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Chapter 1 

Introduction 

1.1 Dynamical Systems  

Dynamics is the study of change, and dynamical systems are the recipe for saying how a 

system of variables interact and changes with time. The concept is that naturally anything 

that evolves over time can be thought of as a dynamical system. So let us start with 

describing mathematical dynamical systems. 

A dynamical system has two parts: a state vector which describes precisely the state of 

some real or hypothetical system with the current state and a function which tells us what 

the state of the system will be in the next instant of time.   

Definition 1.1:  A dynamical system is a state space��, a set of times � and a rule � for 

evolution given by��� � � � � �� that gives the consequents to a state�� 	 �. A dynamical 

system can be described to be a model describing the temporal evolution of a system.  

Nonlinear dynamics started with the work of Henry Poincare in the late 1800’s to solve 

the three body problem. Later this approach had been used in many other fields. With the 

invention of modern computers, Engineers and Scientists solved many nonlinear 

dynamical problems and E N Lorenz (1963) had numerically first discovered chaotic 

dynamical system in the atmospheric model. In nonlinear dynamics chaos theory 

flourished very rapidly in different branches of natural sciences. In order to understand a 

nonlinear dynamical system, let’s start with their types. 

1.1.1 Types of Dynamical Systems  

On the basis of representation there are mainly two types of dynamical systems: Iterated 

maps and Differential equations. Iterated maps also known as difference equations, 
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recursion relation or simply maps, in which time is discrete rather than continuous. The 

rule 
�� � ��� 
� is an example of one-dimensional map, because the points 
� belongs 

to the one-dimensional space of real numbers and the sequence 
�� 
� 
�� is called the 

orbit starting from 
�.  

Differential equations describe the evolution of dynamical system in continuous time. 

Further we will classify this in linear/nonlinear and autonomous/non-autonomous 

according to their nature and are discussed as follows. 

1.1.1.1 Linear System

Definition 1.2: Linear systems must satisfy two properties namely superposition and 

homogeneity. The principle of superposition states that for two different inputs 
 and � in 

domain of the function � must satisfy ��
 � �� � ��
� � ����. 

The property of homogeneity states that for a given input 
 in the domain of the function 

� and for any real number��, ���
� � ���
�. 

Any function that does not follow superposition and homogeneity is nonlinear in nature. 

It is important to note that there is no unifying characteristic of nonlinear systems, except 

for not satisfying the two above mentioned properties.  

The dynamics of linear systems can also be written in the form  

�� � ������              (1.1.1)  

where ���� is a  �   matrix and �is a  � ! state vector. 

1.1.1.2 Nonlinear System 

Definition 1.3: A nonlinear dynamical system can usually be represented by a set of 

nonlinear differential equations in the form 

�� � ��
� ���          (1.1.2) 

where �  is the  � !  nonlinear vector function and 
  is the  � !  state vector. The 

number of states   is called the order of the system. 
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1.1.1.3 Autonomous and Non-Autonomous systems 

Definition 1.4: The nonlinear system (1.1.2) is said to be autonomous if �  does not 

depend explicitly on time, i.e. if the system’s state equation can be written as �� � ��
�
only.

Otherwise if � depends explicitly on time as in equation (1.1.2) then the system is called 

non-autonomous. 

1.2 Stability Theory 

Stability analysis of a particular dynamical system is the investigation regarding whether 

or not a system is stable or will be stable with perturbation. This analysis has a crucial 

role in a wide range of applications as most of the phenomena observed in the real world 

can be described using differential equations. The dynamical stability theory addresses 

the stability of solutions of differential equations and behaviours in trajectories of 

dynamical systems under little perturbations in initial conditions.  

1.2.1 Equilibrium points of a system  

 Consider a system of ordinary differential equations in the standard form as 

),( yxf
dt

dx
= and  ),( yxg

dt

dy
= ,       (1.2.1) 

where f  and g are specified nonlinear functions of x  and y . Since f and g do not 

depend explicitly on the independent variable t, the system is said to be autonomous. 

Otherwise, it is non-autonomous. It should be noted that the systems arising from 

Newton's second law in mechanics with the structure   

2

2
,

d x dx
F x

dt dt

� �
= � �

� �
,         (1.2.2) 

where F is the force. This equation can be put into the standard form, by setting 
dx

y
dt

= as 



Chapter 1�

��4���
�

dx
y f

dt
= = , 

dy
F g

dt
= =         (1.2.3) 

The equilibrium, fixed, critical or stationary, points of equation (1.2.1) correspond to the 

points in the x-y plane (the phase plane) where 0
dx

dt
=  and 0

dy

dt
= . The number and 

locations of the fixed points in the phase plane are found by solving the simultaneous 

nonlinear equations 

0),( =yxf , ( , ) 0 .g x y =         (1.2.4) 

Unlike the situation for linear ordinary differential equations, if  f  and g  are nonlinear 

functions, more than one fixed point are possible. 

1.2.2 Stability of the system  

Considering an autonomous system of the form 

)(xf
dt

dx
=                                                                                              (1.2.5) 

A critical point 
ex  of the system (1.2.5) is said to be stable if for given any 0>ε , there 

exists a 0>δ such that every solution )(tx ϕ= of the system (1.2.5) which at 0=t

satisfies 

δϕ <− ex)0( ,                                                                                     (1.2.6) 

and 

εϕ <− ext)(                                                                                       (1.2.7) 

for all 0≥t . This is illustrated geometrically in Fig. 1.1 and Fig. 1.2 (Boyce and Diprima, 

2001). These mathematical statements say that all solutions that start “sufficiently close” 

(that is, within the distance δ ) to 
ex  stay “close” (within the distance ε ) to 

ex . Note that 

in Fig. 1.1 the trajectory is within the circle δ=− exx  at 0=t  and while it soon passes 



Introduction 

��5���
�

outside of this circle, it remains within the circle ε=− exx for all 0≥t . A critical point 

that is not stable is said to be unstable. 

A critical point ex  is said to be asymptotically stable if it is stable and if there exists a 

0δ , with δδ << 00 , such that if a solution )(tx ϕ= satisfies 

0)0( δϕ <− ex ,                                                                                    (1.2.8) 

then 

e
t

xt =
∞→

)(limϕ .                                                                                        (1.2.9) 

Thus trajectories that start “sufficiently close” to ex  must not only stay “close” but must 

eventually approach ex  as ∞→t . This is the case for the trajectory in Fig. 1.2 but not for 

the one in Fig. 1.1. 

              

Fig. 1.1 Stability of the system   Fig. 1.2 Asymptotic stability of the system 

It is important to note that asymptotic stability is a stronger property than stability, since a 

critical point must be stable before one can even talk about whether it might be 

asymptotically stable. On the other hand, the limit condition (1.2.9), which is an essential 

feature of asymptotic stability, does not by itself imply even ordinary stability. Indeed, 

examples can be constructed in which all of the trajectories approach ex  as ∞→t , but for 
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which 
ex  is not a stable critical point. Geometrically, all that is needed is a family of 

trajectories having members that start arbitrarily close to
ex , then depart an arbitrarily 

large distance before eventually approaching 
ex  as ∞→t . 

1.2.3 Lyapunov First Method  

Theorem 1.1: Consider 
 � " be an equilibrium point of an autonomous nonlinear 

system 

�
# � �$
���%�� (1.2.10)  

where �� & � ���a continuously differentiable function with & is the neighborhood of the 

equilibrium point. Let '( �) � !�*� � �  � denote the eigenvalues of the matrix�� � +,
+-.-/�.  

(i) If �0�'(� 1 " for all )� then the equilibrium point �
 � " is asymptotically stable 

for the system (1.2.10). 

(ii) If �0�'(� 2 "  for at least one or more )�  then the equilibrium point �
 � "  is 

unstable for the system (1.2.10). 

(iii) If �0�'(� 1 "  for all )�  and at least one �0�'(� � "  then the equilibrium 

point�
 � " is stable, asymptotically stable or unstable for the system (1.2.10). 

1.2.4 Lyapunov Second Method  

Russian mathematician A.M. Lyapunov in 1892 gave the first precise definition of 

stability and developed the theory of stability for ordinary differential equations. The use 

of Lyapunov functions to prove stability has become common and is known as 

Lyapunov’s direct method or Lyapunov’s second method. This method involves 

determining a family of closed curves or closed surfaces in state space such that the 

general behaviour of nearby trajectories of a dynamical system can be investigated. This 

technique is relevant for examining the global stability of nonlinear systems and for 

deciding trapping regions for a dissipative chaotic flow.       

