
CHAPTER 6

FUNDAMENTAL SOLUTIONS OF

THERMOELASTICITY WITH A RECENT HEAT

CONDUCTION MODEL WITH A SINGLE DELAY

TERM

6.1 Introduction

Fundamental solutions or Green’s functions for a boundary value problem play an

important role in both applied and theoretical studies on the physics of solids. They

form basic building blocks of many further works. For example, fundamental solutions

are used to construct many analytical solutions of practical problems when boundary

conditions are imposed. They are essential in the boundary element method as well

as the study of cracks, defects and inclusions. Specially, fundamental solutions in

elastodynamic theory are important in deriving the solutions of problems involving

impulse responses. In the classical theory of thermodynamics, representations of

solutions were presented by Nowacki (1964). The fundamental solution in the classical

theory of coupled thermoelasticity was first studied by Hetnarski (1964a, 1964b).

Ciarletta (1991) proposed the representation theorem of the Galerkin type in the

theory of thermoelastic materials with voids. Later on, Iesan (1998) developed the

fundamental solutions on theory of thermoelasticity without energy dissipation and

Kothari et al.(2010) established fundamental solution of generalised thermoelasticity

with three phase-lags.

The present work is concerned with the thermoelasticity theory based on a very recently

The content of this section is published in Journal of thermal Stresses, 40(7) (2017) 866-878.
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proposed heat conduction model: a heat conduction model with a delay term introduced

by Quintanilla (2011). Here, we aim to obtain the fundamental solutions of this theory.

We derive the solution of Galerkin-type field equations for the case of homogeneous

and isotropic bodies. With the help of this solution, we determine the effects of

concentrated heat sources and body forces in an unbounded medium. We further obtain

the fundamental solutions of the field equations in case of steady vibrations.

6.2 Basic Equations

We consider a body that at time t = t0 occupies the regular region B of the three-

dimensional Euclidean space that has piece wise smooth surface boundary ∂B. We refer

motion of the continuum to a fixed system of rectangular Cartesian axes Oxi(i = 1, 2, 3).

By following Quintanilla (2011) and Leseduarte and Quintanilla (2013), we consider

the following field equations under linear theory of thermoelasticity for a homogeneous

and isotropic material :

µ∆~u+ (λ+ µ)grad div~u− βgradθ + ρ~b = ρ~̈u (6.1)

{

k
∂

∂t
+ k∗(1 + τ

∂

∂t
+
1

2
τ 2
∂2

∂t2
)

}

∆θ = βθ0div~̈u+ ρcE θ̈ − w (6.2)

on B × (0, t1).

Here w = ρṙ is the heat source and ∆ is Laplacian operator.

We suppose that

3λ+ 2µ > 0, µ > 0, k > 0, k∗ >, θ0 > 0 (6.3)

Now, we introduce the notations
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c1 =

√

λ+ 2µ

ρ
, c2 =

√

µ

ρ
, c3 =

√

k∗

ρcE
, a =

k

k∗
,

ǫ =
m2θ0

c21ρ
2cE

, b =
θ0

k∗
, c21 − c22 = c0, κ =

ρcE

k∗
(6.4)

Therefore, equations (6.1) and (6.2) can be written in the form

c22R2~u+ c0grad div~u−
β

ρ
gradθ = −~f (6.5)

Rθ − βbdiv~̈u = −w

k∗
(6.6)

where, we have introduced the operators

Ri=∆-
1
c2
1

∂2

∂t2
, (i = 1, 2, 3)

R=R3+(a+ τ)∆ ∂
∂t
+1

2
τ 2∆ ∂2

∂t2
.

Hence, we establish the following theorem that gives a solution of Glerkin type of the

field equations given by (6.5) and (6.6):

Theorem− 1 : Let

~u = c21

(

R1R− ǫκ∆
∂2

∂t2

)

~F −
(

coR− ǫκc21
∂2

∂t2

)

grad div ~F +
β

ρ
gradG (6.7)

θ = bβc22R2
∂2

∂t2
div ~F + c21R1G (6.8)

where the fields Fi of class C
6 and G of class C4 on B × (0, t1) satisfy

R2

[

R1R− ǫκ∆
∂2

∂t2

]

Fi = −
1

c21c
2
2

fi (6.9)

[

R1R− ǫκ∆
∂2

∂t2

]

G = − 1

c21k
∗w (6.10)
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Then ~u and θ satisfy equations (6.5) and (6.6).

