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Chapter 3 

Combination-Combination phase synchronization 

among non-identical fractional order complex 

chaotic systems via nonlinear control 

3.1 Introduction 

Mathematical modeling of dynamical systems describes the evolution of a system with 

initial conditions. Several mathematical modeling problems can be recast as a global 

problem and can be solved with appropriate mathematical tools. Newtonian mechanics is 

the origin of dynamical systems, and later it was found in many disciplines like 

population dynamics in biology, chemical kinetics in chemistry, mechanics in physics, 

sociology, etc. Mathematical modeling of a dynamical system is expressed in the form of 

difference equation for discrete case and differential equation for continuous case.  

Nonlinearity is quite common nature of dynamical systems. The nonlinear dynamical 

system has evolved as an important convergence between the engineering and 

mathematics disciplines. An interesting phenomenon associated with it is the possibility 

of chaos which means occurrence of irregular solution while equation of motion is 

deterministic.  

The study of dynamic behaviour in nonlinear fractional order systems has become an 

interesting topic to the scientists and engineers. Fractional calculus is playing an 

important role in the analysis of nonlinear dynamical systems. Nowadays from factional 

order modeling has been an active field of research theoretical and applied perspectives.  

Fractional calculus theory provides the generalization of the order of the derivative and 

integration from integer to any real number and complex number. Due to its memory 

property and nonlocal behaviour, fractional calculus are used in various physical areas of 

engineering and sciences such as viscoelasticity, biological model, material science, 
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electromagnetic wave, dielectric polarization etc. (Bagley and Calico (1991), Magin 

(2010), Carpinteri et al. (2004), Heaviside (1971), Sun et al.(1984)). 

The chaotic dynamical system is a kind of nonlinear dynamical systems which exhibits 

exponentially sensitive dependence on initial conditions with infinite unstable periodic 

nature and bounded unstable dynamic behaviour. The behaviour of sensitive dependence 

on initial conditions is popularly known as ‘The Butterfly effect’ (Alligood et al. (1997)). 

The research on chaotic dynamics of fractional order systems is growing rapidly in past 

few years ((Srivastava et al. (2014)), Erjaee and Taghvafard (2011), Li and Chen (2004), 

Luo and Wang (2013)).  

Synchronization between two identical (or non-identical) chaotic systems named one as a 

drive (master) and another as response (slave) systems means, the trajectories of these 

two systems generated from different initial conditions will converge and will remain 

with each other and make the systems structurally stable. Synchronization of chaotic 

systems through a simple coupling was first introduced by Pecora and Carroll (1990). 

Synchronization of chaos can be useful in physical systems, secure communications, 

ecological systems, chemical systems, etc. (Lakshmanan and Murali (1996, 2003), 

Blasius and Huppert (1999), Haung (2005)). Chaotic synchronization of fractional order 

differential systems has become one of the most interesting subjects in chaos theory. 

Recently, various effective techniques have been presented and successfully applied to 

achieve chaos control and synchronization (Razminia et al. (2011), Abd-Elouahab et al. 

(2010), Hegazi et al. (2013), Wang et al. (2009)). Different types of synchronization have 

been proposed in recent years such as active control, adaptive control, linear and 

nonlinear and time delay feedback approach, sliding mode control, backstep design 

method, etc. and concept of synchronization has been extended and investigated to chaos 

control, complete synchronization, phase and, anti-phase synchronization, and also 

various types of synchronization viz., generalized, lag, projective, hybrid, dual, 

Compound, double compound, combination, combination-combination, finite-time 

combination-combination, finite-time stochastic combination, hybrid and reduced-order 

hybrid combination synchronizations (Ott et al. (1990), Mainieri and Rehacek (1999), Li 

(2007), Barajas-Ramirez et al. (2003), Liu and Davids (2000), Sun et al. (2013a, 2013b), 

Wu and Zhang (2014), Zhang and Deng (2014), Luo et al. (2011), Runzi and Yinglan 
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(2013), Wu and Fu (2013), Sun et al. (2013), Lin et al. (2013), Zhou et al. (2014), Sun et 

al.(2014), Ojo et al. (2014a, 2014b), Singh et al. (2017)). These have motivated the 

authors to study on the combination-combination phase synchronization of fractional 

order non-identical complex chaotic systems. In phase synchronization, the coupled 

chaotic systems keep their phase difference bounded by a constant while their amplitudes 

remain uncorrelated. The phase synchronization usually applied upon two waveforms of 

the same frequency with identical phase angles with each cycle. However, it can be 

applied if there is an integer relationship of frequency such that the cyclic signals share a 

repeating sequence of phase angles over consecutive cycles. There are few results about 

the phase synchronization for the fractional order chaotic systems (Eejaee and Taghvafard 

(2011), Yadav et al. (2015), Das et al. (2013a)).    