Theorem 1.2: Consider 
 � "  be an equilibrium point of an autonomous nonlinear 

system 
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# � �$
���%���������
�"� � 
��  

where 
��� 	 & 3 �� is state vector. & is an open set containing origin and �� & � �� is 

continuous. Let 4�& � � be a positive definite continuously differentiable function on a 

neighbourhood & of�
 � ", such that 4��
� 5 " in�& along the path of the system. Then, 

the equilibrium point 
 � " is stable.  

Moreover, if 4��
� 1 "  in �& 6 7"8 , then the point 
 � "  is said to be asymptotically 

stable. 

Theorem 1.3: Let 
 � " be an equilibrium point of a nonlinear system�
� � ��
����.  
Let 4� �� � �  be a positive definite continuously differentiable function, such that 

4�
� � 9 as :
: � 9 and 4��
� 5 " for all�
 ; ". 

Then, the equilibrium point 
 � " is globally asymptotically stable. Note that Lyapunov 

functions are usually not unique for a particular system.  

1.3 Chaos 

The word “chaos” is evolved from the Greek word '����' which signifies a state without 

order or predictability. According to ancient Greek mythology, chaos is the "primeval 

emptiness preceding the genesis of the universe, turbulent and disordered, mixing of all 

the elements". 

The motions of physical systems are modelled using differential equations. When 

solutions of these equations are bounded, they either settle down to a fixed state or 

oscillate in a periodic (or quasi-periodic) state. There are some systems whose solutions 

do not fall in any of these categories. These solutions exhibit aperiodic (or irregular) 

motion for all time and never settle. Moreover, these solutions are highly sensitive to 

initial conditions, i.e., nearby starting trajectories separates exponentially. Thus it is 

difficult to predict the behaviour of the solution for a long time. Such systems are called 

chaotic dynamical systems. 

The chaos was probably first observed by James Clerk Maxwell in 1860 while studying 

the motion of two colliding gas particles in a box which was unpredictable for a long 
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duration. Henry Poincare was the first person to glimpse the possibility of chaos in 1890 

while studying the famous three-body problem. In which Poincare found orbits were non-

periodic and yet not forever increasing nor approaching towards a fixed point which is 

nowadays known as chaos. The major breakthrough in chaos theory and nonlinear 

dynamics was after the discovery of high-speed computers in 1950. In late 1950’s, the 

meteorologist Edward Norton Lorenz acquired the LGP-30 computer having internal 

memory of 16 KB. Using computer, in 1963, He introduced the strange attractor notion 

and coined the term “butterfly effect”. The model studied by Lorenz arising in weather 

prediction was consisting of an autonomous system of three ordinary differential 

equations containing nonlinear terms. The solutions were aperiodic and sensitive to initial 

conditions. A simple electronic circuit resulting chaotic attractor was given by T. 

Matsumoto et al. (1985). Robert May (1976) studied one-dimensional maps (difference 

equations) modelling population dynamics. He observed that a very simple model can 

generate extremely complicated dynamics. This was the pioneering work in the study of 

chaos in maps. Thus, the chaos can occur in (i) one-dimensional maps, (ii) nonlinear, 

autonomous system of differential equations of order three and higher and (iii) nonlinear, 

non-autonomous system of differential equations of order two and higher. 

1.3.1 Definition of chaos 

In nonlinear sciences fraternity, chaos is an active area of research since last few decades. 

Despite this there is no unified, universally accepted, rigorous definition of chaos in the 

current scientific literature, however, a commonly used definition confines the following 

nature of chaos, which most scientists agree and also mentioned by Steven H. Strogatz in 

his book (Strogatz (1994)). 

"Chaos is aperiodic long-term behaviour, in a deterministic system that exhibits sensitive 

dependence on initial conditions." 

“Aperiodic long-term behaviour" means that there are the trajectories which do not settle 

down to fixed points, periodic orbits, or quasi-periodic orbits as time becomes large. 
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"Deterministic" means that the system has no random or noisy inputs or parameters. This 

irregular behaviour arises from the presence of nonlinear terms in the systems, rather than 

from noisy driving forces. 

"Sensitive dependence on initial conditions" means that a small change in initial 

conditions will lead to progressively more significant changes in later states or we can say 

as an arbitrarily small perturbation of current trajectory may lead to significantly different 

future behaviour or trajectories separate exponentially fast, i.e., the system has a positive 

Lyapunov exponent. 

1.3.2 Attractor and strange attractor 

An attractor is a set to which all neighbouring trajectories converge. Stable fixed points 

and stable limit cycles are examples of attractors. More precisely, we define an attractor 

to be a closed set A with the following properties (Strogatz (1994)): 

(i) A is an invariant set: i.e., for any trajectory )(tx that starts in A stays in A for all time. 

(ii) A attracts an open set of initial conditions: there is an open set U containing A such 

that if (0) ,x U∈  then the distance from )(tx   to A tends to zero as ∞→t  . This means 

that A attracts all trajectories that start sufficiently close to it. The largest such U is called 

the basin of attraction of .A

(iii) A is minimal, if there is no proper subset of A  that satisfies conditions (i) and (ii). 

Finally, a strange attractor is an attractor that exhibits sensitive dependence on initial 

conditions and is called strange because it is often fractal sets. Nowadays this geometric 

property is regarded as less important than the dynamical property of sensitive 

dependence on initial conditions. 

1.3.3 The Lyapunov Exponent 

The Lyapunov exponent is a quantitative evaluation of sensitive dependence on initial 

conditions. It gives a determination of divergence or convergence of two neighbouring 
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trajectories. Let us consider a continuous time autonomous dynamical system represented 

by following first order differential equation  

( ), ndX
f X X R

dx
= ∈

Suppose ��"�  is an initial condition and ���� is its corresponding trajectory. If we 

consider a small displacement from the initial condition���"�, and this is in the direction 

of the tangent vector<�"� , then evolution of the tangent vector <���  is found by 

linearizing equation  

( )
( ( ), ( )),

dw t
Df X t w t

dx
=

where�&� is the Jacobian matrix of��. This determines the evolution of the infinitesimal 

displacement <���  of the trajectory from the unperturbed trajectory �����=  The 

eigenvalues obtained from the Jacobian matrix indicate how a particular orbit expands. 

The exponential growth rate of :<���: is a number ' such that  

:<���: � 0>?:<�"�:  

Taking natural logarithm on both sides we have  

' � 
? @A B

:C�?�:
:C���:D=  

Here ' is called a Lyapunov exponent.  

If�' 2 ", the neighbouring trajectories separate exponentially fast i.e. it exhibits sensitive 

dependence on initial conditions and therefore chaotic in nature.  

If�' 1 ", the trajectory attracts to a fixed stable point or stable to periodic orbit.

If ' � "� �the trajectories will be a neutral fixed point or an eventually fixed point.

A system has many Lyapunov exponents as per the number of dimensions of the phase 

space. Any system that contains at least one positive Lyapunov exponent is called a 
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chaotic system and if system has more than one positive Lyapunov exponent is called 

Hyper-chaotic system 

1.3.4 Chaos in fractional order systems 

Chaotic fractional order dynamical systems are obtained by replacing the derivative in the 

system by fractional derivative. Fractional order, in this case, works as a chaos controller, 

i.e., the chaotic system can be made regular by appropriate choice of fractional derivative. 

It is observed that there is a critical value of the fractional order below which the system 

is regular and for the higher values chaotic. There is one more reason to study fractional 

chaotic systems that these are very useful in secure communications. Secure codes can be 

made using fractional chaotic systems which are difficult to break. Fractional order 

derivative acts as additional parameter which works as a key. 

1.4 Chaos Synchronization 

Fujisaka and Yamada (1983a, 1983b) paved the way with their pioneering studies on 

chaos synchronization, but it was not until 1990 when Pecora and Carroll (1990) 

introduced their method of chaotic synchronization and suggested application to secure 

communications that the subject received considerable attention within the scientific 

community. L. M. Pecora and T. L. Carroll (1990) was the first to introduce a method to 

synchronize drive and response systems of two identical or non-identical systems with 

different initial conditions. They wrote that:  

"Chaotic systems would seem to be dynamical systems that defy synchronization. Two 

identical autonomous chaotic systems started at nearly the same initial points-in phase 

space have trajectories which quickly become uncorrelated, even though each maps out 

the same attractor in phase space. It is thus practically impossible to construct, identical, 

chaotic, synchronized system in laboratory". 

Chaos synchronization or we may say synchronization of chaos is a phenomenon where 

two or more, identical or non-identical, chaotic systems adjust a given property of their 

motion to a common behaviour due to coupling or forcing. It might seem that the 

synchronization of chaotic systems is difficult to achieve due to their extremely sensitive 
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dependence on initial conditions and system parameters. And due to this property 

synchronization of the complex chaotic systems has important applications in secure 

communication. The synchronization scenario has been of long-standing interest for 

many researchers and studied extensively.  

