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2.1 Introduction

Synchronization and chaos theory have useful applications in the many areas of
engineering such as secure communication, digital communication, chemical reactions
analysis and design, information processing etc. The synchronization phenomenon of
chaotic systems is interesting area of chaos theory (Fujisaka and Yamada (1983a), Pecora
and Carroll (1990), Chen and Dong (1998), Elabbssy et al. (2006), Lu and Chen (2002),
Chen and Lu (2003), Li and Xu (2004b), Wang (2003)). Several types of synchronization
phenomenon have been identified and demonstrated such as complete synchronization,
phase synchronization, anti-phase synchronization, generalized synchronization, lag
synchronization, projective synchronization, dual synchronization (Fujisaka and Yamada
(1983b), Mahmoud and Mahmoud (2010), Liu (2006), Rosenblum et al. (1997), Singh et
al. (2017), Yadav et al. (2015)) and so on. Among these types of synchronization, the
combined synchronization of chaotic systems is identified by the taking more than one
drive systems and one response system. So far many approaches have been used to
synchronize chaotic systems such as active control, adaptive control, backstepping

control, feedback control, sliding mode control and so on.

The study of synchronization between low dim systems leads to further development of
synchronization between higher dimensional systems theoretically as well as on applied
aspects. This further gave ample scope for exploring work on synchronization of time
delayed chaotic systems (Pyragas (1998), He and Vaidya (1999)) and time-delayed

system pertaining to nonlinear dynamic. The multiple time-delayed systems have enough

The contents of this chapter have been published in Chinese Journal of Physics (2017),
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scope of application on chaos-based encryption system leading to enhancement of
message security together with chaos synchronization between multiple transmitter and
receiver system and decoding of such message. The time-delayed chaotic systems are
naturally related to the systems with memory that prevails for most of the physical and
scientific systems such as blood production in patients with leukaemia (Mackey-Glass
model), dynamics of optical systems (e.g. lkeda system), laser physics, population
dynamics, physiological model, neural networks, control system (Mackey and Glass
(1977), lkeda et al. (1980), Bunner et al. (1998), Yongzhen et al. (2011), Liao et al.
(2007), Kwon et al. (2011)) and so on.

The initial work of Runzi et al. (Runzi et al. (2011)) on combination synchronization of
two drive systems and one response system (as three chaotic systems) having physical
application in secure communication in transmitted signals in the form of splitted signals
being loaded in different drive systems which increase their efficiency/strength for any
kind of anti-attack and anti-translation capability than that via usual method of
transmission of such signals. The synchronization between chaotic systems with
uncertainties is not an easy task for researchers since there are always possibilities of
destroying synchronization under the effects of those parameters. In 2012, Chen et al.
(Chen et al. (2012)) have studied disturbance-observer-based robust synchronization
control of uncertain chaotic systems. Jawaadaa et al. (2012) studied robust active sliding
mode anti-synchronization of hyperchaotic systems with uncertainties and external

disturbances.

Overall the above facts have motivated the author to study the combined synchronization
among time-delayed chaotic systems with uncertain parameters using nonlinear control
method. In this chapter the nonlinear control method is proposed for combined
synchronization of time-delayed chaotic systems and synchronization among three and
four systems have been shown as examples of combined synchronization time-delayed

chaotic systems.

2.2 Problem formulation

Consider the drive systems of the following form:
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% = £(X,(0)+ (4 +M)X, () + BX,(1—1,), £ >0

X,(0)=6,(t), —7, <1 <0, @.1)
d);zt(t) = 1,00, (0) + (A, + A X, () + BX, (1= 17,) , £ >0

