
CHAPTER 4

SOME THEOREMS ON LINEAR THEORY OF

THERMOELASTICITY FOR AN ANISOTROPIC

MEDIUM UNDER AN EXACT HEAT

CONDUCTION MODEL WITH A DELAY

4.1 Introduction

In the present Chapter, we consider the very recently proposed model by Leseduarte and

Quintanilla (2013) with a single delay term that considers the micro-structural effects

in the heat transport phenomenon. We attempt to establish some important theorems

in this context for an anisotropic and inhomogeneous material. A generalized thermoe-

lasticity theory was proposed by Roychoudhuri (2007) based on the heat conduction

law with three-phase-lag effects for the purpose of considering the delayed responses in

time due to the micro-structural interactions in the heat transport mechanism. How-

ever, the model defines an ill-posed problem in Hadamard sense. Quintanilla (2011)

and subsequently, Leseduarte and Quintanilla (2013) have proposed to reformulate

this constitutive equation of heat conduction theory with a single delay term and has

investigated the spatial behavior of the solutions for this theory. A Phragmen- Lindelof

type alternative is obtained and it has been shown that the solutions either decay in an

exponential way or blow-up at infinity in an exponential way. The obtained results are

extended to a thermoelasticity theory by considering the Taylor series approximation

of the equation of heat conduction to the delay term and Phragmen-Lindelof type

alternative is obtained for the forward and backward in time equations. In this chapter,

we consider the basic equations concerning this new theory of thermoelasticity for an
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anisotropic and inhomogeneous material and established some important theorems in

this context.

The variational principle in thermoelasticity is an alternative method for determining

the state of dynamics of a thermoelastic system by identifying it as an extremum of a

function or a functional. In the classical elasticity, Ignaczak (1963) and Gurtin (1964)

have established a variational principle by developing an alternative characterization

of the solution to the initial-boundary value problem. Iesan (1966, 1974) and later on,

Nickell and Sackman (1968) have established convolutional type variational principles

for the linear coupled thermoelasticity theory on the basis of a similar type of alternative

formulation like, Ignaczak (1963) and Gurtin (1964). Subsequently, Iesan (1967) has

established the first variational theorem of Gurtin type in the theory of thermoelasticity

for solids with micro-structure. The reciprocity theorem is used to deduce various

methods of integrating the elasticity equations by means of Green’s function and it has

significant practical applications in the solution of engineering problems (see Nowacki

(1975)). Betti-Maxwell reciprocity theorem has been established for the static problems

in theory of thermoelasticity by Maysel (1951). The reciprocity theorem is later on

extended to uncoupled thermoelasticity, coupled thermoelasticity (CTE) and CTE

for anisotropic homogeneous material by Predeleanu (1959), Ionescu-Cazimir (1964)

and Nowacki (1975), respectively. Iesan (1967) has derived the first reciprocal relation

without using the Laplace transform. The reciprocity theorems of convolution type are

also derived by Iesan (1966, 1974). Scalia (1990) has used a method to derive reciprocity

relations without using the Laplace transform and without incorporation of the initial

data in the field equations. An exhaustive treatment of the variational principles in

thermoelasticity is available in the books by Lebon (1980), Carlson (1972), Hetnarski

and Ignaczak (2004) and Hetnarski and Eslami (2010). Recently, the convolution type

variational principles and reciprocal relations on different theories of thermoelasticity are

given by Chirita and Ciarletta (2010) and Mukhopadhyay and Prasad (2011), Kothari

and Mukhopadhyay (2013).

In the present work, the main objective is to establish a uniqueness theorem, variational
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principle and reciprocity theorem for the new theory proposed by Quintanilla (2011).

For this, the work has been organized as follows: firstly, we summarize the basic

equations in the context of this new theory and consider a mixed initial-boundary value

problem that considers non-homogeneous initial conditions. Then, we have established

the uniqueness theorem in this context. We formulate an alternative characterization

of the mixed boundary initial value problem in the present context by incorporating

the initial conditions into the field equations. On the basis of this formulation, a

convolutional type variational principle and a reciprocity theorem are also established.