Motivated by the above discussions, a combination of two drive systems and a 

combination of two response systems are synchronized in the present chapter, which is 

known as combination–combination synchronization. The complex systems have several 

important applications in the field of engineering and physics, for example secure 

communications and detuned lasers (Murali and Lakshmanan (2003), Mahmoud et al. 

(2009)) etc. The Combination-Combination synchronization has advantages over the 

other types of synchronization since it provides good security. Numerical simulations for 

C-C phase synchronization show the effectiveness and feasibility of the method. To the 

best of authors’ knowledge the combination-combination phase synchronization for the 

non-identical complex chaotic systems for fractional order derivatives using nonlinear 

control method has not yet been solved. 

3.2 Problem formulation and method 

3.2.1 Problem Formulation 

In this section our aim is to investigate the Combination-Combination phase 

synchronization between complex dynamical systems. Let us consider two mater systems 

as 

),(XfAX
dt

Xd
q

q

+=

where 21 iXXX +=  is complex state variable with 
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dt
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XfAX
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.                                                                                 (3.1) 

and 

),(YgBY
dt

Yd
q

q

+=

where 21 iYYY +=  is complex state variable with 
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YgAY
dt

Yd

YgAY
dt

Yd

q

q

q

q

,                                                                                     (3.2) 

where 
T

nXXXX ],,...,[ )12(113111 −
= , 

T

nXXXX ].,,..,[ )2(114122 = and 

T

nYYYY ],,...,[ )12(113111 −
= , 

T

nYYYY ].,,..,[ )2(114122 = are the state variables. nnRBA ×
∈,  are 

the constant matrix with proper dimensions, nn CCgf →:,  are complex vector valued 

functions of the systems. 

Next we consider two fractional order complex systems as response (slave) systems as 

UZhCZ
dt

Zd
q

q

++= )( , 

where 21 iZZZ +=  is complex state variable with 

�
�
�

��
�

�

++=

++=

2222
2

1111
1

)(

)(

UZhCZ
dt

Zd

UZhCZ
dt

Zd

q

q

q

q

.                                                                   (3.3) 

and VWIDW
dt

Wd
q

q

++= )( , 

where 21 iWWW +=  is complex state variable with 

�
�
�

��
�

�

++=

++=

2222
2

1111
1

)(

)(

VWIDW
dt

Wd

VWIDW
dt

Wd

q

q

q

q

,                                                                 (3.4) 
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where 1 11 13 1(2 1)[ , ,..., ] ,T

nZ Z Z Z
−

= 2 12 14 1(2 )[ , ,..., ]T

nZ Z Z Z= and 

T

nWWWW ],,...,[ )12(113111 −
= , 

T

nWWWW ].,,..,[ )2(114122 = are the state variables. 

nnRDC ×
∈,  are the constant matrix with proper dimensions, nn CCIh →:,  are complex 

vector valued functions of the systems. 21 UiUU += , 21 ViVV +=  are control functions,

T

nUUUU ],,...,[ )12(113111 −
= , 

T

nUUUU ].,,..,[ )2(114122 = and 
T

nVVVV ],,...,[ )12(113111 −
= , 

T

nVVVV ].,,..,[ )2(114122 = . 

Now our goal is to obtain the combination-combination synchronization between master 

and slave systems. Defining the error function between the master and slave systems as 

XYZWe −−+= , where 1211 ieee += .                                            (3.5) 

For combination-combination synchronization we use the nonlinear control method to 

design the control functions in such a way that the error dynamic becomes asymptotically 

stable i.e., lim lim 0
t t

e W Z Y X
→ ∞ → ∞

= + − − = . 

From equation (3.5), we will get the following error systems as 

111111 XYZWe −−+= and 12 2 2 2 2e W Z Y X= + − − , 

from which the error dynamics can be obtained as  

,)()()()()()()( *

1111111111111
11 UWIZhYgXfZDCYDBXDADe

dt

ed
q

q

+++−−−+−−−−=

,)()()()()()()( *

2222222222212

12 VWIZhYgXfZDCYDBXDADe
dt

ed
q

q

+++−−−+−−−−=

           
(3.6) 

where 11

* VUU +=  and 22

* VUV +=  are control functions. 

