LIST OF FIGURES

Figures

Page

Fig. 3.1(a,b): Variation of displacement, u with r at times, $t=0.4$ and $t=0.8$, respectively for Case-I.

Fig. 3.2(a,b): Variation of temperature, θ with.r at times, $t=0.4$ and $t=0.8$, respectively for Case-I.

Fig.3.3(a,b): Variation of radial stress, $\sigma_{r r}$ with.r at times, $t=0.4$ and $t=0.8$, respectively for Case-I.

Fig. 3.4(a,b): Variation of transverse stress, $\sigma_{\phi \phi}$ with . r at times, $t=0.4$ and $t=0.8$, respectively the Case-I.

Fig. 3.5(a,b): Variation of displacement, u with r at times, $t=0.4$ and $t=0.8$, respectively for Case-II.

Fig. 3.6(a, b): Variation of temperature, θ with r at times, $t=0.4$ and $t=0.8$, respectively for Case-II.

Fig. 3.7(a,b): Variation of radial stress, $\sigma_{r r}$ with r at times, $t=0.4$ and $t=0.8$, respectively for Case-II.

Fig. 3.8 (a,b): Variation of transverse stress, $\sigma_{\phi \phi}$ with r at times, $t=0.4$ and $t=0.8$, respectively for Case-II.

Fig. 5.1.1(a): Variation of u, vs. r for different value of t under Problem-1. 115
Fig. 5.1.1(b): Variation of θ, vs. r for different value of t under Problem-1. 115
Fig. 5.1.1(c): Variation of $\sigma_{r r,}$ vs. r for different value of t under Problem-1. 115
Fig. 5.1.1(d): Variation of $\sigma_{\phi \phi,}$, vs. r for different value of t under Problem-1. 115
Fig. 5.1.2(a): Variation of u, vs. r for different value of t under Problem-2. 116

Fig. 5.1.2(b): Variation of θ, vs. r for different value of t under Problem-2. 116 Fig. 5.1.2(c): Variation of $\sigma_{r r,}$ vs. r for different value of t under Problem-2. 116 Fig. 5.1.2(d): Variation of $\sigma_{\phi \phi,}$, vs. r for different value of t under Problem-2. 116 Fig. 5.1.3(a): Variation of u, vs. r for different value of t under Problem-3. 117 Fig. 5.1.3(b): Variation of θ, vs. r for different value of t under Problem-3. 117 Fig. 5.1.3(c): Variation of $\sigma_{r r,}$ vs. r for different value of t under Problem-3. 117 Fig. 5.1.3(d): Variation of $\sigma_{\phi \phi,}$, vs. r for different value of t under Problem-3. 117 Fig. 5.2.1(a, b): Variation of Phase velocity of elastic waves $\left(V_{E}\right)$ with low and high frequency (ω), respectively. 138

Fig. 5.2.2(a, b): Variation of Phase velocity of thermal waves $\left(V_{T}\right)$ with low and high frequency (ω), respectively.

Fig. 5.2.3(a, b): Variation of Specific loss of elastic waves $\left(\left(\frac{\Delta W}{W}\right)_{E}\right)$ with low and high frequency (ω), respectively.

Fig. 5.2.4(a, b): Variation of Specific loss of thermal waves $\left(\left(\frac{\Delta W}{W}\right)_{T}\right)$ with low and high frequency (ω), respectively.

Fig. 5.2.5(a, b): Variation of Penetration depth of elastic waves $\left(\delta_{E}\right)$ with low and high frequency (ω), respectively.

Fig. 5.2.6(a, b): Variation of Penetration depth of thermal waves $\left(\delta_{T}\right)$ with low and high frequency (ω), respectively.

Fig. 5.2.8(a, b): Variation of Amplitude ratio of thermal waves $\left(\psi_{T}\right)$ with low and high frequency (ω), respectively.