4.2 Basic Governing Equations : Problem Formulation

We consider V̄ as the closure of an open, bounded, connected domain whose boundary is

A enclosing a non-homogeneous and anisotropic thermoelastic material. Let V denotes

the interior of V̄ and we assume that ni are the components of outward drawn unit

normal to A. Let Ai, (i = 1, 2, 3, 4) are the subsets of A such that A1∪A2 = A3∪A4 = A

and A1 ∩ A2 = A3 ∩ A4 = ∅. We consider the motion relative to an undistorted stress

free reference state.

By following Quintanilla (2011) and Leseduarte and Quintanilla (2013), we consider

the basic governing equations and the constitutive relations under linear theory of

thermoelasticity for a non-homogeneous and anisotropic material as follows:

The equation of motion:

σij,j + ρhi = ρüi (4.1)

The equation of energy:

ρθ0Ṡ = −qi,i + ρ̟ (4.2)

The constitutive relations:

σij = Cijklekl − βijθ (4.3)
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ρS = ρcE
θ

θ0
+ βijeij (4.4)

q̇i = −{kij
∂

∂t
+ k∗ij(1 + τ

∂

∂t
+
τ 2

2

∂2

∂t2
)}γj (4.5)

γj = θ,j (4.6)

The geometrical relation:

eij =
1

2
(ui,j + uj,i) = u(i,j) (4.7)

Here, βij, kij, k
∗

ij are the elasticity tensor, thermoelasticity tensor, thermal conductivity

tensor and conductivity rate tensor respectively. γj is the components of the temperature

gradient vector and τ is the delay term in the context of new model given by Quintanilla

(2011). In the above system of equations, we have used a rectangular coordinate system

xk in three dimensional Euclidean space with usual indicial notations.

4.3 Mixed Initial-Boundary Value Problem

For a mixed initial boundary value problem, we consider the field equations and

constitutive relations given by equations (4.1)-(4.7) defined in V × [0,∞[ together with

the initial conditions

ui(x, 0) = di(x), u̇i(x, 0) = vi(x)

θ(x, 0) = θ1(x), θ̇(x, 0) = θ2(x), qi(x, 0) = qi0(x)











on V (4.8)

and the boundary conditions
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ui = ũi(x, t) on A1 × [0,∞[

σi = σijnj = σ̃i(x, t) on A2 × [0,∞[

q = qini = q̃(x, t) on A3 × [0,∞[

θ = θ̃(x, t) on A4 × [0,∞[



































(4.9)

Here di, vi, θ1, θ2, qi0 are the prescribed initial displacement component, velocity com-

ponent, temperature, rate of temperature and heat flux, respectively. ũi, σ̃i, θ̃, q̃ denote

the known surface displacement component, component of traction vector, temperature

and normal heat flux, respectively. The smoothness requirements and other regularity

assumptions on the ascribable functions are also introduced as hypotheses on data. We

further assume that di, vi, θ1, θ2, qi0 are continuous on V̄ , hi and ̟ are continuously

differentiable on V̄ × [0,∞[. q̃ and σ̃i are piecewise continuous on A3 × [0,∞[ and

A2 × [0,∞[, respectively. ũi and θ̃ are continuous on A1 × [0,∞[ and A4 × [0,∞[ ,

respectively.