The contribution of research work in this thesis is to reveal the significant influence of 

time delay and fractional order derivative on chaos synchronization and has suggested 

some new approach to achieve synchronization of chaotic systems.  

1.4.1 Types of synchronization 

Motivated by the seminal works of Fujisaka and Yamada (1983a, 1983b) and of Pecora 

and Carroll (1990) on synchronization of chaotic systems, various types of 

synchronization scenario have been investigated, viz., complete synchronization, anti-

synchronization, phase synchronization, hybrid synchronization, lag synchronization, 

generalised synchronization, projective synchronization, function projective 

synchronization, dual synchronization, combination synchronization, dual combination 

synchronization, combination-combination synchronization, etc. These different types of 

synchronization are described in details in following sub-sections. 

1.4.1.1 Complete synchronization 

Complete synchronization was first described by Pecora and Carroll (1990). It appears as 

the equality of the state variables while evolving in time. In this type of synchronization, 

the chaotic trajectories of the coupled systems remain in step with each other when time 

evolves. This is observed in coupled chaotic systems with identical elements, i.e., each 

component having the same dynamics and parameter set.  

Suppose two continuous time chaotic systems as 

( ) ,)()( txftx =�
         (1.4.1) 

( ) ( )( ) ( ) ( ) , ( ) ,y t g y t u x t y t= +�
       (1.4.2) 
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where , : n nf g R R→ are nonlinear continuous functions and ( ), ( )x t y t ∈ nR  are the state 

vectors the systems (1.4.1) and (1.4.2) respectively, ( )( ), ( )u x t y t  is the control function. 

The considered chaotic systems (1.4.1) and (1.4.2) will be synchronized if 

0)()(lim =−
∞→

txty
t

 for initial conditions )0(x and )0(y . 

Complete synchronization is also referred as convention synchronization, or identical 

synchronization, or simply synchronization. 

1.4.1.2 Anti-synchronization 

Two chaotic systems (1.4.1) and (1.4.2) are said to be anti-synchronized, when the 

respective states of chaotic systems )(tx  and )(ty   have the same magnitude but opposite 

in sign. Mathematically, anti-synchronization is achieved when lim ( ) ( ) 0.
t

y t x t
→ ∞

+ =

1.4.1.3 Hybrid synchronization 

In hybrid synchronization, synchronization and anti- synchronization co-exist together in 

the systems. It is an attractive case where three states are defined in such a way that first 

and third states of the two systems are completely synchronized, also first and second 

states of the systems are anti-synchronized. 

1.4.1.4 Generalized synchronization 

Coupled chaotic systems are said to exhibit generalized synchronization if there exits 

some function relation between systems, i.e., ( ),)()( txty ϕ= which means that the states 

of the two interacting systems are functionally synchronized. This type of synchronization 

occurs mainly when the coupled chaotic systems are different. 

1.4.1.5 Anticipating and lag synchronization 

In these cases, the synchronized state is characterised by a time interval τ such that the 

dynamical variables of the chaotic systems are related by  ( ) ( ).y t x t τ= + This means 

that the dynamics of one of the systems follows and anticipates the dynamics of the other. 
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These types of synchronization may occur in time-delayed chaotic systems, coupled in a 

drive-response configuration. In case of anticipating synchronization, the response 

anticipates the dynamics of the drive. In lag synchronization, 0τ <  appears as the 

asymptotic boundedness of the difference between the output of one system at time t   

and the output of the other shifted in time of a lag time. In particular, if the time delay 

may become zero i.e., ,0=τ  the anticipating synchronization and lag synchronization are 

further simplified to complete synchronization. 

1.4.1.6 Phase synchronization 

This scenario of the synchronization occurs when the coupled chaotic systems keep their 

phase difference bounded by a constant while their amplitudes remain uncorrelated. This 

phenomenon is mostly achieved in coupled non-identical systems. In case of phase 

synchronization, if )(1 tϕ  and )(2 tϕ  denote the phases of the two coupled chaotic 

systems, synchronization of the phase is described by the relation )()( 21 tmtn ϕϕ = , with

m  and n whole numbers. 

1.4.1.7 Projective synchronization

The projective synchronization in partially linear systems was first introduced by R. 

Mainieri and J. Rehacek (1999), where the responses of two identical systems 

synchronize up to a constant scaling factor. 

Consider the drive system as (1.4.1) and response system as (1.4.2). Defining the error 

state as  ,)()()( txtyte λ−=   where  λ   is the real constant, the systems (1.4.1) and 

(1.4.2) are said to be projective synchronized, if lim ( ) 0
t

e t
→ ∞

= . 

In particular, if 1=λ and 1−=λ , the projective synchronization is further simplified to 

complete synchronization and anti-phase synchronization respectively. 

1.4.1.8 Function projective synchronization 

In function projective synchronization, drive system is synchronized with response 

system up to a desired scaling function. It is introduced by Y. Chen and X. Li (2007). 
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Defining the error state as ( ) ( ) ( ) ( ) ,e t y t t x tλ= −  where )(tλ   is the continuously 

differentiable function with ( ) 0 , ,t tλ ≠ ∀ the systems (1.4.1) and (1.4.2) are said to be 

function projective synchronized if there exists a scaling function )(tλ  such that

lim ( ) 0
t

e t
→ ∞

= . 

1.4.1.9 Modified projective synchronization 

Modified projective was proposed by G. H. Li (2007). Defining the error state as  

( ) ( ) ( ) ,e t y t A x t= −  where 1 2[ , , , ]nA diag a a a= �  is the scaling constant matrix 

such that s'ia  are constant scaling factors ,i N∀ ∈ the systems (1.4.1) and (1.4.2) are 

said to be modified projective synchronized, if there exists a constant matrix A   such that  

lim ( ) 0
t

e t
→ ∞

= . 

1.4.1.10   Modified function projective synchronization 

Modified function projective synchronization is more general than function projective 

synchronization and modified projective synchronization. If we define the error state as 

)()()()( txtAtyte −=  between the drive system (1.4.1) and response system (1.4.2), 

where 1 2( ) [ ( ) , ( ) , , ( )]nA t diag a t a t a t= �  is the function scaling matrix such that  

,0)( ≠tai Ni ∈∀  are continuously differentiable function. Systems (1.4.1) and (1.4.2) 

are said to be modified function projective synchronized if there exists a function scaling 

matrix )(tA  such that  lim ( ) 0
t

e t
→ ∞

= . 

1.4.1.11    Dual synchronization 

In the case of dual combination synchronization the first two drive systems are taken as

Drive systems-I: 

,)(XFX =�            (1.4.3) 

where X is state vector variable.  
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Drive system-II: 

,)(YGY =�            (1.4.4) 

where Y  is state vector variable. 

The linear combination of the drive systems I & II gives rise to 

��
==

+=
n

i

ii

n

i

iim YbXaV
11

        YbbbXaaa nn ],,,[],,,[ 2121 �� +=

� �������� YBXA TT += �

� �������� ,][ ξTTT C
Y

X
BA =�

	



�
�


=

where T

naaaA ],,,[ 21 �=  and T

nbbbB ],,,[ 21 �= are known and .][ TTT BAC =

Next two response systems are considered as 

Response system-I: 

,)( )1(uxfx +=�          (1.4.5) 

where x  is state vector variable. 

Response system-II: 

,)( )2(uygy +=�           (1.4.6) 

where y  is state vector variable and )()1( tu , )()2( tu  are control functions, such that 

( ) ( ) ( ) ( )

1 2( ) [ , , , ] , 1, 2 .
i i i i T

nu t u u u i= =�

The linear combination of the response system I & II gives rise to 
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��
==

+=
n

i

ii

n

i

iis ybxaV
11

� ������ ybbbxaaa nn ],,,[],,,[ 2121 �� += �

� ������ yBxA TT += �

� ������ .][ ηT

m

mTT C
Y

X
BA =�

	



�
�


=

To obtain the dual synchronization among drive and response systems, Let us define the 

error function among the drive systems (1.4.3), (1.4.4) and response systems (1.4.5), 

(1.4.6) as 

,ms VVe −=

The drive systems (1.4.3), (1.4.4) and response systems (1.4.5), (1.4.6) are said to be dual 

synchronized if lim 0,
t

e
→ ∞

=  where ⋅ denotes matrix norm. 

1.4.1.12    Combination or Combined synchronization

The drive systems are considered as 

)( 111 xfx =�             (1.4.7) 

)( 222 xfx =�                                                                                                      (1.4.8) 

and the response system is taken as 

),,()( 21 yxxUyfy +=� ,                                                                                (1.4.9) 

where T

nxxxx ],,,[
11

2

1

11 �= , T

nxxxx ],,,[
22

2

2

12 �=  and 
T

nyyyy ],,,[ 21 �= are the 

state vectors of the chaotic systems. 
nn RRfff →:,, 21 are continuous vector 

functions and ),,( 21 yxxU is a control function. 



