CONTENTS

CERTIFICATES	i-iii
ACKNOWLEDGMENTS	v-vi
LIST OF FIGURES	xii-xiii
LIST OF SYMBOLS	xiv-xv
PREFACE x	vi-xxii
CHAPTER-1:INTRODUCTION AND REVIEW OF LITERATUR	LE1-29
1.1 Introduction	1-21
1.1.1 Basic Definitions	1-2
1.1.2. Stress, Strain and Hook's Law	2-7
1.1.3 Equation of Motion	7-9
1.1.4 Heat Conduction and Fourier's Law	9-10
1.1.5 Thermoelasticity	10-13
1.5.1 Classical coupled theory of thermodynamics: General Theory	11-13
1.1.6 Shortcoming of Fourier's law and "second sound effects"	13-14
1.1.7 Generalized thermoelasticity	14-21
1.1.7.1 Thermoelasticity with one thermal relaxation parameter	15 - 16
1.1.7.2 Thermoelasticity with two thermal relaxation parameters	16-17
1.1.7.3 Green Naghdi thermoelasticity theory	17-18
1.1.7.4 Thermoelasticity with dual phase-lag	18-19
1.1.7.5 Thermoelasticiy with three phase-lag	19-20
1.1.7.6 An Exact Heat Conduction Model with a single delay term	20-21
1.2 Review of Literature	21-28

1.3 Objective of the Present Thesis	28-29
CHAPTER-2: DOMAIN OF INFLUENCE THEOREM	31 - 55
2.1: A Domain of Influence Theorem for Thermoelasticity	Without
Energy Dissipation	31-42
2.1.1 Introduction	31-32
2.1.2 Problem Formulation	32-34
2.1.3 Some Definitions	34
2.1.4 Main Results	35-42
2.1.4.1 Spacial Case	37-42
2.2: A Domain of Influence Theorem for a Natural Stress-H	Ieat-Flux
Disturbance in Thermoelasticity of Type- II	43-55
2.2.1 Introduction	43
2.2.2 Basic Equations and Problem formulation	43-45
2.2.3 Some Definitions	46
2.2.4 Main Results	46-55
CHAPTER-3: THERMO-MECHANICAL RESPONSES OF AN	N ANNU-
LAR CYLINDER WITH TEMPERATURE DEPENDENT MA	TERIAL
PROPERTIES UNDER THERMOELASTICITY WITHOUT H	ENERGY
DISSIPATION	57-74
3.1 Introduction	57-58
3.2 Basic Governing Equations	59-60
3.3 Problem Formulation	60-62
3.3.1 Initial and Boundary Conditions	61-62
3.4 Solution of the problem (Numerical scheme)	62-67

3.4.1 Truncation Error	66-67
3.5 Numerical Results and Discussion	67-73
3.6 Concluding remarks	73-74
CHAPTER-4: SOME THEOREMS ON LINEAR THEOR	RY OF THER-
MOELASTICITY FOR AN ANISOTROPIC MEDIUM U	NDER AN EX-
ACT HEAT CONDUCTION MODEL WITH A DELAY	75-92
4.1 Introduction	75-77
4.2 Basic Governing Equations : Problem Formulation	77-78
4.3 Mixed Initial-Boundary Value Problem	78-80
4.4 Uniqueness of Solution	80-82
4.5 Alternative Formulation of Mixed Problem	83-85
4.6 Variational Theorem	85-88
4.7 Reciprocity Theorem	88-92
CHAPTER-5: SOME INVESTIGATIONS ON RECENT	HEAT CON-
DUCTION MODEL WITH DELAY	93-145
5.1: Analysis of a Recent Heat Conduction Model wi	th a Delay for
Thermoelastic Interactions in an Unbounded Medium wi	th a Spherical
Cavity	93-119
5.1.1 Introduction	93-94
5.1.2 Governing equations	94-95
5.1.3 Problem Formulation	95-96
5.2.4 Solution of the problem	96-98
5.2.5 Applications	99-101
5.2.6 Short-Time Approximation	101-106

5.2.7 Solutions in the Physical Domain	106-111
5.1.8 Analysis of a Analytical Results	111-113
5.1.9 Numerical Results and discussion	113-118
5.1.10 Conclusion	118-119

5.2: An Investigation on Harmonic Plane Wave Propagation in a Ther-
moelastic Medium: a Detailed Analysis of a Recent Thermoelastic Model
with Single Delay Term121-1455.2.1 Introduction121-122

5.2.2 Basic Governing Equations	123-124
5.2.3 Dispersion relation and its Derivation	125-126
5.2.4 Solution of Dispersion Relation	126-127
5.2.5 Analytical Results	127-131
5.2.5.1 Case-I: High frequency Asymptotic Expansions	128-130
5.2.5.2 Case- II: Low frequency Asymptotic Expansions	130-131
5.2.6 Asymptotic Results for Different wave Fields	131-136
5.2.6.1 Phase Velocity	131-132
5.2.6.2 Specific Loss	132-133
5.2.6.3 Penetration Depth	133-134
5.2.6.4 Amplitude Ratio	135-136
5.2.7 Numerical results	136
5.2.8 Analysis of Analytical and Numerical Results	136-143
5.2.9 Conclusion	143 - 145
APTER-6: FUNDAMENTAL SOLUTIONS OF THERM	MOELASTIC-

CHAPTER-6: FUNDAMENTAL SOLUTIONS OF THERMOELASTIC-ITY WITH A RECENT HEAT CONDUCTION MODEL WITH A SIN-

GLE DELAY TERM	147 - 162
6.1 Introduction	147-148
6.2 Basic Equations	148-150
6.3 Fundamental Solutions	150-155
6.4 Small Time Approximated Solutions	155-158
6.4.1 Laplace Inversion	157 - 158
6.5 Fundamental Solutions for Steady Oscillation	158-162
6.6 Conclusion	162

CHAPTER-7: SUMMARY OF THE WORK AND FUTURE SCOPE 163-168

7.1 Summary of the Work	163-167
7.2 Future Scope	167-168
REFERENCES	169-193
APPENDIX	195-196

LIST OF PUBLICATIONS