X,(0)=6,(t), —7, <1 <0, 2.2)
sl O (A + MK O+ B X (-7,0), 150

X, (6)=0, () —7,, <10 (2.3)

and the response system is taken as

d)i;t(t) = f(X, () +(4, +A )X, (1)+B X, (t—7,)+U(t), t>0
X,0)=9,0),-7,<t<0, (2.4)

where X, , X, ,.., X,, , X, €R" are state vectors of the systems,
A,, B,, 4,, B,,..... 4, ,, B, |, 4,, B,e R™" are the constant parameters matrices,
1> Soses [ [, iR — R" are nonlinear functions, AA4,, A4,,....,Ad4, ,, AA, € R™
A

AAn -1

||AAn <9, with ¢,, 0,,....,d, ,, O, positive constants, @ (), @, () ,.....d, (), (1),

represent the trajectories of the solutions in the past, 7,, i =1,2,..n are the time delays

and U(¢)e R" is the active control function to be designed later.

Now define the error function for combined synchronization as
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e)=X,-X,  —mX,-X,.

n n

According to definition of error function the error system will be

—B, X, (t=T, ) == B,X,(t—T,) = BX,(t=7,)+ U(t).

Definition: The (n-1) drive and one response delay systems follow Combined

synchronization among n-chaotic systems if

lim| e(r) || =lim[X, - X, —...- X, - X,[=0.

2.3 Nonlinear Control method

Theorem 2.1: If the nonlinear controller is designed as
U@ ==1,(X,@O)+ [, (X, (D) + oo+ [L(X,O) + [ (X (1) = (4, +A4,) X, (1)

+(4, ,+A4, )X, () +...... +(A4, +A4,) X, (1) + (A4, +A4) X, (2) (2.6)

n—1

-B X, (t-7)+B_X, (-7, )+.... +B,X,(t—17,)+B X (t—7,)—(1/2+k)e(t),

then the combined synchronization among one response system and (n-1) drive systems

Proof: According to Lyapunov stability theorem the error system (2.5) will be
asymptotically stable, if the error system becomes zero, then the considered drive and
response systems are regarded as combinationally synchronized. Let us construct the

Lyapunov-Krasovskii functional V' to succeed stability analysis as
0

V= %eT(t)e(t) +% jeT(z+e)e(z+9)d9.

-7
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The derivative of ' along the trajectory of error dynamic system is

Cil_lt/ =e' (t)% + % (e" (t)e(t)—e" (t—1)e(t—1)). (2.7)

de(t)

After putting the value of e and controller U(¢) from equations (2.5) & (2.6) in

equation (2.7), then we obtain

a_ —ke" (t)e(t) — 1 (" (t—71)e(t—17))<0.
dt 2

Thus, it may be concluded that if the control parameter £ >0, V' € R is positive definite
: dv . . . . .
function and 76 R is negative definite function, then the error system is globally and

asymptotically stable according to Lyapunov-Krasovskii stability theory (Hale (1977),
Krasovskii et al. (1963)). Consequently, the state trajectories of one response and (n-1)
drive systems will be combinationally synchronized globally and asymptotically. It is also

seen that the synchronization error e(¢#) tend to zero as time becomes large. This

completes the proof.

2.4 Systems’ descriptions

2.4.1 Double delay Rossler system
A double delayed Rossler system (Ansari et al. (2015)) is given by

? :—y,(t)—z,(t)+a1 xl(t_Tl)-i_al,x](t_Tl,)
dy, (1) _

o O +b,y,() (2.8)
EO b 45 0z0-¢20.

For the parameters' values a, =0.2, a/ =0.5, b, =02, c=5.7 7,=1.0, 7/ =2.0 at the
initial condition (0.5, 1, 1.5), the chaotic attractor of system (2.8) is depicted through Fig.
2.1(a).

~ 47 ~
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The double delayed Rossler system with uncertainties is described as

% ==y ()~ z, () +a x,(t—1)+a]x (1 =7])+0.01x, ()
%HI (t)+b, y,(t)+0.05z,(¢) 2.9)
dz (1)

7 =b +x,(t)z,(t)—c, z,(t)=0.02y,(t)+0.1z,(¢),

0.01 0 0

where uncertain term A4, =| 0 0 0.05|. The phase portrait of the system (2.9)

0 -0.02 0.1

in x, —y, —z, space is shown in Fig. 2.1(b).