Chapter 1�

��18���
�

Two drive systems (1.4.7), (1.4.8) and one response system (1.4.9) are said to be 

combination synchronized, if there exists three constants matrices called scaling matrices,

321 ,, AAA and 03 ≠A , such that 1 1 2 2 3lim 0
t

A x A x A y
→ ∞

+ − = , where .  represents the 

matrix norm. 

It is noted that if IAAA n ==≠ ,0,0 21
 then this problem is reduced to the projective 

synchronization, where I is an nn × identity matrix. If the scaling matrix 1A  is considered 

as a function, then synchronization problem is reduced into function projective 

synchronization problem. 

1.4.1.13    Dual combination synchronization 

The dual combination synchronization is proposed among four drive and two response 

systems. First two drive systems are defined by the equations (1.4.3) and (1.4.4). 

Next two drive systems are defined as 

Drive systems-III: 

,)(XfX ′=′�                             (1.4.10) 

Drive system-IV: 

,)(YgY ′=′�                    (1.4.11) 

where X ′ and Y ′ are state vector variables. 

The linear combination of the drive systems III & IV, gives rise to 

��
==

′+′=′
n

i

ii

n

i

iim YbXaV
11

       YbbbXaaa nn
′+′= ],....,[],....,[ 2121 �

� ������� [ ] .T T T T T
X

A X B Y A B C
Y

ξ
′ 


′= + = =� �′� 	
� �������
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The corresponding two response systems with control functions are defined by systems 

(1.4.5) and (1.4.6). Defining the error function among four drive systems (1.4.3), (1.4.4), 

(1.4.10), (1.4.11) and response systems (1.4.5), (1.4.6) as  .mms VVVe ′−−=

The drive systems (1.4.3), (1.4.4), (1.4.10), (1.4.11), and the response systems (1.4.5), 

(1.4.6) will be dual combination synchronized if lim 0,
t

e
→ ∞

=  where ⋅  denotes the 

matrix norm. 

1.4.1.14    Combination-combination synchronization

In this section combination-combination synchronization is proposed among two drive 

systems (1.4.7) and (1.4.8) and two response systems  

1 1 1 1 1 2 1 2( ) ( , , , ),y g y U x x y y= +�                                                                      (1.4.12) 

2 2 2 2 1 2 1 2( ) ( , , , ),y g y U x x y y= +�                        (1.4.13) 

where 1 1 1

1 1 2[ , , , ] ,
T

nx x x x= � �
2 2 2

2 1 2[ , , , ]
T

nx x x x= �  and 
1 1 1

1 1 2[ , , , ] ,
T

ny y y y= �

2 2 2

2 1 2[ , , , ]
T

ny y y y= � are the state vectors of the chaotic systems. 

1 2 1 2, , , :
n n

f f g g R R→ are continuous vector functions and 1 1 2 1 2( , , , ) ,U x x y y

2 1 2 1 2( , , , )U x x y y  are the control functions. 

Two drive systems (1.4.7), (1.4.8) and two response system (1.4.12), (1.4.13) are said to 

be combination-combination synchronized, if there exists four constants matrices called 

scaling matrices 1 2 3 4, , ,A A A A and 
3 40, 0A A≠ ≠ such that 

1 1 2 2 3 1 4 2lim 0
t

A x A x A y A y
→ ∞

+ − − = , where .  represents the matrix norm. 

In this thesis, combined synchronization and combination-combination synchronization 

are successfully done between time-delayed chaotic systems and fractional order complex 

chaotic systems respectively. Also, triple compound synchronization among eight chaotic 

systems with disturbances is studied via non-linear approach.  
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1.5 Fractional Calculus 

In a letter to L`Hospital in 1695 Leibniz raised the following question: "Can the meaning 

of derivatives with integer order be generalized to derivatives with non-integer orders?" 

L`Hospital was interested about that question and replied by another question to Leibniz: 

"What if the order will be 1/2?" Leibnitz in a letter dated September 30, 1695 — the exact 

birthday of the fractional calculus! — replied: "It will lead to a paradox, from which one 

day useful consequences will be drawn." The question raised by Leibnitz for a fractional 

derivative was an on-going topic for more than 300 years. Many renowned 

mathematicians contributed to this notion over the years, among them J. Liouville, B. 

Riemann, H. Weyl, J. Fourier, N. H. Abel, S. F. Lacroix, G. Leibniz, A. K. Grunwald and 

A. V. Letnikov. 

Further it leads to a new branch of mathematics which deals with derivatives and integrals 

of arbitrary order and is known as fractional calculus (Miller and Ross (1993)). 

Nowadays, not only fractions but also arbitrary real and even complex numbers are 

considered as order of differentiation (Kilbas (2006)). Still, the name "fractional calculus" 

is kept for the general theory.  

In 1819, S. F. Lacroix was first to define the derivative of arbitrary order wherein he 

found 

11/2

2
11/2

2

( 1)
( ) .

( )

m
md m

x x
dx m

−Γ +
=

Γ +
  

Further Joseph B. J. Fourier (1822) derived the following integral representation of ,)(xf

where 

1
( ) ( ) cos ( ) .

2
f x f u du v x u dv

π

∞ ∞

−∞ −∞

= −� �

Using the representation, he obtained 
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( ) 1
( ) cos ( ) .

2 2

q
q

q

d f x q
f u du v v x u dv

dx

π

π

∞ ∞

−∞ −∞

� �
= − +� �

� �
� �

Joseph Fourier stated that: "The number q  that appears in the above will be regarded as 

any quantity whatsoever, positive or negative". 

B .Ross (1975) mentioned in his book that, it was Niels Henrik Abel in 1823 that used 

fractional derivative while solving an integral equation arising in tautochrone problem. In 

1832, J. Liouville explicitly gave the first definition of fractional derivative. In 1844, G. 

Boole developed symbolic method for solving linear differential equations with constant 

coefficients using fractional calculus. In 1847, Bernhard Riemann (Ross, 1975) proposed 

the following definition of fractional integration 

� +−
Γ

= −−
x

c

qq xdttftx
q

xfD ,)()()(
)(

1
)( 1 ψ       (1.5.1) 

where )(xψ is Riemann's complementary function. 

Fractional derivative in electromagnetic theory was introduced by the renowned 

mathematician Oliver Heaviside in 1893. In 1917, H. Weyl and G. H. Hardy studied some 

properties of fractional derivative/integral. In 1939, A. Erdelyi and 1971, T. J. Oslar 

defined fractional derivatives and Leibniz rule. Though the mathematics of fractional 

calculus existed in the literature for more than 300 years, its utility has been realized 

rather recently. Nowadays many engineers and scientists are working on fractional 

calculus and its applications in various areas. 

1.5.1 Applications 

Fractional derivative operator qD  differs from the ordinary differential operator D in 

many respects due to its non-locality. The product rule and chain rule become a bit 

complicated to derive. The geometrical and physical interpretations of fractional 

derivatives and fractional integral operators attempted and analysed by many researchers, 

though some successful and meaningful results in this direction are recently done by Igor 

Podlubny (2002). Also, there are several definitions of fractional derivative are given by 

many mathematicians. One can see some of these definitions in nest sub-sections.   
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In last few decades, the concept of fractional calculus has been applied to almost every 

area of Science and Engineering. An integer order differential operator is a local operator 

whereas a fractional differential operator is a non-local operator in the sense that it takes 

into account the fact that the future states do not only depend upon the present state but 

also upon all of the histories of its previous states. It is now realised that the non-locality 

is not a drawback, but it leads to model many natural phenomena containing long 

memory. Examples of such systems are abundant in nature. Few of them are atmospheric 

diffusion of pollution, cellular diffusion processes, network traffic, dynamics of visco-

elastic materials, electronics, etc. 

All such systems have non-local dynamics involving long memory which cannot be 

modelled efficiently using classical calculus theory. Thus fractional differential equations 

(FDE) are useful for the modelling of many anomalous phenomena in nature and the 

theory of complex systems. 

Diffusion-wave equation: The time fractional order diffusion-wave equation is given by 

2

2

( , ) ( , )
,

q

q

u x t u x t
k

t x

∂ ∂
=

∂ ∂
.20 ≤< q           (1.5.2) 

This equation represents fractional diffusion equation for 0 1q< ≤ and fractional wave 

equation for 21 ≤< q . It is useful in modelling many anomalous phenomena such as 

diffusion through disordered media/porous media, amorphous through fractals, 

percolation clusters, polymers and biological systems etc. 

