LIST OF FIGURES

Figures	Page
Fig. 3.1(a,b): Variation of displacement, u with r at times, $t=0.4$ and	t = 0.8,
respectively for Case-I.	68
Fig. 3.2(a,b): Variation of temperature, θ with . r at times, $t{=}0.4$ and	t = 0.8,
respectively for Case-I.	68
Fig.3.3(a,b): Variation of radial stress, σ_{rr} with . r at times, $t{=}0.4$ and	t = 0.8,
respectively for Case-I.	69
Fig. 3.4(a,b): Variation of transverse stress, $\sigma_{\phi\phi}$ with . r at times, $t=0.4$ and	t = 0.8,
respectively the Case-I.	69
Fig. 3.5(a,b): Variation of displacement, u with r at times, $t=0.4$ and	t = 0.8,
respectively for Case-II.	71
Fig. 3.6(<i>a,b</i>): Variation of temperature, θ with <i>r</i> at times, <i>t</i> =0.4 and	t = 0.8,
respectively for Case-II.	71
Fig. 3.7(a,b): Variation of radial stress, σ_{rr} with r at times, $t=0.4$ and	t = 0.8,
respectively for Case-II.	71
Fig. 3.8 (a,b): Variation of transverse stress, $\sigma_{\phi\phi}$ with r at times, $t=0.4$ and	t = 0.8,
respectively for Case-II.	72
Fig. 5.1.1(a): Variation of u , vs. r for different value of t under Problem-1.	115
Fig. 5.1.1(b): Variation of θ , vs. r for different value of t under Problem-1.	115
Fig. 5.1.1(c): Variation of σ_{rr} , vs. r for different value of t under Problem-1.	115
Fig. 5.1.1(d): Variation of $\sigma_{\phi\phi}$, vs. r for different value of t under Problem-1	. 115
Fig. 5.1.2(a): Variation of u , vs. r for different value of t under Problem-2.	116

Fig. 5.1.2(b): Variation of θ , vs. r for different value of t under Problem-2. 116Fig. 5.1.2(c): Variation of σ_{rr} , vs. r for different value of t under Problem-2. 116 Fig. 5.1.2(d): Variation of $\sigma_{\phi\phi}$, vs. r for different value of t under Problem-2. 116Fig. 5.1.3(a): Variation of u, vs. r for different value of t under Problem-3. 117Fig. 5.1.3(b): Variation of θ , vs. r for different value of t under Problem-3. 117Fig. 5.1.3(c): Variation of σ_{rr} , vs. r for different value of t under Problem-3. 117Fig. 5.1.3(d): Variation of $\sigma_{\phi\phi}$, vs. r for different value of t under Problem-3. 117Fig. 5.2.1(a, b): Variation of Phase velocity of elastic waves (V_E) with low and high frequency (ω) , respectively. 138Fig. 5.2.2(a, b): Variation of Phase velocity of thermal waves (V_T) with low and high frequency (ω) , respectively. 139Fig. 5.2.3(a, b): Variation of Specific loss of elastic waves $\left(\left(\frac{\Delta W}{W}\right)_{E}\right)$ with low and 140high frequency (ω) , respectively. Fig. 5.2.4(a, b): Variation of Specific loss of thermal waves $\left(\left(\frac{\Delta W}{W}\right)_T\right)$ with low and high frequency (ω) , respectively. 140Fig. 5.2.5(a, b): Variation of Penetration depth of elastic waves (δ_E) with low and high frequency (ω) , respectively. 141Fig. 5.2.6(a, b): Variation of Penetration depth of thermal waves (δ_T) with low and 142high frequency (ω) , respectively. Fig. 5.2.7(a, b): Variation of Amplitude ratio of elastic waves (ψ_E) with low and high frequency (ω) , respectively. 143Fig. 5.2.8(a, b): Variation of Amplitude ratio of thermal waves (ψ_T) with low and high frequency (ω) , respectively. 144