2,(t)
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(b)

Fig. 2.1. Phase portraits of Double delay Rossler system: (a) without uncertainties; (b)

with uncertainties.

2.4.2 Advanced Lorenz system

The advanced Lorenz system (Zhang et al. (2009)) is defined by equation (2.10)

dx, (t) =a,(y,(t) = x, () + p,x,(t—7,)

dt
%:_xz(f)Zz(t)+b2xz(t)+czy2(t) (2.10)
dZZZ:t) — x22 (t) _d222 (t) .

The system (2.10) shows chaotic behaviour for the control parameters a, =20, b, =14,
¢, =10.6, d,=28, p,=3 and 7, =0.001 at initial condition (20, 8, 20), where
—7 <t <0. The phase portrait is shown in the Fig. 2.2 (a).
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Let us define system (2.10) in the presence of uncertain terms as

d i;t(t) =a, (y,(1) =X, (1) + p,x, (t —7,) +0.13x, (£) + 0.02z, (¢)

L210) Zzt(t ) (D)2, (1) + by, (1) + ¢ v, (1) + 0.08%, (1) 2.11)

dz;t(t) = x2(t)—d,z,(t) +0.01y,(£) + 0.8 2, (¢),

013 0 0.02
where the uncertain parameter A4, =|0.08 0 0
0 0.01 038

Fig. 2.2(b) shows the phase portrait of the system (2.11) in x, —y, —z, space.
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(b)

Fig. 2.2. Phase portraits of advanced Lorenz system: (a) without uncertainties; (b) with

uncertainties.

2.4.3 Time delay Liu system
The time delay Liu system (Bhalekar and Gejji (2010)) is given as

B0 _ (3,0 -x,-17,)
dt
dy;t(t) = byx; (1 = 73) — k33 ()23 (1) (2-12)
dz, () _ B 2 _
= ez, (t—7,)+ hy x; (1), te[-7, 0],

where 0< 7, £0.005 represents the time delay term and a, =10, b, =40, ¢, =2.5,
h, =4 and k; =1 are the parameters and at initial condition (2.2, 2.4, 3.8) the system

shows the chaotic behaviour in Fig. 2.3(a) in x; — y; —z, space.
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Now define the Liu system with uncertain parameters by equation (2.13) as

dx;t(l) =a;(y;(1) —x;(t = 75)) + 0.05x, (1) — 0.01z5(¢)

dy; (1) '
;’t =byx; (t—75) —k3xy ()23 (£) + 0.2y, (1) (2.13)
dz, (t
Z;t( ) ez (t=1) by X2 (0)+03x,(0) , 1€ [, 0],
0.05 0 -0.01
where the uncertain parameter A4, =| 0 0.2 0 |. The phase portrait of the Liu

03 0 0

system in presence of uncertain parameters in x, — y, —z, space is demonstrate in Fig.
2.3(b).
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(b)

Fig. 2.3. Phase portraits of time delay Liu system: (a) without uncertainties; (b) with
uncertainties.

2.4.4 Time delay Chen system

The time delay Chen system (Gejji et al. (2012)) is defined by

dx, (1) 3 3
d =a,(y,()—x,(t—7,))

dy,(?)

dt =(c, —a)x,(t—7,) = x,(t)z, () +c,y,(?) (2.14)

dZC;:t) = x4(t)y4(t)—b4z4(t—2'4) L€ [_T’ 0]’

where 0<7, <0.010 represent the time delay term, a, =35, b, =3, ¢, =27 are the

parameters and the initial condition is (0.2, 0, 0.5). The phase portrait of system (2.14) is
depicted in Fig. 2.4(a).
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Now, we define the time delay Chen system in the presence of uncertain parameters as

? =a,(y,t)—x,(t—-17,))+0.01x,(#)—0.02z, ()
% = (e —a )X (1= 7,) = 3, (02, (1) €,y (1) + 0.1x, (1) (2.15)
% =x,)y,(t)-b,z,(t—7,)+0.04z,(¢), te [-7, 0],
0.01 0 -0.02
where uncertain term A4, =| 0.1 0 0 |. The phase portrait of time delay Chen
0 0 0.04

system with uncertain parameters (2.15) is shown in Fig. 2.4(b).