W. Wyss (1986) used Mellin transform to solve Cauchy problem. R. W. Schneider and 

W. Wyss (1989) converted the diffusion-wave equation into the integro-differential 

equation and derive the corresponding Green functions in form of Fox functions. Y. 

Fujita (1990) has produced the existence and uniqueness of the solution of the space-time 

fractional diffusion equation. F. Mainardi (1996) obtained the fundamental solution for 

the fractional diffusion-wave equation in one space-dimension. 

Electrical circuits: Classical electrical circuit contains inductor, capacitor and resistor 

described by integer-order models however; the circuit may have non-integer properties. 
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A term fractance suggested by A. Le Mehaute and G. Crepy (1983), representing 

electrical elements with non-integer order impedance which is modelled using fractional 

derivative. This gives greater flexibility in this circuit modelling. It can also be used for 

analogue fractional differentiation and integration. T. Hartley et al. (1995) have shown 

the Hartley-Chua circuit of system order less than three, exhibits chaos. Ivo Petras (2010) 

applied fractional calculus in a nonlinear electrical circuit, which is modeled by fractional 

order equations. He presented the fractional-order memristor-based Chua’s equations and 

methods for their numerical solution, simulation, and stability analysis. He shows a total 

order of the system less than the number of differential equations using fractional 

calculus. Chaotic system usually described by three equations but, he also shows a total 

order less than three and chaos still can be observed. In the case of a hyperchaotic system, 

the situation is similar. It opens a new area of applications for the proposed chaotic 

system. 

Control theory: Nowadays in control theory fractional derivatives are widely used 

because of its more realistic approach then integer order derivatives. Major contribution 

in fractional control theory is done by A. Oustaloup (1983). He developed a CRONE 

(Commande Robusted' Ordre Non Entier) controller and showed that it works better than 

classical PID controller. 

Biology: K. S. Cole (1933) gave the concept of membrane reactance. It has been used in 

the conductance of membranes of cells of organisms. Membrane reactance is given by 

.)( 0

q
XX

−= ωω

Cole experimentally obtained values of  q  for different cases such as for guinea pig lever 

and muscle )45.0( =q  and for potato ( 0.25)q =  etc. 

Bio-engineering: Bio-engineering is a branch of life science which deals with the design, 

manufacture and maintenance of engineering equipments used in biosynthetic processes. 

In medical science this branch plays an important role in the design of artificial limbs, 

artificial pacemaker etc. Bio-engineering strives to develop new mathematical tools for 

describing the complexity of cells and tissues. Fractional order operations are useful in 
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encoding the multi-scale pattern arising in the muscle fibres and nerve fibres. The 

resulting dynamics of such multi-scale processes are expressed through fractional order 

differential equations. Various such applications of fractional calculus in bio-engineering 

are described in the recent book by R.Magin (2006).

Viscoelasticity: The nature of the real materials lies in between ideal solids and ideal 

fluids. G. W. Scott Blair (1947) proposed for these intermediate materials as, stress is 

proportional to the intermediate derivative of strain, i.e. 

,)()( tDEt qεσ = ,10 << q         (1.5.3) 

where E  and q  are constants depending on material under study. The remarkable 

contributors in this domain are A. Gemant (1950), A. N. Gerasimov (1948), R. L. Bagley 

and P. J. Torvik (1984) and many others researchers. M. Caputo and F. Mainardi (1971) 

used Caputo fractional derivatives to give more realistic models. More detailed 

discussions on this topic are now available in a recent book by Mainardi (2010). 

1.5.2 Fractional derivatives  

Here we will see some widely accepted and applied definitions of fractional derivatives 

which make fractional order modelling more realistic than integer order (Podlubny, 

1999). 

1.5.2.1 Grunwald-Letnikov fractional derivative 

Successive differentiations of function  )(tf   are given by 

,
)()(

lim)(
0

)1(

h

htftf
tf

h

−−
=

→

(1) (1)
(2)

0

( ) ( )
( ) lim

h

f t f t h
f t

h→

− −
=

20

( ) 2 ( ) ( 2 )
lim ,
h

f t f t h f t h

h→

− − + −
=
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In general, 

,)()1(
1

lim)()(
0

0

)( khtf
k

n

h
tfDtf

n

k

k

nh

nn −��
�

�
��
�

�
−== �

=
→

     

(1.5.4) 

where 
)!(!

!

knk

n

k

n

−
=��

�

�
��
�

�
is a binomial coefficient. For a non-integer 0>q , we can write 

.
)1(!

)1(

+−Γ

+Γ
=��

�

�
��
�

�

kqk

q

k

q

The Grunwald-Letnikov definition is the generalisation of the definition (1.5.4) to a non-

integer  .0>q

0
0

1 ( 1)
( ) lim ( 1) ( ) .

! ( 1)

t a

h
GL q k

a qh
k

q
D f t f t kh

h k q k

− 

� �� 	

→
=

Γ +
= − −

Γ − +
�

   

(1.5.5) 

Fractional integral of order  0>q  is defined by 

.)(
)(!

)(
lim)(

0
0

khtf
qk

kq
htfD

h

at

k

q

h

q

a

GL −
Γ

+Γ
= �

�
	



�
�

 −

=
→

−

      

(1.5.6) 

1.5.2.2 Riemann-Liouville fractional derivative 

Riemann-Liouville fractional integral operator is a direct generalization of the Cauchy's 

formula for an  -fold integral as (Podlubny, 1999) 

���� −

−

−−
=

− x

a

n

tn

x

a

x

a

x

a

dt
tx

tf

n
dttfdtdt

n

1

imes

)(

)(

)!1(

1
)(

11

��� ���� ��

�

      

(1.5.7) 

Definition 1.5: If   ( ) [ , ]f x C a b∈ and ,0>q then 

1

1 ( )
( ) : ,

( ) ( )

x

q

qa

a

f t
J f x dt

q x t
+ −

=
Γ −�

      

,ax >
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1

1 ( )
( ) : ,

( ) ( )

b

q

qb

x

f t
J f x dt

q x t
− −

=
Γ −�

      

x b<                  (1.5.8) 

are called as the left sided and the right sided Riemann-Liouville fractional integral of 

order ,q respectively. 

Definition 1.6: 11 ( )
( ) : ( ) ,

(1 ) ( )

x

RL q q

a aq

a

d f t
D f x dt D I f x

q dx x t

−= =
Γ − −� ,10 << q               (1.5.9) 

is called the left side Riemann-Liouville fractional derivative of order q whenever the 

RHS exists (Podlubny, 1999). 

The definitions and properties of the Riemann-Liouville fractional derivative for arbitrary 

value of 0>q are as follows. 

Definition 1.7: Let 1 ,n q n− < ≤  then the left sided and right sided Riemann-Liouville 

fractional derivatives of order q are defined as (Podlubny, 1999) 

1

1 ( )
( ) ( ) ,

( ) ( )

xn
RL q n n q

n q na a

a

d f t
D f x dt D I f x

n q dx x t
+ +

−

+ −
= =

Γ − −� ,ax >

1

1 ( )
( ) ( ) ,

( ) ( )

bn
RL q n n q

n q nb b

x

d f t
D f x dt D I f x

n q dx x t
− −

−

+ −
= =

Γ − −� ,bx <             (1.5.10) 

respectively, whenever the RHSs exist. 

In further discussion, unless mentioned otherwise, we denote )(xfD
q

a

RL
+  by  )(xfD

q

a

RL   

and ( )
q

a
J f x+ by ( )

q

aJ f x , respectively. Also )(xfD
qRL and ( )

q
J f x , refer to  )(

0
xfD

qRL
+   

and  
0

( )
q

J f x+ ,  respectively. 

Properties: (i) The Riemann-Liouville fractional derivative of constant is not zero. 

.0
)1(

≠
−Γ

=
−

q

tC
CD

q
qRL

                 

(1.5.11) 



Introduction 

��27���
�

(ii) Initial value problem (IVP) containing Riemann-Liouville fractional derivative 

requires initial conditions of the form )0(fD jqRL −
 i.e., 

� ( )
1

( ) ( ) (0) ,
( 1)

q jn
q RL q RL q j

j

t
J D f x f t D f

q j

−
−

=

= −
Γ − +

�
���

,1 nqn <≤−
�������������

(1.5.12) 

which is not useful in real phenomena. To overcome these drawbacks, M. Caputo and F 

Mainardi (1971) proposed a new definition of derivatives which allows the formulation of 

initial conditions for fractional IVPs in a form involving only the limit values of integer 

order derivatives at the lower terminal. 

