. However, the rainfall has shown an
increase in this time interval. The temperature rises from 2030 to 2038 manifest drought conditions in summer with high-

intensity rainfalls that can bring flood in the rainy season.
Potential Evapotranspiration (PET) and Actual Evapotranspiration (ET) have been affected by the increased temperature in

future scenarios. There is a decrease of 7.5%,4.3% and 5.75% in PET in the month of May and June for SSP1, SSP2 and SSP5,
respectively, from baseline. The PET increases in the month of July, August and September by an average of 25%. The ET has

shown considerable increase throughout the year, with an average increase of 53.6%, 51.2% and 48.5% for SSP1, SSP2 and
SSP5, respectively, with the maximum increase in June, August and September. The increased transpiration process affects
groundwater storage, which affects the lean period base flow to the streams. There is a decrease of 33% in lean period flow

(October to May) in the Gopad river. The SSP2 manifests the most decrease of 42.8% in the river flow, followed by SSP5
(37.8%). The SSP1 has shown the slightest decrease in the river flow (21.6%) compared to the baseline scenario. The
SWAT simulations indicate that there is a considerable decrease in groundwater recharge as compared to the baseline

scenario. The results indicate an overall decrease of 12%, 25.3% and 23.3% in annual recharge to the groundwater for
SSP1, SSP2 and SSP3, respectively. The volume of runoff generation has increased by more than 200% due to increased
intensity of rainfall.

4.3. HCS

The average annual rainfall from 2021 to 2060 is found to vary from 540 mm to 1,628 mm spatially. The subbasin in the lower
part of the Gopad river basin is projected to receive precipitation from 1,465 mm to 1,628 mm (annual average from 2021 to

2060). In response to projected precipitation, subbasins 19,22 and 26 have shown the highest surface runoff, followed by sub-
basins 9,27,34 and 53. The runoff generated by the subbasins in the upper Gopad basin has shown uniform values manifesting
in the forest area. The groundwater recharge (shallow and deep) in subbasins 39–53 was the highest, creating a zone of high

recharge potential. These subbasins are from the upper Gopad basin and are covered by forest and shrublands. These account
for 56.55% of total groundwater recharge (Figure 7). The effect of high groundwater recharge comes with a high groundwater
leakage to streams in these subbasins, which makes them critical areas for baseflow as they contribute 69.2% of total baseflow

to the river. These areas also manifest high evapotranspiration (47% of the entire basin value) and high stream water yield
(53.57% of the entire basin value). The subbasins 11,16,20,39,41,42,43,44,45,48,49,52 and 53 have been identified as HCS.

5. DISCUSSION

5.1. GCM and downscaling methods

The performance of four GCMs of CMIP6 in simulating rainfall and temperature for hydrological study has been evaluated
from 1980 to 2020. The downscaling methods for these models have also been evaluated for their bias correction accuracy.

MIROC6 with linear scaling has performed best for precipitation data, followed by INM-CM5-0 with the power transform-
ation bias correction method. Accuracy is much more consistent for power transformation for all GCMs. Also, the
variation of the accuracy for all the grid points, downscaled by power transformation, is much lower as compared to
om http://iwaponline.com/jwcc/article-pdf/14/5/1723/1251844/jwc0141723.pdf

024



Figure 7 | Basin wise distribution of hydrological parameters (PRECIPmm-Precipitation in mm, ETmm- Evapotranspiration in mm, SURG_
GENmm- Surface runoff generated in mm, LATQ_mm- Lateral flow to the streams in mm, GW_RCHGmm- Grounwater recharge in mm,
DA_RCHGmm- Deep aquifer recharge in mm, GW_Qmm- Groundwater contribution to stream flow in mm, WYLD_Qmm- Water yield from
subbasin to the streams in mm).
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other methods. In this study, the power transformation has been used for the downscaling of MIROC6 precipitation data. As
for temperature data, both variance scaling and distribution mapping have performed better than linear scaling. Variance
scaling and distribution mapping have been used for downscaling maximum and minimum temperature, respectively. The

overall accuracy in the simulation and downscaling of precipitation data has been the lowest as compared to temperature
due to the lack of seasonality in the data series. The dry season precipitation simulated by the models was found to be
higher. The ACCESS-CM2 was unable to capture the peak rainfall events as the simulated precipitations were found to be

lower than the observed values. The MIROC6 and INM-CM5-0 performed better in simulating Indian weather as compared
to others. As for the IPCC scenarios, SSP1 for precipitation has shown the highest increase in rainfall as compared to SSP2
and SSP5. For temperature, SSP1 and SSP2 have shown similar variations as compared to SSP5, which indicates a drastic
increase in the temperature.
5.2. Future climate and hydrology of the Gopad river basin