Proof : We find that the operators R1, R2 satisfy the identity

c21R1 − c22R2 = co∆ (6.11)

Hence, above theorem can be proved in an analogous way by following the proof of the

corresponding theorem of the classical theory (see Carlson (1972)) and thermoelasticity

theory without energy dissipation given by Iesan (1998).

6.3 Fundamental Solutions

In this section, we shall use the preceding theorem-1 to determine the fundamental

solution of the field equations. We consider a problem of thermoelastic body that

occupies the three dimensional space. Let x = (x1, x2, x3) be the any point of this three

dimensional space. We assume the initial conditions as follows:

~u(~x, 0) = 0, ~̇u(~x, 0) = 0

~θ(~x, 0) = 0, ~̇θ(~x, 0) = 0
(6.12)

We further assume the conditions at infinity as

uj → 0, uj,k → 0

θ → 0, θ,j → 0
for |~x| → ∞ (6.13)

The initial conditions for the function Fi and G are defined as

∂pFi

∂tp
(~x, 0) = 0,

∂qG

∂tq
(~x, 0) = 0, ~x ∈ B (p = 1, 2, ......5; q = 1, 2, .....3) (6.14)

It follows from equation (6.7) and (6.8) that the condition (6.14) imply the initial

conditions (6.12).

We use Laplace Transform of a function f(t) for the solution of the problem that is

defined as
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f̄(s) =

∫ ∞

0

e−stf(t)dt,

where s is the Laplace transform parameter.

We use the following notations in the preceding expressions.

R
′

i = ∆− s2

c2i
, (i = 1, 2, .....3)

R
′

=R
′

3+(a+ τ)∆s+1
2
τ 2∆s2.

The Laplace transform of equations (6.7) and (6.8) along with the initial conditions

(6.12) gives

ū = c21

(

R
′

1R
′ − ǫκ∆s2

)

~F −
(

coR
′ − ǫκc21s

2
)

grad div ~F +
β

ρ
gradG (6.15)

θ̄ = bβc22R
′

2s
2div ~F + c21R

′

1G (6.16)

where F and G satisfy the equations

R
′

2

[

R
′

1R
′ − ǫκ∆s2

]

Fi = −
1

c21c
2
2

fi (6.17)

[

R
′

1R
′ − ǫκ∆s2

]

G = − 1

c21k
∗w (6.18)

Equation (6.17), (6.18) can be written as

R
′

2

[

R
′

1

(

R
′

3 + (a+ τ)∆s+
1

2
τ 2∆s2

)

− ǫκ∆s2
]

F̄i = −
1

c21c
2
2

f̄i ((6.19))

[

R
′

1

(

R
′

3 + (a+ τ)∆s+
1

2
τ 2∆s2

)

− ǫκ∆s2
]

Ḡ = − 1

c21k
∗ w̄ (6.20)

Now, equation (6.19) and (6.20) can be written as

R
′

2

[

∆2 − s2c21Ω(s)

(

1

c41Ω(s)
+

1

c23
+ ǫκ

)

+
s4

c23
Ω(s)

]

F̄i = −
Ω(s)

c22
f̄i (6.21)
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[

∆2 − s2c21Ω(s)

(

1

c41Ω(s)
+

1

c23
+ ǫκ

)

∆+
s4

c23
Ω(s)

]

Ḡ = −Ω(s)
k∗

w̄ (6.22)

where Ω(s) = c−21 (1 + as+ τs+ 1
2
τ 2)−1.

