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CHAPTER-5 

An analytical algorithm for 

fractional (1+1) dimensional 

nonlinear Boussinesq equation 

by the homotopy analysis 

method



The contents of this chapter have been published in Nonlinear Sci. Lett. A., Vol.8, No.3, 

pp.276-288, 2017. 

Chapter  5 

An analytical algorithm for fractional (1+1) 

dimensional nonlinear Boussinesq equation by the 

homotopy analysis method 

5.1 Introduction 

To find an algorithm for exact solutions of nonlinear partial differential equations, its 

method plays an important role. The nonlinear physical phenomena can be found in many 

branches of science and engineering, for example in fluid mechanics, plasma physics, 

atmospheric science, optical fiber communications etc. In the past few decades, there had 

been significant progress in the modifications where different methods are used viz. the 

inverse scattering method, Hirota’s bilinear method, Backlund transformation method, 

Darboux transformation method, similarity transformation method, homogeneous balance 

method, the sine-cosine method, tanh function method, Jacobi elliptic function method, 

Painlev´e expansion method etc. Different phenomena in physics, like diffusion in a 

disordered or fractal medium, or in risk management, have been modelled using fractional 

partial differential equations. In general, there exists no method that gives exact solutions 

for these equations. However, in the past few decades, both mathematicians and 

physicists have dedicated their research to a considerable amount of study on explicit and 

numerical solutions of nonlinear differential equations of fractional order (Singh and Som 

(2012), Singh and Das (2013), Das et al. (2013), He (2011), Hristov (2015), Das (2009), 

Vishal et al. (2011)).  
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The Homotopy Analysis Method (HAM) proposed by S.J. Liao (1992, 2003, 2004) is 

very effective and convenient for solving the linear and nonlinear ODEs and PDEs. The 

advantage of HAM is that it provides a simple way to adjust and control the convergence 

of the series solution by choosing proper values of auxiliary and homotopy parameters. A 

lot of researchers have used this method for solving fractional order differential 

equations.  

The well-known (1+1) dimensional nonlinear fractional order Boussinesq-type equations 

are given by 

0,t x xu v uuα + + =

( ) 0,t x x xx
v vu uβ + + = 0 , 1.α β< <                           (5.1) 

with initial conditions  

( ), 0 2 ,u x x= ( ) 2, 0 .v x x=          

This equation appears in the modeling of nonlinear strings, which is a generalization of 

the classical Boussinesq equation (1872). Boussinesq shrinks into a nonlinear model with 

equations governing two-dimensional irrotational flows of an inviscid liquid into a 

uniform rectangular channel. Note that the equations in (5.1) are the perturbation of the 

classical linear wave equation which incorporates the basic idea of nonlinearity and 

dispersion. The fractional Boussinesq-type equation is the generalization of the case of 

the good means Boussinesq equation as compared to bad Boussinesq equation. This bad 

version appears in the research of water waves. Specifically, it is used to discuss a two-

dimensional flow of a volume of water over a flat bottom with air above the water. It also 

appeared in a posterior study of Fermi-Pasta-Ulam (FPU) problem, which was performed 

to show that the finiteness of thermal conductivity of a harmonic lattice was coupled to 
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nonlinear forces in the springs but it was not the case. This result is motivated by N. J. 

Zabusky and M. D. Kruskal (1965) to approach the FPU problem from the continuum 

point of view. The motivation of considering the fractional time derivative form of 

Boussinesq equations (5.1) is for their non-local behaviour, which provides a lot of 

flexibilities in the model.  

In this chapter, The Homotopy analysis method is applied to solve the (1+1) dimensional 

nonlinear time-fractional Boussinesq-type equation, which is first of its kind. The salient 

feature of the problem is the graphical presentations and numerical discussion of the field 

variables ����� ��  and ����� ��  for various fractional Brownian motions and also for 

standard motion in different particular cases. 

5.2 The basic idea of the Homotopy analysis method 

In this section the method HAM which is applied to solve the (1+1) dimensional 

nonlinear fractional Boussinesq-type problem is discussed. In order to show the basic idea 

of HAM, consider the following differential equation 

,0)],([ =txuN                                                           (5.2) 

where N  is a non-linear operator, x  and t  are independent variables, ),( txu  is the 

unknown function. By means of the HAM, let us first construct the so-called zero-th order 

deformation equation 

0(1 ) [ ( , ; ) ( , ) ] ( , ) [ ( , ; )] ,q L x t q u x t H x t N x t qφ φ− − = �                                (5.3) 

where ]1,0[∈q  is the embedding parameter, 0≠� , is a nonzero auxiliary parameter, 

0),( ≠txH   is an auxiliary function, L  is an auxiliary linear operator, ),(0 txu  is the 
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initial guess of ),( txu , It is obvious that when the embedding parameter 0=q and 

1,q =  equation (5.3) becomes 0( , ;0) ( , )x t u x tφ =  and ( , ;1) ( , )x t u x tφ =  respectively. 