We also assume that the Cijkl, βij, kij and k∗ij are smooth on V̄ and satisfy

Cijkl = Cjikl = Cijlk = Cklij, βij = βji, kij = kji, k
∗

ij = k∗ji (4.10)

Cijkleijekl > 0, for all eij on V̄ × [0,∞[ (4.11)

kijaiaj > 0, k∗ijaiaj > 0 for any real ai on V̄ × [0,∞[ (4.12)

The material constants and delay time parameter satisfy the following inequalities:

ρ > 0, cE > 0, θ0 > 0, τ > 0 on V (4.13)

Now, we represent an admissible state as R = {ui, θ, γi, eij, σij, qi, S}, which is

an ordered array of functions ui, θ, γi, eij, σij, qi, S defined on V̄ × [0,∞[ with the

properties that ui ∈ C2,2, θ ∈ C1,2, γi ∈ C0,2, σij ∈ C1,0, qi ∈ C1,1, S ∈ C0,1 and
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eij = eji, σij = σji on V̄ × [0,∞[. We define the addition of two admissible states and

multiplication of an admissible state with a scalar as follows:

R +R
′

= {ui + ui, θ + θ
′

, ......, S + S
′

},

λ∗R
′

= {λ∗ui, λ
∗θ, ....., λ∗S}, where λ∗ is any scalar. Therefore, the set of all admissible

states is clearly a linear space.

We say that an admissible state is the solution of the present mixed problem if it

satisfies all the field equations (4.1)-(4.7), the initial conditions (4.8) and the boundary

conditions (4.9).

4.4 Uniqueness of Solution

In this section, we will establish the uniqueness theorem in the present context. For

this, the specific internal energy for the present initial-boundary value problem can be

taken in the form

E =
1

2
Cijklêklêij +

ρcE

2θ0
θ̂2 (4.14)

where, for any function f , f̂ is defined as

f̂ = (
∂

∂t
)f (4.15)

From equations (4.11) and (4.13), it is clear that the equation (4.14) is positive definite

and we get from this equation

Ė = σ̂ij ˙̂eij + ρ
˙̂
Sθ̂ (4.16)

Now, by using relations (4.2), (4.5), (4.6) and (4.7), we obtain
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Ė = σ̂ij ˙̂ui,j −
1

θ0
q̂i,iθ̂ +

ρ ˆ̟

θ0
θ̂

= (σ̂ij ˙̂ui),j − σ̂ij,j ˙̂ui −
1

θ0
(q̂iθ̂),i +

1

θ0
(q̂iγi) +

ρ ˆ̟

θ0
θ̂

= (σ̂ij ˙̂ui),j −
1

θ0
(q̂iθ̂),i + ρhi ˙̂ui +

ρ ˆ̟

θ0
θ̂ − ρ¨̂ui ˙̂ui

−
γ̂i

θ0
{kij γ̇j + k∗ijγj + τk∗ij γ̇j +

τ 2

2
k∗ij γ̈j} (4.17)

Therefore, integrating both sides of equation (4.17) over V , using divergence theorem

and by using (4.1), we get

∂

∂t

ˆ

V

(E +
ρ

2
˙̂ui ˙̂ui +

k∗ij

2θ0
γiγj +

τ 2k∗ij

4θ0
γ̇iγ̇j)dV +

1

θ0

ˆ

V

(kij + τk∗ij)γ̇iγ̇jdV

=

ˆ

V

(ρĥi ˙̂ui +
ρ ˆ̟ θ̂

θ0
)dV +

ˆ

A

(σ̂i ˙̂ui −
1

θ0
θ̂q̂)dA (4.18)

Now, we will establish the uniqueness of solution of the present mixed initial-boundary

value problem by the following uniqueness theorem.

Theorem -4.1 (Uniqueness theorem):

The mixed initial-boundary value problem given by equations (4.1)-(4.7), which satisfies

the initial conditions (4.8) and boundary conditions (4.9) has at most one solution.