We write equations (6.21) and (6.22) in the forms

R
′

2(∆−m2
1)(∆−m2

2)F̄i = −
Ω(s)

c22
f̄i (6.23)

(∆−m2
1)(∆−m2

2)Ḡ = −Ω(s)
k∗

w̄ (6.24)

where m1 and m2 are the roots of the equation

m4 − s2c21Ω(s)

(

1

c41Ω(s)
+

1

c23
+ ǫκ

)

m2 +
s4

c23
Ω(s) = 0 (6.25)

Now, we consider two different cases:

Case− I :ConcentratedBodyForce

We consider that there is a concentrated time dependent body force which acts at a

point ~y in the direction of xj-axis (j = 1, 2, 3), i.e. we assume that

fi = δijδ(~x− ~y)g(t), w = 0 (6.26)

where δ(.) is the dirac delta function, ~y is a fixed point and g(t) is any function of time.

We denote the solutions for displacement components and temperature for this case as

u
(j)
i and θ(j). Then we take Fi = δijϕ, G = 0.

Therefore, from equation (6.23) we conclude that the function ϕ̄ satisfies the equation

R
′

2(∆−m2
1)(∆−m2

2)ϕ̄ = −Ω(s)
c22

δ(~x− ~y)ḡ(s) (6.27)

Let

Γ = −Ω(s)
c22

δ(~x− ~y)ḡ(s) (6.28)
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Then above equation reduces to

R
′

2(∆−m2
1)(∆−m2

2)ϕ̄ = Γ (6.29)

Now, if the functions ϕ̄1, ϕ̄2, ϕ̄3 satisfy the equations

R
′

2ϕ̄1 = Γ, (∆−m2
1)ϕ̄2 = Γ (∆−m2

2)ϕ̄3 = Γ (6.30,)

then from equation (6.29), we get that ϕ̄ can be expressed in the form

ϕ̄ = A1(s)ϕ̄1 + A2(s)ϕ̄2 + A3(s)ϕ̄3 (6.31)

where

A−11 (s)=
(

s2

c
22

−m2
1

)(

s2

c
22

−m2
2

)

,

A−12 (s) =
(

m2
1 − s2

c
22

)

(m2
1 −m2

2) ,

A−13 (s) =
(

m2
2 − s2

c
22

)

(m2
2 −m2

1) .

Next, in view of the conditions at infinity given by equation (6.13) and the equations

(6.28) and (6.30), we get

ϕ̄1 =
Ω(s)ḡ(s)

4πc22r
e
− s

c2
r
, ϕ̄2 =

Ω(s)ḡ(s)

4πc22r
e−m1r, ϕ̄3 =

Ω(s)ḡ(s)

4πc22r
e−m2r, where r = |~x− ~y|

(6.32)

We note that for −→x 6= −→y we have

[

coR
′ − ǫκc21s

2
]

ϕ̄ = [B1(s)ϕ̄1 +B2(s)ϕ̄2 +B3(s)ϕ̄3] (6.33)

R
′

2ϕ̄ =
ϕ̄2 − ϕ̄3

(m2
1 −m2

2)
, (∆−m2

1)(∆−m2
2)ϕ̄ = ϕ̄1 (6.34)

where

B1(s) =
A1(s)

c21Ω(s)

[

co

{

s2

c22
− c21Ω(s)

c23
s2
}

− ǫκs2c41Ω(s)

]
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B2(s) =
A2(s)

c21Ω(s)

[

co

{

m2
1 −

c21Ω(s)

c23
s2
}

− ǫκs2c41Ω(s)

]

B3(s) =
A3(s)

c21Ω(s)

[

co

{

m2
2 −

c21Ω(s)

c23
s2
}

− ǫκs2c41Ω(s)

]

(6.35)

Therefore, in view of equations (6.15), (6.16), (6.33) and (6.34), we obtain the solutions

for ūi and θ as

ū
(j)
i =

1

Ω(s)
ϕ̄1δij − (B1(s)ϕ̄1 +B2(s)ϕ̄2 +B3(s)ϕ̄3),ij (6.36)

θ̄(j) =
bβc22s

2

(m2
1 −m2

2)
(ϕ̄2 − ϕ̄3) (6.37)

Case− II : ConcentratedHeatSource

Next, we consider that fi = 0 and w = δ(−→x −−→y )h(t). Here, we denote the solutions

for displacement components and temperature for this case as u
(4)
i and θ(4). In this case,

we find Fi = 0 and Ḡ satisfies the equation

(∆−m2
1)(∆−m2

2)Ḡ = −Ω(s)
k∗

δ(~x− ~y)h̄(s) ((6.38))