Thus, as q  increases from 0 to 1, the solution ( , ; )x t qφ  varies from the initial guess 

),(0 txu  to the exact solution ),( txu . Expanding ( , ; )x t qφ  in Taylor series with respect 

to q , one gets 

0

1

( , ; ) ( , ) ( , ) k

k

k

x t q u x t u x t qφ
∞

=

= +�            (5.4) 

where, 

0

1
( , ) .

!

k

k k

q

u x t
k q

φ

=

∂
=

∂
             (5.5) 

The convergence of the series (5.4) depends upon the auxiliary parameter � . If it is 

convergent at 1=q , this leads to 

0

1

( , ; ) ( , ) ( , )
k

k

x t q u x t u x tφ
∞

=

= +� , 

which must be one of the solutions of the original nonlinear equation, as proven by Liao 

(2003). Now we define the vector as 

( ) 0 1 2, { ( , ), ( , ), ( , ) ,........, ( , )}n nu x t u x t u x t u x t u x t
→

= ,        (5.6) 

So the m-th order deformation equations are 

( )11[ ( , ) ( , ) ] ( , )mm m m mL u x t u x t R u x tχ
→

−−− = � ,         (5.7) 

with the initial conditions 
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0)0,( =xum ,             (5.8) 

where 

1

1 1

0

1 [ ( , ; )]
( ( , ))

( 1)!

m

mm m

q

N x t q
R u x t

m q

φ−→

− −

=

∂
=

− ∂
    

and  
�
�
�

>

≤
=

.1,1

,1,0

m

m
mχ

Now, the solution of the m-th order deformation equation (5.7) for 1≥m  becomes 

11( , ) ( , ) [ ( ( , ) )]mm m m t mu x t u x t J R u x t cαχ
→

−−= + +� ,        (5.9) 

where c  is the integration constant determined by the initial condition (5.8) and 

( )( ) 1

0

1
( ) ( )

( )

t

tJ f t t f dα αξ ξ ξ
α

−= −
Γ � . In this way, it is easy to obtain ),( txum  for 1≥m , 

and finally  the solution is obtained as  

�
−

=

=
1

0

),(),(
N

m

m txutxu .          (5.10) 

5.3 Solution procedure by HAM 

This section deals with the algorithm to find the solution of equations (5.1) by HAM 

under the initial conditions 

0 ( , ) 2 ,u x t x= ( ) 2

0 , .v x t x=           (5.11) 

Let us assume the linear operators as 
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( , ; )
[ ( , ; )]u

x t q
L x t q

t

α

α

φ
φ

∂
=

∂
,     

( , ; )
[ ( , ; )] ,v

x t q
L x t q

t

β

α

ψ
ψ

∂
=

∂
       (5.12) 

with the property 

1[ ] 0,uL c = 2[ ] 0,vL c =           (5.13) 

where 1c and 2c  are integral constants, coefficients φ  and ψ are real functions. 

Furthermore, equation (5.1) suggests to define an equation of nonlinear operators as  

( , ; ) ( , ; ) ( , ; )
[ ( , ; ). ( , ; )] ( , ; )u

x t q x t q x t q
N x t q x t q x t q

t x x

α

α

φ ψ φ
φ ψ φ

∂ ∂ ∂
= + +

∂ ∂ ∂
, 

( , ; ) ( , ; )
[ ( , ; ). ( , ; )] ( , ; )v

x t q x t q
N x t q x t q x t q

t x

β

β

ψ φ
φ ψ ψ

∂ ∂
= +

∂ ∂     

    

3

3

( , ; ) ( , ; )
( , ; ) ,

x t q x t q
x t q

x x

ψ φ
φ

∂ ∂
+ +

∂ ∂
     (5.14) 

where [ ]0,1q ∈ , ( , ; )x t qφ and ( , ; )x t qψ  are real functions of ( ),x t . Let u� and v�

denote the non-zero auxiliary parameters using the assumptions ( ), 1uH x t = and 

( ), 1vH x t = . 