Proof : We assume that for this mixed initial-boundary value problem, we have two sets

of solutions uαi , θ
α, eαij, σ

α
ij, q

α
i , S

α for α = 1, 2. Then, we construct difference between

these two sets of functions as

ũi = u
(1)
i − u

(2)
i , θ̃ = θ(1) − θ(2), ................S̃ = S(1) − S(2) (4.19)

As we know that the set of all admissible states is a linear space, so the difference

functions defined by (4.19) also satisfy the equations (4.1)-(4.7) with zero body forces
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and heat source, the initial conditions (4.8) and the boundary conditions (4.9) in their

homogeneous form and hence satisfy equation (4.18) too. Therefore, we obtain from

equation (4.18)

∂

∂t

ˆ

V

(Ẽ +
ρ

2
˙̃̂
ui
˙̃̂
ui +

k∗ij

2θ0
γ̃iγ̃j +

τ 2k∗ij

4θ0
˙̃γi ˙̃γj)dV +

1

θ0

ˆ

V

(kij + τk∗ij) ˙̃γi ˙̃γidV = 0 (4.20)

Interchanging the variable t with η and integrating above equation over time interval

(0, t) and using the homogeneous initial conditions for difference functions, we obtain

ˆ

V

(Ẽ +
ρ

2
˙̃̂
ui
˙̃̂
ui +

k∗ij

2θ0
γ̃iγ̃j +

τ 2k∗ij

4θ0
˙̃γi ˙̃γj)dV +

1

θ0

t
ˆ

0

ˆ

V

(kij + τk∗ij) ˙̃γi ˙̃γidV dη = 0 (4.21)

From equations (4.11), (4.12) and (4.13), we observe that the component in each term

present on the left hand side of equation (4.21) is non-negative. Thus, we conclude that

each term in equation (4.21) must be zero which implies that

˙̃̂
ui = 0, ˆ̃

θ = 0 on V̄ × [0,∞[ (4.22)

In view of the initial conditions ũi(x, 0) = 0 and θ̃(x, 0) = 0, for ũi and θ̃, respectively,

we get from equation (4.22) that

ũi = 0, θ̃ = 0 on V̄ × [0,∞[

i.e.

u
(1)
i = u

(2)
i , θ(1) = θ(2) on V̄ × [0,∞[

This completes the proof of the uniqueness theorem.
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4.5 Alternative Formulation of Mixed Problem

In this section, we formulate an alternative characterization of the above mixed initial-

boundary value problem in which the initial conditions are combined into the field

equations ( Gurtin (1964)). For this, we proceed as follows:

Let φ and ψ be two functions defined on V̄ × [0,∞[ such that both are continuous on

[0,∞[ for each x ∈ V. Then the convolution φ ∗ ψ of φ and ψ is defined as

[φ ∗ ψ](x, t) =

t
ˆ

0

φ(x, t− τ)ψ(x, τ)dτ, (x, t) ∈ V̄ × [0,∞[

We will use the following convolution properties:

(i) ψ∗φ = φ∗ψ (4.23)

(ii) ψ∗(φ∗ξ) = (ψ∗φ)∗ξ = ψ∗φ∗ξ (4.24)

(iii) ψ∗(φ+ξ) = (ψ∗φ)+(ψ∗ξ) (4.25)

(iv) φ∗ψ = 0⇒ φ = 0 or ψ = 0 (4.26)

Now, we introduce the functions g and l defined on [0,∞[ as

g(t) = t, l(t) = 1 (4.27)
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Let fi and W be the functions defined on V̄ × [0,∞[ as

fi = g ∗ ρhi + ρ(tvi + di) (4.28)

W = l ∗
ρ̟

θ0
+ ρS0 (4.29)

where

ρS0 = ρcE
θ1

θ0
+ βijdi,j (4.30)

and let

Ni = l ∗ (tqi0 + tθ1,jkij + tτθ1,jk
∗

ij + tθ2,j
τ 2

2
k∗ij + θ1,j

τ 2

2
k∗ij) (4.31)

Let p(x, t) and ṗ(x, t) be two functions of space and time defined on V̄ × [0,∞[ such

that both are continuous and differentiable on [0,∞[. Then following relations hold

evidently:

g ∗ p̈(x, t) = p(x, t)− [tṗ(x, 0) + p(x, 0)] (4.32)

l ∗ ṗ(x, t) = p(x, t)− p(x, 0) (4.33)

g ∗ ṗ(x, t) = l ∗ (l ∗ ṗ(x, t)) = l ∗ [p(x, t)− p(x, 0)] = l ∗ p(x, t)− tp(x, 0) (4.34)