3.2.2 Nonlinear control method 

Theorem 3.1: If the nonlinear control functions are designed as

),()()()()()()( 1111111111111111

* WIZhYgXfZDCYDBXDADeekU −−++−−−+−+−−=

),()()()()()()( 2222222222212122

* WIZhYgXfZDCYDBXDADeekV −−++−−−+−+−−=

               (3.7) 

then the combination-combination synchronization among two master systems I, II and 

two response systems I, II are achieved.  
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Proof: Let us define the Lyapunov function to stabilize the error systems (3.6) as  

)(
2

1 2

12

2

11 eeV +=
     

                                                   (3.8) 

taking the q-th order fractional derivative of equation (3.8) w. r. to t, we have 

q

q

q

q

q

q

dt

ed
e

dt

ed
e

dt

Vd 12
12

11
11 +≤ .  (Using Lemma 1.4)                  (3.9) 

After putting the values of 
q

q

dt

ed 11 , 
q

q

dt

ed 12  and control functions from equation (3.6) and 

(3.7)  in equation (3.9), we obtain 

0)(
)( 2

122

2

111 <+−≤ ekek
dt

eVd
q

q

. 

Thus we may conclude that for 0, 21 >kk , 0
)(

<
q

q

dt

eVd
 is negative definite and thus 

master systems I, II and response system I, II are combination-combination synchronized 

according to definition of error systems. 

If the any eigen value of the error system is equal to zero, then another type of 

synchronization phenomenon called combination-combination phase synchronization 

occurs, in which the difference between various states of synchronized systems may not 

necessarily converge to zero, but is less than or equal to a constant. 

3.3 Systems’ descriptions 

3.3.1 Fractional order Complex Lorenz system 

The fractional order complex Lorenz system (Luo and Wang (2013)) is given by 

,)( 1211
1 xxa

dt

xd
q

q

′−′=
′

,312112
2 xxxxa

dt

xd
q

q

′′−′−′=
′

                                                                      (3.10)  

,)(
2

1
3132121

3 xaxxxx
dt

xd
q

q

′−′′+′′=
′

where
Txxxx ],,[ 321

′′′=′  is the state variable vector, 12111 ixxx +=′ and 14132 ixxx +=′ are 

complex variables while 153 xx =′ is real variable and 131211 ,, aaa  are parameters’.  

Separating into real and imaginary parts, we get the system (3.10) as 
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),( 111311
11 xxa

dt

xd
q

q

−=

),( 121411
12 xxa

dt

xd
q

q

−=

,1511131112
13 xxxxa

dt

xd
q

q

−−=
                                                    

              (3.11) 

,1512141212
14 xxxxa

dt

xd
q

q

−−=

.151314121311
15 xaxxxx

dt

xd
q

q

−+=                                                                                    

Taking the values of the parameters’ as 11 12 1310, 180, 1a a a= = =  and initial conditions

Tx ]9,6,5,3,2[)0( =  at the fractional derivative ,95.0=q  the system (3.11) possesses 

the chaotic attractor given in Fig. 3.1. 
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(b) 

Fig. 3.1. Phase portraits of fractional order complex Lorenz system at 95.0=q : (a) in 

131211 xxx −−  space, (b) in 151413 xxx −−  space. 

3.3.2   The fractional order complex T-system 

The fractional order complex T-system (Liu et al. (2014), Yadav et al. (2016)) is  

),( 1211
1 yyb

dt

yd
q

q

′−′=
′

,)( 31111112
2 yybybb

dt

yd
q

q

′′−′−=
′

                                                         (3.12) 

,)(
2

1
3132121

3 ybyyyy
dt

yd
q

q

′−′′+′′=
′

where 
Tyyyy ],,[ 321

′′′=′ is the state variable vector of the system, 12111 iyyy +=′ and 

14132 iyyy +=′ are complex variables, 153 yy =′ is real variable and 131211 ,, bbb are 

parameters. Separating complex variables into real and imaginary parts, the system (3.12) 

is reduced to 
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),( 111311
11 yyb

dt

yd
q

q

−=

),( 121411
12 yyb

dt

yd
q

q

−=

,)( 151111111112
13 yybybb

dt

yd
q

q

−−=                                                  (3.13) 

,)( 151211121112
14 yybybb

dt

yd
q

q

−−=

151314121311
15 ybyyyy

dt

yd
q

q

−+= . 