(@)
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(b)

Fig. 2.4. Phase portraits of time delay Chen system: (a) without uncertainties; (b) with

uncertainties.

2.5 Combined synchronization among double delay Rossler,
advanced Lorenz and time delay Liu systems with uncertain

parameters

For the study of combined synchronization among three time delay systems in the
presence of uncertain parameters, two systems double delay Rossler (2.9) and advanced
Lorenz (2.11) are considered as drive systems-I and drive system-II and third time delay
Liu system (2.13) is considered as response system. The response system with control

functions u,(¢), u,(t), u,(¢) is defined as

dxjh(f) = 4, (5 (1) = x5 (£ = 7,)) + 0.05x; (£) = 0.01z, (1) + 1, (1)



Chapter 2

DI oy 1= 7) = s (0230 0.2, () 41,0 (2.16)
? = e,z (= 1y) Iy X2 (1) + 033, (0) + 15 (0).

Defining the error functions as e, =x;, —x, =X, ¢, =y, =V, = V,, € =2, —2Z, —Z,, W€

will obtain the following error system

de,(1)

~ a,(e,(t)—x,(t—17;))+0.05¢,(r) — 0.01e,(¢) + (a, — 0.08)x, () + 0.04x, (¢)

-p,X,(t—17,)—aq, xl(t—2'1)—al'xl(t—z'l')+(a3 —a,)y,(t)
+(a; +1)y,(t)=0.03z,(t) +0.99z,(¢) +u,(t)

de, (1)

=byx,(t—T,) — kix, (£)z,(t) + 0.2¢, (¢) + x, (¢) z, (t) — (b, + 0.008)x, (¢)
—x,(1)+(0.2—¢,)y,(t)+(0.2—b,)y,(£)—0.05 z,(¢) + u, (¢) (2.17)
dey(t) _

2 ==z (1= 1)+ A (0 +0.36, () =5 (0= (1) 2,(1) +0.33, (0 +0.35,(1)

—0.01y,(£)+0.02y,(¢)+(d, —0.08)z, () +(c, = 0.1) z, () = b, +u,(¢) .
Theorem 2.2: If the nonlinear control functions are designed as
u,(t)=—a,(e,(t)—x,(t—17,))—0.05¢,(¢)+0.01e,(t) — (a, — 0.08)x, (r) — 0.04x, (¢)

+p,x,(1—1,)+q x1(t_71)+a1,x1(t_71,)_(a3 —a,)y,(t)—(a; +1)y,(?)
+0.03z,()—0.99z,(¢) - (% +k, j e (1)

u,(t)==bx,(t—17,)+ k;x3 (t)z,(t)—0.2e,(¢) = x,(t) z, () + (b, + 0.008)x, (¢)
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+x,(1)=(0.2=¢,)y, ()= (0.2=b,) y,(1) +0.05 Zl(t)—(%+k2Jez (t) (2.18)
uy(t) = c,z,(t—7,) = hy X2 (1) = 0.3¢,() + x5 (¢) + x,(¢) z,(£) — 0.3x, (£) — 0.3x,(¢)
+0.01y,(#)—0.02y,(t)—(d, —0.08)z,(¢t) = (¢, = 0.1) z, () + b, — (%+ ky)ey(?),

then the combined synchronization among double delay Rossler (2.9), advanced Lorenz

(2.11) and time delay Liu system (2.16) is achieved and satisfy the condition

lim|| ¢,(¢) =0, i=1,2,3 for any positive constants k,, i =1,2,3.
f—> o0

Proof: Let us construct the Lyapunov-Krasovskii functional V' to succeed stability

analysis as
0
v :%(ef(t)+ezz(t)+e32(t))+%j(ef(t+¢9)+e§(t+t9)+e32(t+9))dt9.