Let the function φ̄i(i = 1, 2) satisfy the following equations:

(∆−m2
1)φ̄1 = −

Ω(s)

k∗
δ(~x− ~y)h̄(s) (6.39)

(∆−m2
2)φ̄2 = −

Ω(s)

k∗
δ(~x− ~y)h̄(s) (6.40)

Next, we write the function Ḡ as

Ḡ =
1

(m2
1 −m2

2)
(φ̄1 − φ̄2) (6.41)

where
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φ̄1 =
Ω(s)h̄(s)

4πk∗r
e−m1r (6.42)

φ̄2 =
Ω(s)h̄(s)

4πk∗r
e−m2r (6.43)

Therefore, from equations (6.15) and (6.16), we get the solutions for the components of

displacement and temperature in the Laplace tranmsform domain as

ū
(4)
i =

β

ρ(m2
1 −m2

2)
(φ̄1 − φ̄2),i (6.44)

θ̄(4) =
c21

(m2
1 −m2

2)

[(

m2
1 −

s2

c21

)

φ̄1 −
(

m2
2 −

s2

c21

)

φ̄2

]

(6.45)

6.4 Small Time Approximated Solutions

The solutions obtained in the previous section represent the solutions in Laplace

transform domain and we can obtain the solutions in space time domain by inverting

Laplace transforms. However, the closed form analytical solutions is a formidable task.

Hence, we aim to find the small time approximated solutions. Assuming s to be very

large, and neglecting higher powers of 1
s
, we get the roots of the equation (6.25) by

Maclaurin’s series expansion as

m2
1 = a1s

2 + a2 + a3
1

s

m2
2 = b1 − b2

1

s

where

a1 =
1
c2
1

a2 =
2κǫ
τ2

b1 =
2

c2
3
τ2
b2 =

4(a+τ)

c2
3
τ4
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Now, we expand all the quantities involving s in the equations (6.36), (6.37), (6.44),

(6.45) in the power of 1
s
. Then after long derivations and neglecting the higher powers of

1
s
, we obtain the short-time approximated solutions for the distributions of displacement

components and temperature in the Laplace transform domain for above two cases in

the following forms:

Case- I:

ū
(j)
i =

ḡ(s)

4πc22r
e
− s

c2
r
δij −

∂2

∂xi∂xj

[

ḡ(s)

4πc21c
2
2rs

2

{(

B11 +
B12

s2

)

e
− s

c2
r

+

(

B21 +
B22

s2

)

e−(α1s+
α2

s
)r +

(

B31

s2
+
B32

s3

)

e−(β1−β2
s
)r

}]

(6.46)

θ̄(j) =
bβg(s)

2a1c21πτ
2

∂

∂xj

1

r

[(

1

s2
+
C11

s3

)

e−(α1s+
α2

s
)r −

(

1

s2
+
C11

s3

)

e−(β1−β2
s
)r

]

(6.47)

Case- II:

ū
(4)
i =

βh(s)

2a1c21πρτ
2k∗

∂

∂xi

1

r

[(

1

s4
+
C11

s5

)

e−(α1s+
α2

s
)r −

(

1

s4
+
C11

s5

)

e−(β1−β2
s
)r

]

(6.48)

θ̄(4) =
h(s)

2πrτ 2a1c21k
∗

[(

D11

s2
+
D12

s3

)

e−(α1s+
α2

s
)r −

(

D21

s2
+
D22

s3

)

e−(β1−β2
s
)r

]

(6.49)

where

α1 =
1
c1
, α1 =

1
c1
,β1 =

√
2

c3τ
, β2 =

a+τ
τ2
,

B11 =
co

( 1

c2
2

−a1)
, B12 =

co(a2−b1a1c22+b1)

( 1

c2
2

−a1)2
+

c2
2
(−2co−2c21ǫκc23)
τ2c2

3
( 1

c2
2

−a1)
,

B21 =
co

(a1− 1

c2
2

)
, B22 =

co(
a2

c2
2

+b1a1− b1

c2
2

)

a1(a1− 1

c2
2

)2
+

a2coτ
2−2co−2c21ǫκc23

τ2a1(a1− 1

c2
2

)
,
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B31 =
c2
2

a1
(b1co − 2co

c2
3
τ2
− 2c2

1
ǫκ

τ2
), B32 =

c2
2

a1
(−b2co + 4aco

c2
3
τ4
+

4ac2
1
ǫκ

τ4
+ 4co

c2
3
τ3
+

4c2
1
ǫκ

τ3
),

C11 = D22 = −2(a+τ)
τ2

, D11 = a1c
2
1 − 1, D12 =

2(a1c21−1)
τ2

, D21 = −1, D22 =
2(a+τ)

τ2
.