The system (3.13) possesses a chaotic attractors which are shown through Fig. 3.2 for the 

values of the parameters’ 11 12 132.1, 30, 0.6 ,b b b= = = initial condition 

Ty ]7,8,6,7,8[)0( =  at 95.0=q . 
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(b) 

Fig. 3.2. Phase portraits of fractional order complex T-system at 95.0=q : (a) in 

131211 yyy −−  space, (b) in 151413 yyy −−  space. 

3.3.3   Fractional order Complex Lu system 

The fractional order complex Lu system (Singh et al. (2016a)) is described as 

)( 1211
1 zzc

dt

zd
q

q

′−′=
′

21231
2 zczz

dt

zd
q

q

′+′′−=
′

                                                                                (3.14) 

,)(
2

1
3132121

3 zczzzz
dt

zd
q

q

′−′′+′′=
′

where 12111 jzzz +=′  and 14132 jzzz +=′ , 1−=j are the complex state variables and 

153 zz =′  is a real state variable. 

 System (3.14) is separated into real and imaginary part as follows 
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)( 121411
12 zzc

dt

zd
q

q

−=

13121511
13 zczz

dt

zd
q

q

+−=                                                                 (3.15) 

14121512
14 zczz

dt

zd
q

q

+−=

151314121311
15 zczzzz

dt

zd
q

q

−+= . 

The phase portraits of system (3.15) are depicted through Fig. 3.3 at 95.0=q  for the 

parameters’ values 5and,22,40 131211 === ccc  and initial conditions

Tz ]3,5,6,4,2[)0( = . 
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(b) 

Fig. 3.3. Phase portraits of fractional order complex Lu system at 95.0=q : (a) in 

131211 zzz −−  space, (b) in 151413 zzz −−  space. 

3.3.4 Fractional order Complex Chen system 

The fractional order complex Chen system (Luo  and Wang (2014)) is considered as 

)( 1211

1 wwd
dt

wd
q

q

′−′=
′

2133111113

2 )( wdwwwdd
dt

wd
q

q

′+′′−′−=
′

                                                                (3.16) 

)(
2

1
2121312

3 wwwwwd
dt

wd
q

q

′′+′′+′−=
′

, 

where 
Twwww ],,[ 321

′′′=′ is the state variable vector of the system, 12111 iwww +=′ and 

14132 iwww +=′ are complex variables, 153 yw =′ is real variable and 131211 ,, ddd are 

parameters.  

Separating complex variables into real and imaginary parts, the system (3.16) is reduced 

to 
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)( 111311
11 wwd

dt

wd
q

q

−=

)( 121411
12 wwd

dt

wd
q

q

−=

13131511111113
13 )( wdwwwdd

dt

wd
q

q

+−−=                                                               (3.17) 

14131512121113
14 )( wdwwwdd

dt

wd
q

q

+−−=

141213111512
15 wwwwwd

dt

wd
q

q

++−= . 

The chaotic attractors of the system (3.17) are displayed through Fig. 3.4 for the 

parametric values 28,3,35 131211 === ddd , 95.0=q  and the initial condition 

Tw ]1.0,3.0,1.0,2.0,1.0[)0( −= . 

(a) 

-10 -5 0 5 10
-50

0

50
-10

-5

0

5

10

w
11

(t)
w

12
(t)

w
1

3
(t

)



Chapter 3�

��80���
�

(b) 

Fig. 3.4. Phase portraits of fractional order complex Chen system at 95.0=q : (a) in 

131211 www −−  space, (b) in 151413 www −−  space. 

3.4 Combination-Combination phase synchronization 

between fractional order complex chaotic systems using 

nonlinear control method  

The fractional-order complex Lorenz, T, Lu and Chen systems are considered as five 

dimensional real systems. Let us consider the fractional order complex Lorenz system as 

master systems-I and fractional order T-system as master system-II. The fractional order 

Lu and Chen systems are taken as response systems-I and II respectively. 

The response systems-I and response system-II with control functions are defined as  

11111311
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12121411
12 )( uzzc

dt

zd
q

q

+−=

1313121511
13 uzczz

dt

zd
q

q

++−=                                                                    (3.18) 

1414121512
14 uzczz

dt

zd
q

q

++−=

15151314121311
15 uzczzzz

dt

zd
q

q

+−+= . 

and 

11111311
11 )( vwwd

dt

wd
q

q

+−=

12121411
12 )( vwwd

dt

wd
q

q

+−=

1313131511111113
13 )( vwdwwwdd

dt

wd
q

q

++−−=                                                 (3.19) 

1414131512121113
14 )( vwdwwwdd

dt

wd
q

q

++−−=

15141213111512
15 vwwwwwd

dt

wd
q

q

+++−= ,  

where iu1  and iv1 )5,4,3,2,1( =i  are control functions. 