1.5.2.3 Caputo fractional derivative 

The definition and properties of the Caputo fractional derivative are given as follows; 

Definition 1.8: Let ],[ baCf n∈ and  nqn <<−1   then 

( )

( 1)

1 ( )
( ) ,

( ) ( )

x n
C q

a x q n

a

f t
D f x dt

n q x t − +
=

Γ − −� .bxa <<
� � � ��������������

(1.5.13) 

Properties:  (i) 0 ,
C q

a D C = C is a constant.                                                   (1.5.14) 

          (ii) ( )lim ( ) ( ) .C q n

a
q n

D f x f x
→

=
� � � � � ��������������

(1.5.15) 

Lemma 1.4: (Kilbas (2006)) Let ( )f x R∈ be a continuous and derivable function. Then 

for any 0x x≥ , 

0 0

21
( ) ( ) ( ),

2

C q C q

x x x xD f x f x D f x≤   ∀ )1,0(∈q .               (1.5.16) 

1.5.2.4 Relation between Riemann-Liouville and Caputo derivatives 

Theorem 1.5: Let ],[ baCf n∈  and .1 nqn <<−  Then R-L and Caputo fractional 

derivatives are connected by the relation 
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Proof:  ( ) ( )RL q n n qD f x D J f x−=

����
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(1.5.18) 

      .)(
)1(

)(
)(

1

0

)(

�
−

=

+

−
−+Γ

+=
n

k

k
k

q

a ax
qk

af
xfD

� � � ��������������

(1.5.19) 

From the above theorem, we get the following results: 

 (i) If  ,Nnq ∈= then .)()()( xfDxfDxfD
nq

a

q

a

RL ==
�

�
(ii) If  0)()( =af k

 for ,1,,1,0 −= nk � then .)()( xfDxfD
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Theorem 1.6: Let ],[ baCf n∈ and ,1 nqn <<−  then 
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kn
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f a
J D f x f x x a
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= − −� .ax ≥
� � ��� ��������������

(1.5.20) 

Proof: If ( )
q q

a aJ D f x = ( )
( )

q n q n

a aJ J f x
− = ( ) ( ) ( )n nJ f x = ,)(

!

)(
)(

1

0

)(

�
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−−
n

k

k
k

ax
k
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xf ,ax ≥

then equation (1.5.20) is a particular case of the more general property 

( )( ) ( ) ( ) ( )( ) ( ) ( )q r q m r m q r n n

a a a a aJ D f x J J f x J J f x− −= = ,rq >
� � ��������������

(1.5.21)
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1.5.3 Leibniz rule 

(Podlubny (2002)) If  )(xf   and  )(xg [ , ]C a t∞∈  then the Leibnitz rule for fractional 

derivative is given by 

( ) ( )

0

( ) ( ) ( ) ( ) ( ) ,q k q k q

a t n

k

q
D g t f t g t D f t R t

k

∞
−

=

� �
= −� �

� �
�

� � � ��������������

(1.5.22) 

where � � −
−−Γ

= +

+

t

a

t
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q
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n dgd
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f

qn
tR
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ξξτξτ
τ

τ
.))((

)(

)(

)(!

1
)( )1(

1

1.5.4 Fractional differential equation 

In this section, some results are discussed on existence and uniqueness of fractional 

differential equations involving Riemann-Liouville derivative DRL  and Caputo derivative

D . 

Theorem 1.7: (Daftardar-Gejji and Babakhani (2004)) the unique solution of the initial 

value problem (IVP)  is 

,)()]0()([ txAxtxDqRL =− 0(0) ,x x= 0 1,q< < ,],0[ χ∈t ,0>χ
�������������

(1.5.23) 

where A  is an  nn ×  matrix, is .)( 0xAtE
q

q

Theorem 1.8: (Daftardar-Gejji and Babakhani (2004)) Let RWf i →:  be continuous,  

,,,2,1 ni �=  where 

,])0(,)0([],0[ 1

*

jjjj

n

j lxlxW +−Π×= =χ ,0* >χ ,0>jl ,j∀

and .),,,( 21 nffff �=  Then the non-autonomous IVP 

,),()]0()([ xtfxtxDqRL =− ,)0( 0xx = ,10 << q
� � � ��������������

(1.5.24) 

has a solution  
nRtx →],0[:)( χ , where 
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Theorem 1.9: (Daftardar-Gejji and Jafari (2007)) Let  n

n RWffff →= :),,,( 21 �
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(1.5.25) 

where 1+<< iii mqm
�
has a unique solution 

nRtx →],0[:)( χ  , where 

,
]1[

!
,

]1[

)1(
,min

/1/1

*

�
�

�
�

�

�
�

�
�

�

�
�

�

�

�
�

�

�

+�
�
�

�
�
�
�

�

+

+Γ
=

k

i

k

q

i

Cq

lk

fq

ql
i

χχ
�

�
,,,2,1 ni �= ,,,2,1 imk �=

�

� 1 2min{ , , , } ,nl l l l= �
�

1 2max{ , , , } ,nq q q q= �

and ]1[ q+
�
denotes integral part of  .1 q+

�

Lemma 1.10: (Norelys et al. (2014)) Let Rtf ∈)( be a continuous and derivable function. 

Then for any time instant 0tt ≥ , 

),()()(
2

1
tf

q
Dtftf

q
D ≤ )1,0(∈∀ q .                                                     (1.5.26) 
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1.6 Delay Differential Equations 

In many applications, it is considered that the systems under study satisfy the principle of 

causality that is the rate of change of the state of system is independent of the past and is 

determined solely by the present inputs. But one could realize that this is only a first 

approximation to the true situation.  

Realistic modelling which represents the rate of variation in the system’s state should 

depend not only on its current value but also on the past events. Ordinary or partial 

differential equations are used to model those systems which are governed by an equation 

that is not associated with and dependent on its past history. However in most of the 

phenomena, time delays are not neglectable, such models assimilating past history 

generally modelled with delay differential equations or functional differential equations 

(FDEs). 

Delay differential equations (DDE) are a class of functional differential equations where 

the highest order derivative of the unknown function at a certain time depends on the 

solution of the function at previous times. DDEs are also referred as hereditary 

differential equations, retarded functional differential equations, in control theory as time-

delay systems and equations with after effect or dead-time, differential- difference 

equations. 

Mathematically, the delay differential equations can be expressed in the form 


#��� � ���� 
���� 
?�� � E ��                         (1.6.1) 

with initial history  


��� � F���� �� 6 G 5 � 1 ����                     (1.6.2) 

where 
��� 	 ��, 
? � 7
�� 6 G�� G 5 �8 are the solution state of the system at time�� and 

in the past respectively, G is lag or time delay. Instead of a usual initial condition, an 

initial history function F��� needs to be specified on the whole interval H�� 6 G� ��I. This 

initial function is generally taken to be continuous, which is an infinite set of values that 
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makes the DDE problem inherently infinite-dimensional. This infinite dimensional nature 

of DDE is apparent in the area of dynamical system.  

There might be more general delay equations could be considered that contain constant 

time delays ( GJ  are positive constant), time-dependent delays BGJ � GJ���D , state-

dependent delays �BGJ � GJ$�� 
���%D , continuously distributed delays and higher 

derivatives all occur in applications and lead to more complicated evolution equations.  

However equations of the form (1.6.1) and (1.6.2) constitute a sufficiently a broad class 

of system arise in practice for a variety of reasons, and provide an important category of 

dynamical systems called as time-delay dynamical systems. 

ODEs and DDEs are not very different in theatrical point of view. It’s quite intuitive to 

define the ideas of linear, nonlinear and homogenous equations for DDEs as defined for 

ODEs. The analytical and numerical techniques for solutions developed for ODEs could 

be extend for DDEs as well. The phase space for an ODE is always finite dimensional 

whereas DDEs show an infinite dimensional dynamical system because the fact that 

instead of an initial value, an initial function is necessary to determine the solution. 

From the literature survey it can be found that there are lot of applications of DDE in the 

following areas. 

Population dynamics: In 1845, the well-known logistic equation given by Verhulst and 

Pierre-Francois  

�
�

�
�
�

�
−=

K

tN
tNrtN

)(
1)()(�

� � � � � � � ��

(1.6.3) 

describes the growth of population, where )(tN is population at time  t and  0>r  is 

Malthusian parameter describing growth rate, and  K   is carrying capacity. The model 

assumes that the population density negatively affects the per capita growth rate due to 

environmental degradation. G. Hutchinson (1948) introduced a delay into the logistic 

equation to account for hatching and maturation periods, which is given by 
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−=

K

tN
tNrtN

τ�

� � � � � � � ��

(1.6.4) 

Virology: R. Culshaw and S. Ruan (2000) proposed a HIV model to include a time delay 

between virus-cell contact and subsequent infection of the cell4 −+TCD . The model is 

,)()(
)()(

1)()()( 1

max

tVtTk
T

tItT
trTtTstT T −��

�

�
��
�

� +
−+−= µ�

�

� ,)()()()( 11 tItVtTktI µττ −−−′=�
�

� ,)()()()()( 1 tVtVtTktINtV Vb µµ −−=�
� � � � � ��

(1.6.5) 

where T  denotes healthy cells T − in the blood, I is the HIV infected  cells T − and  V  is 

the HIV virus level in the blood. 