By this formulation, we obtain the following result:

Theorem-4.2:

The functions ui, θ, γi, eij, σij, qi, S satisfy equations (4.1), (4.2) and (4.5) and the

initial conditions (4.8) if and only if
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g ∗ σij,j + fi = ρui (4.35)

ρS = −l ∗
qi,i

θ0
+W (4.36)

M1 ∗ qi = −M1 ∗ kijγj −M2 ∗ k
∗

ijγj +Ni (4.37)

where, M1 = l ∗ l and M2 = l ∗ (g + l ∗ τ + τ2

2
), fi, W and Ni are given by equations

(4.28), (4.29), and (4.31) respectively.

Proof :We first consider that the basic governing equations (4.1), (4.2) and (4.5) and

initial conditions (4.8) hold good. Then by taking convolution of equation (4.1) with

g and using the results from equations (4.32) and (4.8), we get the equation (4.35).

Similarly, by taking the convolution of the equation (4.2) with l and using (4.33) and

(4.8) we obtain equation (4.36). Again by taking convolution of equation (4.5) with

l ∗ g, and using the relation from (4.32), (4.34) and (4.8) we arrive at equation (4.37).

Similarly, we can prove the converse of the above theorem, by reverse arguments. This

theorem gives an alternative characterization of the solution to the mixed problem in

which the initial conditions are incorporated into basic field equations and hence, finally

we get the following theorem.

Theorem-4.3:

Let R = {ui, θ, γi, eij, σij, qi, S} be an admissible state. Then R is a solution of the

mixed problem if and only if it satisfies the equations (4.35)-(4.37), (4.3), (4.4), (4.6),

(4.7) and the boundary conditions (4.9).

4.6 Variational Theorem

The term functional identifies a real valued function whose domain is a subset of linear

space. Let X be a linear space and Y be the subspace of X. We consider a functional
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Ω defined on Y .

Let for

y, y
′

∈ Y, y + λ
′

y
′

∈ Y, for all real λ
′

(4.38)

and we define the variation of the functional Ω{y} as

δy′Ω{y} =
d

dλ
′
Ω{y + λ

′

y
′

} |λ′
=0 (4.39)

The variation of Ω{.} is said to be zero at y over Y and it is written as

δΩ{y} = 0, over Y (4.40)

if and only if δy′Ω{y} exists and is equal to zero for all y
′

consistent with (4.38).

Now, we will establish a variational principle on linear theory of thermoelasticity for

anisotropic and inhomogeneous medium under the present heat conduction model given

by Quintanilla (2011) on the basis of the alternative formulation and the theorem

established in the previous section.

Theorem-4.4 (Variational theorem):

Let Ξ be the linear space of all admissible states endowed with addition and scalar

multiplication as described in Section-4.3. If for each t ∈ [0,∞[ and for every Γ =

{ui, θ, γj, eij, σij, qi, S} ∈ Ξ, we define the functional Ωt{Γ} on Ξ by
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Ωt{Γ} =

ˆ

V

[

1

2
M1 ∗ g ∗ Cijklekl ∗ eij −

1

2
M1 ∗ ρui ∗ ui −M1 ∗ g ∗ σij ∗ eij

−M1 ∗ g ∗ l ∗
1

θ0
qi ∗ γi +M1 ∗ ui ∗ (ρui − g ∗ σij,j − fi)−M1 ∗ g ∗ θ ∗ (ρS + l ∗

qi,i

θ0
−W )

+ g ∗ l ∗
1

θ0
(−M1 ∗

1

2
kijγj −M2 ∗

1

2
k∗ijγj +Ni) ∗ γi

+
θ0

2ρcE
M2 ∗ g ∗ (ρS − βrsers) ∗ (ρS − βijeij)

