
PREFACE

The term thermoelasticity involves a large category of phenomena. It comprises

the general theory of heat conduction, thermal stresses, and strains set up by

thermal flow in elastic bodies and the reverse result of temperature distribution

caused by the elastic deformation itself. It is well known that the latter is an

important cause of internal damping in elastic bodies. The domain of science dealing

with the mutual interactions of deformation and temperature fields is called as

thermoelasticity. Initially, the investigations in this area were based on the “uncoupled

theory of thermoelasticity” with the simplifying assumption that the influence of the

strain and stresses on the temperature field may be neglected. However, the absence of

any elasticity term in the heat conduction equation for uncoupled thermoelasticity

appears to be unrealistic. Moreover, the parabolic type of the heat conduction

equation results in an infinite velocity of thermal wave propagation, which also

contradicts the actual physical phenomena. Introducing the strain-rate term in the

uncoupled heat conduction equation, Biot (1956) extended the analysis to incorporate

the coupling effects of temperature and strain fields in theory of thermoelasticity.

However, although the first shortcoming was eliminated in this theory, there remained

the parabolic type partial differential equation of heat conduction, which leads to

the paradox of infinite velocity of the thermal wave. To eliminate this paradox,

generalized thermoelasticity theory was developed subsequently. During the last

three decades, non-classical theories involving finite speed of heat transportation in

elastic solids have been developed. The various non-Fourier heat conduction models

have been introduced with the purpose to eliminate the inherent drawback in classical

heat conduction theory and/or classical coupled thermoelasticity theory. Hence,
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CS Specific heat at zero stress

λ, µ Lame’s elastic constants

αt Coefficient of linear thermal expansion

Cijkl Elasticity tensor

β = (3λ+ 2µ)αt Thermoelasticity constant

τq Phase-lag of heat flux vector

τT Phase-lag of temperature gradient

τυ Phase-lag of thermal displacement

δij Kronecker delta

δ(.) Dirac delta function

∇ Gradient operator

∇
2 = ∆ Laplacian operator

Throughout the thesis, the subscripted comma notations are used to

represent the partial derivatives with respect to the space variables.

The over-headed dots denote partial derivatives with respect to time

variable, t.

Subscripts i, j, k take the values 1, 2, 3 and summation is implied by

index repetition.
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LIST OF SYMBOLS

ui Components of displacement vector

eij Components of strain tensor

eii = e Dilatation

σij Components of stress tensor

qi Components of heat flux vector

θ Temperature above the reference temperature

θ0 Reference temperature

bi Components of the body force vector

hi Components of the body force per unit mass

r External heat source

̟ Heat source per unit mass

ρ Mass density of the material

S Entropy per unit mass

S0 Initial Entropy

k Thermal conductivity of the material

k∗ Rate of thermal conductivity of the material

cE Specific heat at constant strain and volume
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