Nonlinear optics: Ikeda et al. (1980) considered a nonlinear absorbing medium 

containing two-level atoms placed in a ring cavity and subject to a constant input of light. 

The optical system undergoes a time-delayed feedback that destabilizes its steady-state 

output. The DDE formulated by Ikeda et al. (1980) is 

( )[ ] .)(cos21)()( 0

2 φφφφτ −−++−= DttBAtt�
� � � � ��

(1.6.6) 

1.6.1 Existence and uniqueness of a solution: Method of steps 

Theorem 1.11: Let ),,( yxtf  and ),,( yxtf x
 be continuous on 3R and let  

R→− ]0,[: τφ
�
be continuous. Then for 0>σ �there exists a unique solution of the IVP 

( ) ,)(,)(,)( τ−= txtxtftx� ,0≥t

,)()( ttx φ=
������������������������

0≤≤− tτ � � � � � � ��(1.6.7) 

on .],[ στ−
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One need a solution )(tu such that  ,)()( ttu φ= 0≤≤− tτ  and satisfying (1.6.7) for  

.0≥t
�
For ,0 τ≤≤ t  the function  )(tu   must satisfy the IVP 

( ) ( ) ,)(,)(,)(,)( txtgttxtftx =−= τφ� .)0()0( φ=x
� � � ��

(1.6.8) 

Since  ( ) ( ))(,)(,)(, τφ −= ttxtftxtg  and ( ))(, txtg x
are continuous, the local solution of 

the ODE (1.6.8) is guaranteed by standard results from ODE theory. If this local solution 

exists for the entire interval  [0, ] ,τ   then the solution  )(tu  is defined so far on  ],[ ττ−

and one may repeat the above argument to extend their solution still further to the right. 

1.6.2 Numerical solution of a DDE 

Consider the DDE, given by equation (1.6.7) which is equivalent to 

( ) .)(,)(,)0()(
0

dzzxzxzfxtx

t

� −+= τ
      

(1.6.9) 

Assign the step-size kh /τ=  for some fixed natural number  k   so that  τ≤h . Consider 

the nodes nhtn = ,  �,2,1,0=n   and denote  )( nn txx = . For kn ≤≤0 , the term 

=− )( τntx =− )( khnhx =−− ))(( hnkx .))(( hnk −−φ  For kn > , =− )( τntx

.))(( knxhknx −=−  Assume that we have obtained the values  ,1x ,2x �  , 
1−nx . For 

th−n  step, it can be written as 

( )�
−

−+= −

n

n

t

t

nn dzzxzxzfxx

1

,)(,)(,1 τ

               

(1.6.10) 

using some suitable integration formulae. 

1.6.3 Stability of Delay Differential Equations 

The concept of stability of systems of differential equations with delays has been an 

active area of research in science and engineering. Stability of nonlinear functional 

differential equations is a quite complicated problem due to lack of complete Lyapunov 

functional structure whose existence is necessary for the stability of usual nonlinear time-
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delay systems. N. N. Krasovskii (1959) introduced the Lyapunov-Krasovskii stability 

criterion, and it is the generalization of the classical Lyapunov stability theory for 

ordinary systems to time-delayed systems (infinite dimensional systems). The choice of 

an appropriate Lyapunov-Krasovskii functional is crucial for deriving of stability criteria. 

Krasovskii extended the complete theory of Lyapunov by using functional 4� K � � , 

where K � K�H6G� "I� ���.     

Theorem 1.5: (Krasovskii and Brenner (1963)) Suppose that L� M� <� H"�9� � H"�9� are 

continuous nonnegative non-decreasing functions, L���� M���  are positive for ��� 2
"� L�"� � M�"� � ". If there is a continuous function��4� K � �, such that  

L�NO�"�N� 5 4�O� 5 M�NON������O 	 K���  

4#�O� � @PQ?�� �RS 
? T4$
?�= � O�% 6 4�O�U 5 6<�NO�"�N����

Then equilibrium point of the time-delayed system 
 � " is stable.  

If, in addition, <��� 2 " for�� 2 ", then equilibrium point 
 � " is asymptotically stable.  

1.7 Methodology 

The most productively and widely studied approach named Pecora-Carroll scheme 

designed by L.M. Pecora and T. L. Carroll (1990), in which two identical chaotic systems 

with different initial conditions are synchronized. They have theoretically proven and 

experimentally demonstrated that it is possible to synchronize chaotic systems by 

appropriate couplings between these systems. In past few years, many methods are 

proposed for synchronization of chaotic systems viz., Pecora-Carroll method, Active 

control method, Adaptive control method, Tracking control method, Nonlinear control 

method, Backstepping method etc. 

1.7.1 Active Control Method 

E. W. Bai and K. E. Lonngren (1997) were first designed the active control method in 

1997 and synchronize the identical Lorenz chaotic system using active control method. 

They showed the sequential synchronization (Bai and Lonngren (2000)) of two Lorenz 
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systems using this method. In 2002, the active control method successfully applied for 

synchronization of two different chaotic systems viz., easy periodic system and Rossler 

system by M. C. Ho and Y. C. Hung (2002). In 2007, J. P. Yan and C. P. Li (2007) 

investigated chaos synchronization of fractional order Lorenz, Rossler and Chen systems 

taking one system as drive and other as response system. In 2008, U. E. Vincent and J. A. 

Laoye (2007, 2008) presented chaos synchronization between two nonlinear systems 

using two different techniques viz., active control and back stepping control in terms of 

transient analysis. In the same year, X Zhou and Cheng (2008) showed synchronization 

between different fractional order chaotic systems viz., Rossler & Chen systems and Chua 

& Chen systems. Srivastava et al. (2014) recently applied this method for anti-

synchronization between identical and non-identical fractional order chaotic systems. The 

active control method has received huge attention during the last few years. 

1.7.2 Nonlinear Control Method 

The synchronization of chaotic systems using nonlinear control method was studied by J. 

H. Park (2005). In 2006, Dong et al. (2006) studied synchronization of the hyperchaotic 

Rossler system with uncertain parameters using the same method. The method was 

successfully used by S. Y. Li and Z. M. Ge (2011) during the study of pragmatically 

adaptive synchronization of different orders chaotic systems with uncertain parameters 

and also by Singh et al. (2014) during synchronization and anti-synchronization of 

chaotic systems. 

To process the method for synchronization, first consider the chaotic system as the drive 

system as 

,)( iii xfQxPx +=� ni ,,2,1 �= ,             (1.7.1) 

where nT

ni Rxxxx ∈= ],,,[ 21 �  is the state vector variable, P and Q  are nn × matrices 

of the system parameters and nn RRf →:  is a nonlinear function of the system.  

Consider another chaotic system as a response system as 

,)(11 iiii uygQyPy ++=� ,,,2,1 ni �=       (1.7.2) 
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where nT

ni Ryyyy ∈= ],,,[ 21 � , is the state vector, 1P and 1Q are  nn ×  parameter 

matrices, nn RRg →:  is a nonlinear function and
iu are the control function of the 

system. 

The error states are defined as ,iii xye −= ni ,,2,1 �= . Then the error system 

becomes 

.)()()( 111 iiiiii uxfQxPPygQePe +−−++=�        (1.7.3) 

While synchronization our aim is to find the appropriate feedback controller 
iu so that the 

dynamical error system (1.7.3) can be stabilized in order to get lim ( ) 0
t

e t
→ ∞

= for all

nRe ∈)0( . 

Defining the Lyapunov function as 

,
2

1
i

T

i eeV = with  .)](,,)(,)([)( 21

T

ni tetetete �=

Derivative of )(tV w. r.t. t  is  

2
2 2 2

1 2

1 1

( )1 1 1
( ...... )

2 2 2

T n n
i i i i

n i

i i

d e e de dedV d
e e e e

dt dt dt dt dt= =

= = + + + = =� �

By choosing the control functions as )()()()1( 111 iiiii xfQygQxPPePu +−−−+−= ,  

we have  ,
1

2�
=

−=
n

i

ie
dt

dV
          (1.7.4) 

which indicate that the Lyapunov function )(tV becomes negative definite and is necessary 

to get the required synchronization of the systems (1.7.1) and (1.7.2). 