Now define the error functions are functions as 

iiiii xyzwe 11111 −−+= , .5,4,3,2,1=i

The error systems obtained as 
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11
11 13 11 11 13 13 13 11 11 11 11 13 11

*

11 13 11 11 13 11 1

( ) ( ) ( )

( ) ( )

q

q

d e
d e e d z y x z y x c z z

dt

b y y a x x u

= − − − − − + + + −

− − − − +

12
11 14 12 11 14 14 14 12 12 12 11 14 12

*

11 14 12 11 14 12 2

( ) ( ) ( )

( ) ( )

q

q

d e
d e e d z y x z y x c z z

dt

b y y a x x u

= − − − − − + + + −

− − − − +
     

(3.20) 

13
13 11 11 13 11 11 11 11 11 15 13 13

*

11 15 12 13 12 11 11 11 11 15 12 11 13 11 15 3

( ) ( )( )

( )

q

q

d e
d d e d d z y x w w d w

dt

z z c z b b y b y y a x x x x u

= − − − − − − +

− + − − + − + + +

14
13 11 12 13 11 12 12 12 12 15 13 14

*

12 15 12 14 12 11 12 11 12 15 12 12 14 12 15 4

( ) ( )( )

( )

q

q

d e
d d e d d z y x w w d w

dt

z z c z b b y b y y a x x x x u

= − − − − − − +

− + − − + − + + +

15
12 15 12 15 15 15 11 13 12 14 11 13 12 14

*

13 15 11 13 12 14 13 15 11 13 12 14 13 15 5

( )

,

q

q

d e
d e d z y x w w w w z z z z

dt

c z y y y y b y x x x x a x u

= − + − − + + + +

− − − + − − + +

where iii vuu 11

*
+= , .5,4,3,2,1=i �

Theorem 3.2: If the nonlinear control functions are designed as 

)()(

)()()(

111311111311

1113111111111313131111131111

*

1

xxayyb

zzcxyzxyzdeedeu

−+−+

−−++−−−+−−−=

)()(

)()()(

121411121411

1214111212121414141112141112

*

2

xxayyb

zzcxyzxyzdeedeu

−+−+

−−++−−−+−−−=

15111311121511111111121312

151113131511111111111311111313

*

3

)(

))(()(

xxxxayybybbzc

zzwdwwxyzddeddeu

−−+−−+−

+−+−−−+−−−=

          

(3.21) 

15121412121512111211121412

151214131512121212111312111314

*

4

)(

))(()(

xxxxayybybbzc

zzwdwwxyzddeddeu

−−+−−+−

+−+−−−+−−−=
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,

)(

151314121311151314121311

1513141213111412131115151512151215

*

5

xaxxxxybyyyy

zczzzzwwwwxyzdedeu

−++−++

+−−−−−−−+−=

then the Combination-Combination synchronization among considered systems are 

achieved since it satisfies the condition lim ( ) 0i
t

e t
→ ∞

= , for .5,4,3,2,1=i

Proof:  Let us construct the Lyapunov function V  to stabilize the error systems (3.20) as  

)(
2

1 2

15

2

14

2

13

2

12

2

11 eeeeeV ++++= .                                               (3.22) 

Taking the q-th order fractional derivative of equation (3.22) w. r. to t, we have 

q

q

q

q

q

q

q

q

q

q

q

q

dt

ed
e

dt

ed
e

dt

ed
e

dt

ed
e

dt

ed
e

dt

Vd 15
15

14
14

13
13

12
12

11
11 ++++≤ . (Using Lemma 1.4)  (3.23) 

After putting the values of 
q

q

dt

ed 11 , 
q

q

dt

ed 12 , 
q

q

dt

ed 13 , 
q

q

dt

ed 14 , 
q

q

dt

ed 15 and control functions 

from equation (3.20) and (3.21)  in equation (3.23), then we obtain 

0)(
)( 2

15

2

14

2

13

2

12

2

11 <++++−≤ eeeee
dt

eVd
q

q

. 

Thus we may conclude that 0
)(

<
q

q

dt

eVd
 is negative definite, and thus master systems I, II 

and response system I, II are combination-combination synchronized. 