6.4.1 Laplace Inversion

Now, we use the following formulae for the inversion of the Laplace transforms:

L−1[δ(t)] = 1, L−1[e−αsr] = δ(t− αr)

L−1
(

e−αsr

si

)

= Xi(t− αr) =

{

0 t ≤ αr

(t−αr)i−1

(i−1)! t > αr

L−1
[

e−
a
s

sν+1

]

=

(

t

a

)
ν
2

Jν(2
√
at), Re(ν) > −1, a > 0

L−1
[

e
a
s

sν+1

]

=

(

t

a

)
ν
2

Iν(2
√
at), Re(ν) > −1, a > 0

Here, Jν , Iν are the Bessel and modified Bessel functions of order ν.

We assume that g(t) = h(t) = δ(t), i.e, we consider the case of instantaneous body force

and instantaneous source of heat at the medium.

Therefore, after using above formulae of Laplace Inversions for the equations (6.46)-

(6.49), we finally get the fundamental solutions in the physical domain as follows:

Case- I:

u
(j)
i =

1

4πc22r
δ(t− r

c2
)δij −

∂2

∂xi∂xj

[

1

4πc21c
2
2r

{(

B11X2(t−
r

c2
) + B12X4(t−

r

c2
)

)

+

(

B21

(

t− α1r

α2r

)
1

2

J1

(

2
√

α2r(t− α1r)
)

+B22

(

t− α1r

α2r

)
3

2

J3

(

2
√

α2r(t− α1r)
)

)

+ e−β1r

(

B31

(

t

β2r

)
3

2

I3

(

2
√

β2rt
)

+B32

( t

β2r

)2
I4

(

2
√

β2rt
)

)

}]

(6.50)
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θ(j) =
bβ

2a1c21πτ
2

∂

∂xj

1

r

[(

t− α1r

α2r

)
1

2

J1

(

2
√

α2r(t− α1r)
)

+ C11

(

t− α1r

α2r

)

J2

(

2
√

α2r(t− α1r)
)

)

− e−β1r

{(

t

β2r

)
1

2

I1

(

2
√

β2rt
)

+ C11(
t

β2r
)I2

(

2
√

β2rt
)

}]

(6.51)

Case- II:

u
(4)
i =

β

2a1c21πρτ
2k∗

∂

∂xi

1

r

[{(

t− α1r

α2r

)

J3

(

2
√

α2r(t− α1r)
)

+ C11

(

t− α1r

α2r

)2

J4

(

2
√

α2r(t− α1r)
)

}

− e−β1r

{(

t

β2r

)

I3

(

2
√

β2rt
)

+ C11

(

t

β2r

)2

I4

(

2
√

β2rt
)

}]

(6.52)

θ(4) =
β

2a1c21πρτ
2k∗

[{

D11

(

t− α1r

α2r

)
1

2

J1

(

2
√

α2r(t− α1r)
)

+D12

(

t− α1r

α2r

)

J2

(

2
√

α2r(t− α1r)
)

}

− e−β1r

{

D21

(

t

β2r

)
1

2

I1

(

2
√

β2rt
)

+D22

(

t

β2r

)

I2

(

2
√

β2rt
)

}]

(6.53)

6.5 Fundamental Solutions for Steady Oscillation

To determine the fundamental solutions of the field equations in case of steady oscilla-

tions, we use the representations of the equations (6.7) and (6.8). For this, we consider

that

~f = Re[~f ∗(~x)exp(−iωt)], w = Re[w∗(~x)exp(−iωt)] (6.54)
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where ω is the frequency of the vibration and i =
√
−1.