1.7.3 Homotopy Analysis Method 

The Homotopy Analysis Method (HAM) technique was introduced by S J Liao (1992) for 

the linear and nonlinear partial differential equations. This technique is the combination 
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of classical perturbation technique and homotopy, a concept of topology and differential 

geometry. HAM is the unification of Lyapunov artificial small parameter method, Delta 

expansion method, and Adomian decomposition method. On theoretical background, 

HAM works on the concept that a nonlinear equation can be split into a number of linear 

sub-equations.  

The difference with the other perturbation methods is that HAM is independent of 

small/large physical parameters. Another important advantage as compared to the other 

existing perturbation and non-perturbation methods lies in the freedom to choose a proper 

base function to get a better approximate solution of the problems (Liao 2003, 2004). 

Recently, S. J. Liao (2009) has claimed that the difference with the other analytical 

methods is that one can ensure the convergence of series solution by means of choosing a 

proper value of the convergence-control parameter. Recently, Das et al. (2011, 2013) 

have successfully applied the method to investigate the influences of the auxiliary 

parameter to find the region of convergence through h-curve analysis in solving the 

considered fractional diffusion equation. 

The specialty of HAM is the evaluation of convergence control parameter. While 

evaluating the solution of nonlinear problems, the convergence region is controlled by the 

plot of control parameter from this region for getting convergence of the series solution. 

Since HAM is good mathematical tool to solve nonlinear problems if we have the idea 

about the structure of the solution to the problem so that a proper base function can be 

selected and to study the solution as it is known that any real continuous function can be 

represented by so many types of base functions viz., algebraic, periodic, exponential. 

Thus for the same physical nonlinear problems in the physical world, sometimes it is 

difficult to approximate the solution when there is lack of knowledge about a proper set 

of base functions.    

1.8 Numerical Methods 

In this section the numerical methods for solving delay differential equations and 

fractional order differential equations are discussed.  
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1.8.1 Runge-Kutta method for Delay Differential Equations 

L. F. Shampine and S. Thompson (2001) developed a MATLAB code dde23 to solve 

delay differential equations (DDEs) with constant delays in the year 2001. The method 

was proposed based on the Runge-Kutta triple BS (2,3) used in ode23, which nicely 

explains how the explicit Runge-Kutta triples can be extended and used to solve DDEs. 

Consider a system of the nonlinear delay differential equation as 

�#��� � ���� ����� ��� 6 G�� ��� 6 G��� � � ��� 6 GV��������W 5 � 5 X���          (1.8.1) 

with initial history  

���� � ����� � 5 W��           (1.8.2) 

where GJ�Y � !�*� � � �� are fixed delays and G = min�G� � � GV� 2 ". 

To construct numerical strategy for DDEs’, let us discuss the explicit Runge-Kutta triples 

to solve the general ordinary differential equation  

�#��� � �$�� ����%� W 5 � 5 X�      (1.8.3) 

with the initial condition ��W�. 

Assume �� � ����� is the approximate value of �( at �(. Let  ��� � �� � Z�. A triple of 

� -stages involves three formulas. For ) � !�*� � � � , the stages ��( � ����(� ��(�  are 

defined in terms of ��( � �� � [(Z� and  

1

1

i

ni n n ij nj

j

y y h a f
−

=

= + �

Suppose \���� ��� as an increment function, the approximation used to carry forward the 

integration is  

1

1

( , ).
s

n n n i ni n n n n

i

y y h b f y h t y+
=

= + = + Φ�
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Solution satisfies above formula with a residual called the local truncation error ]�0� as 

��� � �� � Z�\���� ��� � ]�0���  

which inherits an error of order ^$Z�_�% for sufficiently smooth � and ����. Select the 

step size triple that gives rise to another formula as  

* * *

1

1

( , ).
s

n n n i nj n n n n

i

y y h b f y h t y+
=

= + = + Φ�

The solution satisfies this equation with a local truncation error ]�0�̀, which is an error of 

order  ^$Z�_%. The trird formula is given by  

1

( ) ( , , ),
s

n n n i ni n n n n

i

y y h b f y h t yσ σ σ+
=

= + = + Φ�

where coefficients X(�a�  are polynomials in a= So this represents a polynomial 

approximation to ���� � aZ��  for " 5 a 5 ! . The third formula is referred as a 

continuous extension of the first since it yields the value �� when a � " and ��� when 

a � ! assuming that the order of the continuous extension is same as that of the first 

formula. These assumptions hold for the BS(2,3) triple. The formula is used to advance 

the integration for such triples as just the special case a � ! of the continuous extension 

and is defined by  

���� � aZ�� � ����� � Z�\���� ������ a� � ]�0��a�=�  

Suppose for smooth � and ����, there exists a constant K such that  

:]�0��a�: 5 KZ�_�    for    " 5 a 5 !. 

Main problem is to establish approximation to the delayed term �$� 6 GJ% which consists 

of two cases Z� 5 GJ  and Z� 2 GJ � for some Y and suppose an approximation as ���� �
���� is accessible b�
 5 
�=
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If Z� 5 G , then all ��( 6 G( 5 ��  and ��( � ����(� ��(� ����( 6 G�� � � ����( 6 GV��  are 

explicit form of the stage and thus the formulas are explicit. After the step to 
�, we use 

the continuous extension to characterize ���� on H��� ���I as ���� � aZ�� � ���c. 

For the second case, the implicit formulas may be evaluated when the step is bigger than 

G i.e., Z� 2 GJ for some Y, the history term ���� is evaluated in the span of the current step 

and the formula as defined implicitly. Defining ���� for 
 5 
�, when reaching 
� and 

extend its definition somehow to ���� �� � Z�I and represent the resulting function as 

�����. The simple iteration starts with the approximate solution  ��d����. The following 

iterations are computed with explicit formula as 

��d����� � aZ�� � ����� ��Z�\B��� ������ a� ��d����D=  

1.8.2 Adams-Bashforth-Moulton Method 

An algorithm for numerical solution of fractional-order differential equations with proper 

initial conditions were investigated and developed by K. Diethelm et al. (2004a) and K 

Diethelm and J Ford (2004b). This scheme is generalization of the classical one-step 

Adams-Bashforth-Moulton scheme for first order equations. The algorithm may be used 

even for nonlinear problems, and it may also be extended to multi-term equations which 

involve more than one differential operator. We interpret the approximate solution of 

nonlinear fractional-order differential equations using this algorithm in the following 

way. 

Let us consider differential equation as 

( ) ( ( ))D y t = f t, y t ,
t
α Tt ≤≤0 ,                                                                         (1.8.4)  

with  
,yy kk )(

0)0(
)( = 0,1,......., 1k m= −         (1.8.5) 

where e � fgh is the smallest integer E g and the differential operator is in the sense of 

Caputo derivative. The initial value problem (1.8.4) is equivalent to the Volterra integral 

equation 
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1

( ) 1

0

0 0

1
( ) ( ) ( ( ))

! ( )

tk
k

k

t
y t y + t s f s , y s ds.

k �

α
α

α

− 
� �
−

=

= −� �                                           (1.8.6)                                                  

Set, NTh = , +∈== ZNnnhtn ,........1,0, .  Then (1.8.6) can be discredited as follows: 

1

( ) 1
1 0 1 1 1

0 0

( ) ( ( )) ( ( ))
! ( 2) ( 2)

k q q n
k pn+

h n+ n+ h n+ j,n+ h h j

k j

t h h
y t = y f t , y t + a f t , y t ,

k � + � +

α

α α

− 
� �

= =

+� �

            

(1.8.7) 

1

1 1 1

1

( ) ( 1) , 0

( 2) ( ) 2( 1) , 0

1, 1

+

+ + +

j,n+

n n n+ if j = ,

a = n j + n j n j + if j n ,

if j = n+ ,

α α

α α α

α� − −
�

− + − − − ≤ ≤�
�
�       

    (1.8.8) 

where predicted value 
1( )

p

h n+y t is determined by fractional Adams-Bashforth method 

1

( ) 1
1 0 1

0 0

1
( ) ( ( )),

! ( )

k n
p k n+
h n+ j,n+ j h j

k j

t
y t = y b f t , y t

k

α

α

− 
� �

= =

+
Γ

� � (1.8.9)

1 (( 1 ) ( ) ).j,n+

h
b = n+ j n j

α
α α

α
− − −                                                                              (1.8.10) 

Thus the equations (1.8.8) and (1.8.9) with the weights WJ���  and XJ���describe the 

fractional Adams-Bashforth-Moulton scheme. 

The error estimate is 

0,1,.....
max ( ) ( ) ( ),p

j h j
j N

y t y t O h
=

− =                  (1.8.11) 

where )1,2min( qp += .                               
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