After substituting the values of the control functions, the error system are obtained as 

iq

i

q

e
dt

ed
1

1
−= ,  .5,4,3,2,1=i                                                        (3.24) 

The eigen values of the error system (3.24) are negative and satisfy the condition 

arg( ) 0.5i qλ π> which will also lead the system (3.20) asymptotically converge to 

zero as ∞→t  and hence the combination-combination synchronization is achieved.  
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3.5 Numerical simulation and results

In this section for numerical simulation, the earlier considered values of parameters of the 

fractional order complex chaotic systems are taken. For combination-combination phase 

synchronization the initial conditions of the master I, II and slave systems I, II are taken 

as  

)9,6,5,3,2())0(),0(),0(),0(),0(( 1514131211 =xxxxx ,  

))0(),0(),0(),0(),0(( 1514131211 yyyyy )7,8,6,7,8(= and 

)3,5,6,4,2())0(),0(),0(),0(),0(( 1514131211 =zzzzz , 

)1.0,3.0,1.0,2.0,1.0())0(),0(),0(),0(),0(( 1514131211 −=wwwww respectively.  

Hence the initial conditions of error system for combination-combination phase 

synchronization will be 

)1.13,7.8,9.4,8.5,9.7())0(),0(),0(),0(),0(),0(( 654321 −−−−−=eeeeee . 

During combination-combination phase synchronization of the systems the time step size 

is taken as 0.005. Now choosing 01 =λ , 12 −=λ , 13 −=λ , 14 −=λ , 15 −=λ , 16 −=λ , 

the phase synchronization between signals )()( 1111 tytx +  and )()( 1111 twtz +  is achieved. 

It should be noted that, when 01 =λ , 12 −=λ , 13 −=λ , 14 −=λ , 15 −=λ , signals 

)()( 1212 tytx +  and )()( 1212 twtz + , )()( 1313 tytx +  and )()( 1313 twtz + , )()( 1414 tytx +  and

)()( 1414 twtz + , )()( 1515 tytx +  and )()( 1515 twtz + become synchronized. If 11 −=λ , 

02 =λ , 13 −=λ , 14 −=λ , 15 −=λ ; 11 −=λ , 12 −=λ , 03 =λ , 14 −=λ , 15 −=λ ; 11 −=λ

, 12 −=λ , 13 −=λ , 04 =λ , 15 −=λ  and 11 −=λ , 12 −=λ , 13 −=λ , 14 −=λ , 05 =λ  are 

taken, phase synchronizations between signals )()( 1212 tytx +  and )()( 1212 twtz + , 

)()( 1313 tytx +  and )()( 1313 twtz + , )()( 1414 tytx +  and )()( 1414 twtz + , )()( 1515 tytx +  and

)()( 1515 twtz + are obtained respectively. State trajectories of the combination-

combination phase synchronization of complex chaotic systems are depicted through Fig.

3.7 for the order of the derivative 95.0=q . The plots of the systems combination-
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combination phase synchronization are also shown in Fig. 3.5 and Fig. 3.6 at the order 

95.0=q . 
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(c) 

(d) 

Fig. 3.5. 2D plots of combination-combination phase synchronization of fractional order 

complex Lorenz, T, Lu and Chen chaotic systems at 95.0=q . 
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(a) 

(b) 

Fig. 3.6. 3D plots of combination-combination phase synchronization of fractional order 

complex Lorenz, T, Lu and Chen chaotic systems at 95.0=q . 
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(c)

(d) 
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(e)

(f) 

Fig. 3.7. Combination-Combination phase synchronization for signals at 95.0=q :  

(a) between )()( 1111 tytx +  and )()( 1111 twtz + , (b) between )()( 1212 tytx +  and 
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)()( 1212 twtz + , (c) between )()( 1313 tytx +  and )()( 1313 twtz + , (d) between )()( 1414 tytx +

and )()( 1414 twtz + , (e) between )()( 1515 tytx +  and )()( 1515 twtz + , (f) The evolution of 

the error functions of complex chaotic systems.  

3.6 Conclusion 

In the present chapter, the combination-combination phase synchronization between 

fractional order non-identical complex chaotic systems has been achieved, based on the 

stability theory of fractional-order systems. Nonlinear control laws are proposed to 

stabilize the fractional order complex chaotic systems using proper feedback control 

method. Graphical presentations of combination-combination phase synchronization of 

different fractional order complex chaotic systems have successfully demonstrated the 

reliability and effectiveness of the method. The author is optimistic about the simulation 

results of the present research work will be appreciated and utilized by the researchers 

involved in the field of fractional order nonlinear dynamical systems, and also it will 

work for the strong security of the secure communication. 

***** 