Now, the zero-th order deformation equations are constructed as follows: 

0(1 ) [ ( , ; ) ( , )] [ ( , ; ). ( , ; )]u u uq L x t q u x t q h N x t q x t qφ φ ψ− − = , 

0(1 ) [ ( , ; ) ( , )] [ ( , ; ). ( , ; )]v v vq L x t q v x t q h N x t q x t qψ φ ψ− − = .    (5.15) 

Obviously, when 0q = , and 1q = ,  we have   
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( )0( , ; 0) ,x t u x tφ =  ,  ( ) ( )0, , 0 , ,x t v x tψ =                                           (5.16) 

( )( , ; 1) ,x t u x tφ =  ,  ( ) ( ), ,1 , .x t v x tψ =

The power series of q  is given in following form as 

( ) ( ) ( )0

1

,, , , , n

n

n

x t q u x t u x t qφ
∞

=

= +�                 (5.17) 

( ) ( ) ( )0

1

, , , , .n

n

n

x t q v x t v x t qψ
∞

=

= +�

According to Fundamental Theorem of HAM, the n-th order deformation equations are 

( ) ( ) 11 1
, , , ,u

nu n n n u n n
L u x t u x t R u vχ

→ →

−− −

� �− =� 	 
 �� 
 � �
�        (5.18)

( ) ( ) 11 1, , ,v
nv n n n v n nL v x t v x t R u vχ

→ →

−− −

� �� − 	 = 
 �� 
 � �
� , 

where 

( ) ( )
( )

( )1
1 1 1

1 1

0

, , ,
, ,

n
u n n n i

nn n i

i

u x t v x t u x t
R u v u x t

t x x

α

α

−→ →
− − − −

− −
=

∂ ∂ ∂� � = + +
 �� � ∂ ∂ ∂
�   

( )
( )

( )
( )

( ) ( )31 1
1 1 1 1

1 1 3
0 0

, , , ,
, , ,

n n
u n n i n i n

nn n i i

i i

v x t u x t v x t u x t
R u v v x t u x t

t x x x

α

α

− −→ →
− − − − − −

− −
= =

∂ ∂ ∂ ∂� � = + + +
 �� � ∂ ∂ ∂ ∂
� �

and  
�
�
�

>

≤
=

.1,1

,1,0

m

m
mχ   

Now the solutions of n-th order deformation equation for 1n ≥  become�
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( ) ( ) ( )1

1 1 1, , , ,n n n u n nu x t u x t L u vχ −
− − −

� 	= + � 
�        (5.19) 

( ) ( ) ( )1

1 1 1, , ,n n n u n nv x t v x t L u vχ −
− − −

� 	= + � 
� . 

For simplicity u v=� � is taken. 

Now proceeding as in the previous section 5.3, ( ),iu x t  and ( ),iv x t ( )1, 2, 3i =  are 

successively obtained as follows:  

1( , ) 6 ,
( 1)

t
u x t x

α

α
=

Γ +
� (5.20)

2
2 2

2 ( , ) ( 1) 6 24 12
( 1) (2 1) ( 1)

t t t
u x t x x x

α α α β

α α β α

+

= + + +
Γ + Γ + Γ + +

� � � � ,          (5.21) 

2
2 2 2

3( , ) ( 1) 6 48 ( 1) 24 ( 1)
( 1) (2 1) ( 1)

t t t
u x t x x x

α α α β

α α β α

+

= + + + + +
Γ + Γ + Γ + +

� � � � � �   

( )

2 2 3 3
3 3 3 3

2
108 48 96 36 .

( 2 1) (2 1) (3 1) ( 1)

t t t t
x x x

α β β α α α

β α β α α α

+ +

+ + + +
Γ + + Γ + + Γ + Γ +

� � � �   

(5.22) 

2

1( , ) 6
( 1)

t
v x t x

β

β
=

Γ +
�  ,           (5.23) 

2
2 2 2 2 2

2 ( , ) ( 1) 6 30 24
( 1) ( 1) (2 1)

t t t
v x t x x x

β α β β

β α β β

+

= + + +
Γ + Γ + + Γ +

� � � � ,      (5.24) 

2
2 2 2 2 2 2

3( , ) ( 1) 6 78 ( 1) 60 ( 1)
( 1) ( 1) (2 1)

t t t
v x t x x x

β α β β

β α β β

+

= + + + + +
Γ + Γ + + Γ +

� � � � � �    
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2 2
3 2 3 272 216

( 2 1) (2 1)

t t
x x

α β β α

β α β α

+ +

+ +
Γ + + Γ + +

� � �

               

2 3
3 2 3 2( 1)

108 144
( 1) ( 1) (2 1) (3 1)

t t
x x

β α ββ α

α β β α β

+ Γ + +
+ +

Γ + Γ + Γ + + Γ +
� � .                    (5.25)  

In this way the rest of the terms of 
n

u and nv  ; 3n >  can completely determined and the 

series solutions are thus entirely obtained. 

Finally, the approximate analytical solutions of ),( txu and ( ),v x t are obtained by the 

truncated series as 

( , ) lim ( , ),N
N

u x t x t
→∞

= Φ ( , ) lim ( , )N
N

v x t x t
→ ∞

= Θ ,        (5.26) 

where 
1

0

( , ) ( , ) ,
N

N n

n

x t u x t
−

=

Φ =�
1

0

( , ) ( , ) ,
N

N n

n

x t v x t
−

=

Θ =� 1.N ≥

The above series solutions generally converge very rapidly. The rapid convergence means 

that only few terms are required to get the accurate results.  