The rainfall intensity has shown an increase in the near future. This could lead to higher runoff generation for the watershed

in a short duration, causing flooding events in the lower Gopad basin (Figure 8). On the other hand, increased temperature in
all the scenarios is a sign of high evapotranspiration, which can lower the groundwater table in the near future, causing a
reduction in baseflow to the river. The increased temperature can reduce the flora of the upper Gopad basin, which further

aggravates the problem of high runoff and low baseflow.
The SWAT model is calibrated and simulated with the bias-corrected future climate data. Surface water hydrology is found

to be sensitive to climate variables. The peak discharge at the basin outlet has increased for all the IPCC scenarios. The dry
://iwaponline.com/jwcc/article-pdf/14/5/1723/1251844/jwc0141723.pdf



Figure 8 | Monthly average basin values of- (a) PRECIPmm (Precipitation), (b) FLOW_OUTcms (Stream discharge in m3/sec) for the whole
Gopad river basin. (c) ETmm (Evapotranspiration), (d) PETmm (Potential evapotranspiration), (e) GW_RCHGmm (Groundwater recharge) and
(f) SURQ_CNTmm (Surface runoff contributing to stream flow). The values are represented for all three SSPs with the baseline.
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season flow has shown a decline in discharge, accompanied by lower groundwater recharge. This is caused by the increased
rainfall intensity in the basin, leading to a high runoff-to-infiltration ratio.

5.3. Hydrologically critical areas for future

The HCS has been delineated based on three ratios viz. runoff per unit rainfall, groundwater recharge per unit rainfall and
groundwater leakage per unit stream flow. The critical subbasins for individual parameters have been identified by a threshold

value determined by the 50th percentile of all basin values. The subbasins satisfying all three critical parameters have been
identified as HCS (Figure 9). The spatial distribution of the HCS is high in the upper Gopad river basin (Figure 10). This area
is highly pristine, with no human intervention, and covered with forest. The loamy soil in the area is highly permeable, leading

to high groundwater recharge. The slopy topography of the sub-watersheds supports the groundwater leakage to the river;
hence, these subbasins contribute significantly to the baseflow. The area of HCS is less than 40% of the total basin area,
and these HCS contribute significantly to the total basin water budget. It is required to maintain the hydrogeological settings
om http://iwaponline.com/jwcc/article-pdf/14/5/1723/1251844/jwc0141723.pdf
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Figure 9 | Raster plot of the subbasin-wise variation of SWAT outputs. The black squares represent the subbasins with the variable’s
magnitude higher than the threshold for the given parameter (GW_RCHG, SURQ_GEN and GW_Q). The blue squares represent the overall
critical subbasins. On the bottom, the contribution of the identified critical subbasins to the overall basin values has been tabulated. For
example, the identified critical subbasins contribute 56.55% to the groundwater recharge compared to all subbasins in the study area.
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in the area for the river to be perennial. The activities such as mining and reservoir construction can significantly change the
river discharge.

The critical subbasins in the study area are mapped based on the ratio of runoff and groundwater recharge to total rainfall.
The groundwater contribution to the stream flow has also been considered as a parameter. All the parameters have been
derived from the SWAT model, which is highly sensitive to weather parameters. Therefore, the critical subbasins are sensitive
://iwaponline.com/jwcc/article-pdf/14/5/1723/1251844/jwc0141723.pdf



Figure 10 | Hydrologically critical subbasins in the Gopad river watershed.
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to rainfall distribution, temperature and other weather parameters. The sensitivity of critical subbasins to the change in cli-
mate patterns should be analysed in future research work.

With water scarcity becoming increasingly prevalent in India, it is crucial to focus on conserving the existing hydrological
balance of a region both presently and in the future. By using climate models, we can gain insights into future scenarios and
analyse the potential impact of climate change on these delicate natural processes. The areas identified as critical zones in this

research must be protected for water resource conservation purposes. In future research, it is important to identify critical
zones for groundwater storage to ensure the holistic conservation of both surface and groundwater resources.
6. CONCLUSION

The hydrology of the Gopad river basin has been simulated by SWAT Model with the integration of GCMs outputs to identify
the hydrologically critical subbasins for future IPCC scenarios. The climate change impact has been discussed along with a
comparative analysis of the CMIP6 Models and the downscaling techniques. It is found that the MIROC6 and ACCESS-CM2

better simulate the precipitation and temperature for the Gopad river basin, respectively. In the statistical downscaling
methods, the performances of DM and VS were superior w.r.t other methods. The precipitation in the monsoon season
for 2021–2060 is projected to be 9.2% less than the baseline. At the end of 2060, the average annual temperature is projected
om http://iwaponline.com/jwcc/article-pdf/14/5/1723/1251844/jwc0141723.pdf
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to rise by 1.23 °C–3.16 °C. Due to these changes in the climate, the peak flow in the Gopad river is projected to be increasing,

and the lean flow is decreasing. The groundwater recharge is projected to fall by 12–25.3%, leading to a decreased baseflow.
The critical subbasins for future scenarios have been identified to be primarily situated in the upper Gopad river basin. Most
of the HCS has been identified in forest areas. It is suggested to prevent significant alteration to the hydrogeology and land use

of these HCS for the better hydrological balance of the study area in the near future. It can be concluded that the hydrological
factor affecting the critical subbasins are land use, soil infiltration capacity, topography and rainfall distribution. The
sensitivity analysis of these parameters should be performed in future studies.
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