]

dV +

ˆ

A1

M1 ∗ g ∗ ũi ∗ σidA

+

ˆ

A2

M1 ∗ g ∗ (σi − σ̃i) ∗ uidA+
1

θ0

ˆ

A3

M1 ∗ g ∗ l ∗ q ∗ θ̃dA

+
1

θ0

ˆ

A4

M1 ∗ g ∗ l ∗ (q − q̃) ∗ θdA (4.41)

then, δΩt{Γ} = 0, t ∈ [0,∞[ (4.42)

if and only if Γ is a solution of the mixed initial-boundary value problem given by

equations (4.1)-(4.7) with the initial conditions (4.8) and the boundary conditions (4.9).

Proof: Let Γ
′

= {u
′

i, θ
′

, γ
′

i, e
′

ij, σ
′

ij, q
′

i, S
′

} ∈ Ξ, which implies that Γ + λ
′

Γ
′

∈ Ξ, for

every real λ
′

. Then equation (4.41) together with (4.23)-(4.26) and (4.39), along with

the divergence theorem implies

δΓ′Ωt{Γ} =

ˆ

V

[M1 ∗ g ∗ {Cijklekl −
θ0

ρcE
(ρS − βrsers)− σij} ∗ e

′

ij

+M2 ∗ g ∗ {
θ0

ρcE
(ρS − βrsers)− θ} ∗ ρS

′

+ g ∗ l ∗
1

θ0
(−M1 ∗

1

2
kijγj −M2 ∗

1

2
k∗ijγj +Ni −M1 ∗ qi) ∗ γ

′

i]dV

−

ˆ

V

[M1 ∗ (g ∗ σij,j + fi − ρui) ∗ u
′

i +M1 ∗ g ∗ (ρS + l ∗
qi,i

T0
−W ) ∗ θ

′

]dV

−

ˆ

V

[M1 ∗ g ∗ (eij − u(i,j)) ∗ σ
′

ij −M1 ∗ g ∗ l ∗
1

θ0
(θ,i − γi) ∗ q

′

i]dV

+

ˆ

A1

M1 ∗ g ∗ ˜(ui − ui) ∗ σ
′

idA+

ˆ

A2

M1 ∗ g ∗ (σi − σ̃i) ∗ u
′

idA

+
1

θ0

ˆ

A3

M1 ∗ g ∗ l ∗ (θ̃ − θ) ∗ q
′

dA+
1

θ0

ˆ

A4

M1 ∗ g ∗ l ∗ (q − q̃) ∗ θ
′

dA (4.43)
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for all t ∈ [0,∞[.

Firstly, assume that Γ is a solution of the mixed initial-boundary value problem, then

according to the theorem-43, the relations (4.35) to (4.37) and the boundary conditions

(4.9) yield

δΓ′Ωt{Γ} = 0, t ∈ [0,∞[ (4.44)

for every Γ
′

= {u
′

i, θ
′

, γ
′

i, e
′

ij, σ
′

ij, q
′

i, S
′

} ∈ Ξ, and therefore we find that (4.42) holds.

This completes the proof of the if-part of the theorem-4.4.

Conversely, for “only if” part, let (4.42) holds true and hence (4.44) holds for every

Γ
′

= {u
′

i, θ
′

, γ
′

i, e
′

ij, σ
′

ij, q
′

i, S
′

} ∈ Ξ. Then, we have to prove that Γ is a solution of the

present mixed initial-boundary value problem.

Now, since (4.44) holds for every Γ
′

∈ Ξ, we choose Γ
′

= {u
′

i, 0, 0, 0, 0, 0, 0} and let

u
′

i, together with all the space derivatives, vanish on A× [0,∞[. Therefore, we obtain

from equations (4.43) and (4.44)

ˆ

V

(g ∗ σij,j + fi − ρui) ∗ u
′

idV = 0 for t ∈ [0,∞[ (4.45)

Now, by using Lemma-1 (Gurtin (1964)) and convolution properties, we find that

equation (4.35) holds.