Now taking the derivative of V' along the trajectory of error dynamic system and putting

the value of %,izl@ﬁ and controller u,(¢), i =1,2,3 from equations (2.17) &

(2.18), then we get

1
C;—It/ =—ke(t)—k,e; (t)—k,e; —E(elz(t—r)+e§(t—z') +e;(t—1))<0.
Thus, we may conclude that if the control parameters k,, k,, k; > 0, then the error system

is globally and asymptotically stable according to Lyapunov-Krasovskii stability theory.
Consequently, the state trajectories of two drive systems will be combinationally

synchronized with one response system.
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Fig. 2.5. Combined synchronization among three time delay systems (2.9), (2.11) and
(2.13) : (a) between x,(¢)+x,(¢) and x,(¢); (b) between y,(t)+y,(t) and y,(¢); (c)

between z,(¢)+z,(¢) and z,(¢); (d) the evolution of error functions e,(¢), e,(t) and

e (7).

2.6 Combined synchronization among double delay Rossler,
advanced Lorenz, time delay Liu and time delay Chen systems

with uncertain parameters

In this section to study the combined synchronization among the four time delay systems
in the presence of uncertain parameters, we consider double delay Rossler system (2.9),
advanced Lorenz system (2.11), time delay Liu system (2.13) as the drive systems I, II
and III respectively. The time delay Chen system (2.15) is taken as response system with

control inputs u](¢), u,(t), uj(t) as

% = a, (v, (1) = x, (= 7,)) + 0.01x, (1) = 0.02z, (1) + u] (¢)
dy;t(t) =(c, —a,)x,(t—7,)—x,()z, () +c,y, () +0.1x,(t) +u)(t) (2.19)
dz;t(t) =x,(O)y, (t) =b,z,(t —7,) +0.04z, (1) +u;(2).

Now define the error functions as e, =x, —Xx; =X, =X, , &=V, —V; =V, =V, »

e, =z,—z,—2, -z, weobtain the error system as

de, (1)

== 0016, (1) +a,e, ()= 0026, (1) = 0.04x, (1) + (a, = 0.12)5, (1) + (@, =@y, 1)

+(a, —ay)y, (1) +(a, + 1)y, (£) = 0.01z, () — 0.04z, (1) + 0.98z, () — a,x,(t — T,)

+a,x;(t—7;) = p,x,(t—7,)—q x (t =) —a; x,(t = 7)) +u ()
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e, () =0.1¢,(t) +c,e, () +0.1x;(¢) +(0.02 = b, )x, (t) — 0.90x, (t) + (¢, — 0.2) y;(?)

+(C4 _Cz)yz 0+ (C4 _b1)y1 (t)—O.OSZl(t)+(C4 _a4)x4(t_f4) (2.20)
by, (1= 7) = X, (1)2, (1) + ks (02, () + X, (D)2, (1) + u3 ()

de (1)

2= =0.046,(0)+0.042,(1)+ (4, ~0.76)2,(1) + (¢, ~0.06)2, (1) 0.3x,(0)

—0.01y,(#)+0.02y,(t) = b,z,(t —7,) + 3z, (t = 7,) + x, () v, (?)
—hy2x3 () = x5 (1) = x, ()2, (1) = by +u3 ()

Theorem 2.3: If the nonlinear control functions are taken as

u,(t) =-0.0le,(t) — a,e, () +0.02¢, (¢) + 0.04x, (1) — (a, —0.12)x, (t) — (a, —a;) y;(?)