5.4 Results and discussion 

In this section, the numerical values of ),( txu and ( , )v x t  with the given initial 

conditions and the proper choices of � , are obtained and the results are depicted through 

graphs. To demonstrate the efficiency of the method we compare the Homotopy Analysis 

Method solutions of fractional order (1+1) dimensional nonlinear Boussinesq equation, 

thus obtained for 1α β= =  with its exact solutions given in Taghizadeh (2013), obtained 

using HPM. The fact is to be noted that HAM series solutions of fractional order (1+1) 

dimensional nonlinear Boussinesq equation obtained by involving the auxiliary parameter 

�  provide us with a simple way to adjust and control the convergence of the solution 
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series. To obtain the appropriate value of � , which ensures that the solutions series are 

convergent, as pointed out by Liao (2004) by finding out valid values of =� -0.174578, 

and =�  -0.325283. It is also concluded for the HAM, the convergence of the values of 

),( txu and ( , )v x t  are found quite similar by controlling the values of auxiliary 

parameter �  and homotopy parameter q . This clearly demonstrates the statement of Liao 

(1992) that the method provides great flexibility to choose initial approximation, 

homotopy parameter q , the auxiliary linear operator L , and the auxiliary parameter �  to 

ensure the convergence of the series solutions. 

Fig. 5.1 and Fig. 5.2 show the variations of ),( txu in 0 1t≤ ≤  at 1x =   for =� -0.174578 

obtained by third order HAM solution given in equation (5.26) for  0.25,0.50,0.75,1α =

at 1β =  and for 0.25,0.50,0.75,1β =  at 1α = respectively. In both cases ),( txu

decreases as t  increases.

Fig. 5.3 and Fig. 5.4 show the numerical solutions of ),( txu at 0.1t =  in 4 4x− ≤ ≤  for 

=� -0.174578 at 1α β= = and .25,.50,.75β α= = . It is seen from the figures that 

),( txu   increases with increase in α  and also  ),( txu   increases with decrease in β . 

The variations for ( ),v x t  for similar cases are depicted through Figs. 5.5 – 5.8. Fig 5.9 

and Fig. 5.10 present the comparison of ),( txu  and ( , )v x t  with the exact solutions 

Taghizadeh (2013) for standard order case i.e., for 1α β= = . The three dimensional 

variations of the field variables ( ),u x t  and ( ),v x t  w.r.t. x  and t  are displayed through 

Figs. 5.11 – 5.12 and Figs 5.13 – 5.14 respectively.  
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Fig. 5.1. Plot of ���� �� vs � at 	 
 � and � 
 �. 

          

Fig. 5.2. Plot of ���� �� vs � at � 
 � and � 
 �. 
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Fig. 5.3. Plot of ���� �� vs � at 	 
 � and � 
 
��. 

Fig. 5.4. Plot of ���� �� vs � at � 
 � and � 
 
��. 
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Fig. 5.5. Plot of ���� �� vs � at 	 
 � and � 
 �. 

Fig. 5.6. Plot of ���� �� vs � at � 
 � and � 
 �. 
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Fig. 5.7. Plot of ���� �� vs � at 	 
 � and � 
 
��. 

Fig. 5.8. Plot of ���� �� vs � at � 
 � and � 
 
��. 
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Fig. 5.9. Comparision of u��� �� with exact solution at � 
 � and 	 
 � w.r.t  �. 

Fig. 5.10. Comparision of ���� �� with exact solution at � 
 � and 	 
 � w.r.t  �. 
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Fig. 5.11. Plot of ������ �� w.r.t  � and �.  

Fig. 5.12. Plot of ���� �� w.r.t  � and � for � 
 
���and 	 
 
��.  
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Fig. 5.13. Plot of ������ �� w.r.t  � and �.  

Fig. 5.14. Plot of ���� �� w.r.t  � and � for � 
 
���and 	 
 
��.  
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5.5 Conclusion 

In this chapter the Homotopy analysis method has been successfully applied to obtain 

approximate analytical solution of fractional order (1+1) dimensional nonlinear 

Boussinesq equation. It has been explained that HAM solution of the problem in 

fractional order converges very rapidly to the exact one by choosing an approximate 

auxiliary parameter � . In present study, it has proven that the HAM is a powerful and 

efficient technique in finding the approximate analytical solution of fractional order (1+1) 

dimensional nonlinear Boussinesq equation and can be used for many other fractional 

evolution equations arising in various fields.  

***** 