Similarly, by making suitable choices of Γ
′

into (4.43), we can prove with the help of three

Lemmas (1-3) (Gurtin (1964)) that Γ also satisfies the equations (4.36), (4.37), (4.3),

(4.4), (4.6), (4.7) and the boundary conditions (4.9). Therefore, it can be concluded

from theorem-4.3 that Γ is the solution of the present mixed problem. The proof of the

above theorem is therefore complete.

4.7 Reciprocity Theorem

In this section, the reciprocity theorem of convolution type (see Iesan (1974)) is being

derived in this regard. We consider two different systems of thermoelastic loadings
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Lβ = (h
(β)
i , ̟(β), ũi

(β), θ̃
(β)
, q̃

(β)
i , σ̃

(β)
i , d

(β)
i , v

(β)
i , θ

(β)
1 , θ

(β)
2 , q

(β)
i0 ), β = 1, 2 (4.46)

and the corresponding thermoelastic configurations

Iβ = (u
(β)
i , θ(β)) (4.47)

that satisfy (4.35)-(4.37), (4.3), (4.4), (4.6), (4.7) and (4.9).

The reciprocity theorem states the relation between these two sets of thermoelastic

loadings and thermoelastic configurations. We use the following notations:

f
(β)
i = ρ(g ∗ h

(β)
i + tv

(β)
i + d

(β)
i ) (4.48)

W (β) = l ∗
ρ̟(β)

θ0
+ ρS

(β)
0 (4.49)

ρS
(β)
0 = ρcE

θ
(β)
1

θ0
+ βijd

(β)
i,j (4.50)

N
(β)
i = l ∗ (tq

(β)
i0 + tkijθ

β
1,j + tτk∗ijθ

β
1,j + t

τ 2

2
k∗ijθ

β
2,j +

τ 2

2
k∗ijθ

β
1,j) (4.51)

for β = 1, 2.

Theorem -4.5 (Reciprocity theorem):

If a thermoelastic solid is subjected to two different systems of thermoelastic loadings,

Lβ, (β = 1, 2) and Iβ, (β = 1, 2) are the corresponding thermoelastic configurations,

then the following reciprocity relation holds:
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ˆ

V

M1 ∗ [f
(1)
i ∗ u

(2)
i − g ∗W (1) ∗ θ(2)]dV +

ˆ

A

M1 ∗ g ∗

[

σ
(1)
i ∗ u

(2)
i +

1

θ0
l ∗ q(1) ∗ θ(2)

]

dA

−

ˆ

V

g ∗ l ∗

[

1

θ0
N

(1)
i ∗ γ

(2)
i

]

dV =

ˆ

V

M1 ∗
[

f
(2)
i ∗ u

(1)
i − g ∗W (2) ∗ θ(1)

]

dV

+

ˆ

A

M1 ∗ g ∗

[

σ
(2)
i ∗ u

(1)
i +

1

θ0
l ∗ q(2) ∗ θ(1)

]

dA−

ˆ

V

g ∗ l ∗

[

1

θ0
N

(2)
i ∗ γ

(1)
i

]

dV

(4.52)

where, f
(β)
i , W (β), N

(β)
i (β = 1, 2) associated with two systems are given by equations

(4.48), (4.49), (4.51) respectively.