—(a, —a,)y,(t)—(a, +1)y,(t) +0.01z,(¢) +0.04z,(t) = 0.98z,(¢) + a,x,(t = 7,)
—a; X%, (1= 73)+ p,x,(t = 7,) +q, xl(l_TI)+al,xl(t_rl,)_(%+kl\)el(t)

u) (1) =—0.1¢,(t) — c,e, () = 0.1x, () — (0.02 = b,)x, (t) + 0.90x, (£) — (¢, — 0.2) y,(¢)

—(¢c, =)y, (t)—(c, = b))y, (1) +0.05z, (1) — (¢, —a,)x,(t—7,) (2.21)
+b3x3(t_T3)+x4(t)Z4(t)_k;x3(t)z3(t)_xz(t)zz(t)_(%"‘kz]ez(t)

u; (1) =—0.04¢,(1)—0.04z,(t) - (d, — 0.76)z,(t) — (¢, — 0.06)z,(¢) + 0.3x,(¢) + 0.01y, (¢)

—0.02y, () +b,z,(t =7,) —cyz,(t = T3) — x, () y, () + h3)c32 (t)

+X5 () +x,(t)z,(t) + b, —G+ k3je3(t)
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then the combined synchronization among double delay Rossler (2.9), advanced Lorenz

(2.11), time delay Liu system (2.16) and time delay Chen system (2.19) are achieved and

satisty the condition lim” e(t) || =0,7=1,2,3 for any positive constants k,, i=1,2,3.
t—> o0

Proof: The proof of this theorem is similar to the Theorem 2.2. Therefore it is omitted.
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Chapter 2
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Fig. 2.6. Combined synchronization among four time delay systems (2.9), (2.11), (2.13)
and (2.15) : (a) between x,(¢)+x,(¢)+x,(¢) and x,(¢); (b) between y,(¢)+ y,(¢)+ y,(¢)
and y,(¢) ; (c) between z,(t)+z,(t)+2z(¢#) and z,(t) ; (d) the evolution of error

functions ¢,(?), e,(¢) and e,(¢).

2.7 Numerical simulation and results

In this section the earlier values of the parameters and initial conditions of systems are
considered. Fig. 2.5 shows that the synchronization among three fractional order systems
is achieved through nonlinear control method. The initial values of error systems are
taken as (21.7,-6.6,—17.7) and (17.5,-11.4, —24.8) during the synchronization
among three and four systems respectively. Figs. 2.5(a), 2.5(b) and 2.5(c) depict the time
response of the state trajectories x,(¢)+x,(#) and x;(t), y,(#)+y,(f) and y,(?),
z,(t)+z,(¢) and z,(¢) respectively. The error states are displayed through Fig. 2.5(d).

The synchronization among four time delayed chaotic systems is achieved using the same
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method. Fig. 2.6 displayed the combined synchronization among five time delayed
chaotic systems and Figs. 2.6(a), 2.6(b) and 2.6(c) shows the time response of the states

x;(t)+x,()+x,(¢) and x,(t), y;(t)+y,(t)+y,(¢t) and y,(t), z;(¢t)+z,(¢)+z,(¢) and
z,(t). The error states for this case are described through Fig 2.6(d). The time delayed
terms and control parameters are taken as 7, =1.0, 7, =2.0, 7, =0.001, 7, =0.002,
7, =0.005 and k, =2, k, =3, k, =1 respectively during the combined synchronization

of three and four chaotic systems.
2.8 Conclusion

In this chapter, the combined synchronization has been successfully demonstrated using
nonlinear control method among three and four time delayed chaotic systems in the
presence of uncertain parameters. The combined synchronization of three and four
systems are considered taking two systems and three systems as drive system
respectively, while one system as response system. The combined synchronization
controllers are developed using Lyapunov-Krasovskii stability theory for stabilizing the
delay-differential equations. The graphical presentation of the numerical results with error
states tending to zero as time becomes large, clearly exhibit that the applied nonlinear
control method is effective and convenient to achieve global synchronization among non-

identical time delayed chaotic systems with uncertain parameters.
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