Proof: From equation (4.3), we have

σij = C
(β)
ijkle

(β)
kl − βijθ

(β) (4.53)

Now, taking convolution of equation (4.53) for β = 1 with e
(2)
ij and for β = 2 with e

(1)
ij

and then subtracting the results, we get

(σ
(1)
ij + βijθ

(1)) ∗ e
(2)
ij = (σ

(2)
ij + βijθ

(2)) ∗ e
(1)
ij + Cijkl(e

(1)
kl ∗ e

(2)
ij − e

(2)
kl ∗ e

(1)
ij )

Hence, due to the symmetry properties of Cijkl, we find

(σ
(1)
ij + βijθ

(1)) ∗ e
(2)
ij = (σ

(2)
ij + βijθ

(2)) ∗ e
(1)
ij (4.54)

Again from equation (4.4), we can write

ρS(β) − βije
(β)
ij = ρcE

θ(β)

θ0
, β = 1, 2 (4.55)

Taking convolution of equation (4.55) for β = 1 with θ(2) and for β = 2 with θ(1) and

subtracting, we get
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(ρS(1) − βije
(1)
ij ) ∗ θ

(2) = (ρS(2) − βije
(2)
ij ) ∗ θ

(1) (4.56)

Equations (4.54) and (4.56) yield

(σ
(1)
ij ∗ e

(2)
ij − ρS(1) ∗ θ(2)) = (σ

(2)
ij ∗ e

(1)
ij − ρS(2) ∗ θ(1)) (4.57)

Now, we introduce the notation

Lαβ =

ˆ

V

M1 ∗ g ∗
[

σ
(α)
ij ∗ e

(β)
ij − ρS(α) ∗ θ(β)

]

dV, α, β = 1, 2 (4.58)

Now, from equations (4.7) and (4.35)-(4.37), we get

M1 ∗ g ∗ (σ
(α)
ij ∗ e

(β)
ij − ρS(α) ∗ θ(β)) =M1 ∗ g ∗ σ

(α)
ij ∗ uβ

i,j −M1 ∗ g ∗ (−l ∗
q
(α)
i,i

θ0
+W (α)) ∗ θ(β)

=M1 ∗ g ∗ (σ
(α)
ij ∗ uβ

i ),j −M1 ∗ g ∗ (σ
(α)
ij,j ∗ u

β
i )

+
1

θ0
M1 ∗ g ∗ (l ∗ q

(α)
i ∗ θ(β)),i −

1

θ0
M1 ∗ g ∗ l ∗ q

(α)
i ∗ γ

(β)
i

−M1 ∗ g ∗W
(α) ∗ θ(β)

=M1 ∗ g ∗ (σ
(α)
ij ∗ uβ

i ),j −M1 ∗ ρu
(α)
i ∗ u

(β)
i +M1 ∗ f

(α)
i ∗ u

(β)
i

+
1

θ0
M1 ∗ g ∗ l ∗ (q

(α)
i ∗ θ(β)),i +

1

θ0
g ∗ l ∗ (M1 ∗ kijγ

(α)
j

+M2 ∗ k
∗

ijγ
(α)
j ) ∗ γ

(β)
i −

1

θ0
g ∗ l ∗N

(α)
i ∗ γ

(β)
i

−M1 ∗ g ∗W
(α) ∗ θ(β) (4.59)

From equations (4.58) and (4.59), we therefore obtain

Lαβ =

ˆ

V

M1 ∗
[

f
(α)
i ∗ u

(β)
i − g ∗W (α) ∗ θ(β)

]

dV +

ˆ

A

M1 ∗ g ∗

[

σ
(α)
i ∗ uβ

i +
1

θ0
l ∗ q

(α)
i ∗ θ(β)

]

dA

−

ˆ

V

[

M1 ∗ ρu
(α)
i ∗ u

(β)
i −

1

θ0
g ∗ l ∗M1 ∗ kijγ

(α)
j ∗ γ

(β)
i −

1

θ0
g ∗ l ∗M2 ∗ k

∗

ijγ
(α)
j ∗ γ

(β)
i

]

dV

−

ˆ

V

[

1

θ0
g ∗ l ∗N

(α)
i ∗ γ

(β)
i

]

dV (4.60)
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Further, from equations (4.58) and (4.60) we have

L12 = L21 (4.61)

Hence, we find that equations (4.60) and (4.61) yield the reciprocity relation (4.52),

which completes the proof of the theorem-4.5.
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