We represent

~F = Re[~F ∗(~x, ω)exp(−iωt)], G = Re[G∗(~x, ω)exp(−iωt)] (6.55)

If we consider

~u = Re[~u∗(~x, ω)exp(−iωt)], θ = Re[θ∗(~x, ω)exp(−iωt)], (6.56)

then the differential equation reduce to a differential system for the amplitudes ~u∗ and

θ∗.

Therefore, from the system of equations (6.7) and (6.8), we obtain the representations

as

~u∗ = c21

[

(∆ + ξ2)(∆ + γ2)− iω(a+ τ)(∆ + ξ2)

− 1

2
τ 2ω2∆(∆ + ξ2) + ǫκω2∆

]

~F ∗

−
[

co

{

(∆ + γ2)− iω(a+ τ)∆− 1

2
τ 2ω2∆

}

+ ǫκω2c21

]

grad div ~F ∗

+
β

ρ
gradG∗ (6.57)

θ∗ = c21(∆ + ξ2)G∗ −mβc22ω
2(∆ + η2)div ~F ∗ (6.58)

where, we used the following notations

ξ =
ω

c1
, η =

ω

c2
, γ =

ω

c3

The functions ~F ∗and G∗ involved in the equations (6.57) and (6.58) satisfy the equations
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[

(∆ + η2)
[

(∆ + ξ2)(∆ + γ2)− iω(a+ τ)(∆ + ξ2)
]

−1
2
τ 2ω2∆(∆ + ξ2) + ǫκω2∆

]

~F ∗i =
1

c21c
2
2

f ∗i (6.59)

[

(∆ + ξ2)(∆ + γ2)− iω(a+ τ)(∆ + ξ2)

]

−1
2
τ 2ω2∆(∆ + ξ2) + ǫκω2∆

]

G∗ =− 1

c21k
∗w

∗ (6.60)

Now, we use the following notation:

H(∆) = ∆2 +

{

(ξ2 + γ2)− iω(a+ τ)ξ2 − 1

2
τ 2ω2ξ2 + ǫκω2

}

Q∗∆+ ξ2γ2Q∗ (6.61)

where, Q∗ =
{

1− iω(a+ τ)− 1
2
τ 2ω2

}−1
.

It is easy to see that H(∆) = (∆ + λ2
1)(∆ + λ2

2), where λ
2
1 and λ

2
2 are the roots of the

equation, H(−λ) = 0. Equations (6.59) and (6.60) can therefore be written as

(∆ + η2)(∆ + λ2
1)(∆ + λ2

2)F
∗
i = −

Q∗

c21c
2
2

f ∗i (6.62)

(∆ + λ2
1)(∆ + λ2

2)G
∗ = − Q∗

c21k
∗w∗ (6.63)

If we assume that f ∗i = δ(~x− ~y)δij and w
∗ = 0, then we take F ∗i = Φδij and G

∗ = 0.

Hence, from equation (6.62), we can conclude that the function Φ satisfies the equation

(∆ + l21)(∆ + l22)(∆ + l23)Φ = −I (6.64)

where
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l1 = λ1, l2 = λ2, l3 = η, I =
Q∗

c21c
2
2

δ(~x− ~y) (6.65)

We further assume that the function Φj(j = 1, 2, 3) satisfy the equations

(∆ + l21)Φ1 = −I, (∆ + l21)Φ2 = −I, (∆ + l21)Φ3 = −I

Then, the function Φ can be expressed in the form

Φ = α1Φ1 + α2Φ2 + α3Φ3

where

α−1n =
3
∏

j=1,j 6=n

(l2j − l2n), (n = 1, 2, 3)

Therefore, solution of the equation (6.64) is obtained as

Φ =
Q∗

4πc21c
2
2r

3
∑

j=1

αjexp(iljr) (6.66)

Also, in view of the equations (6.57) and (6.58), we get the functions u
∗(j)
k (k = 1, 2, 3)

and θ∗(j) as

u
∗(j)
k = δkjc

2
1(∆ + λ2

1)(∆ + λ2
2)Φ

−
[

co

{

(∆ + γ2)− iω(a+ τ)∆− 1

2
τ 2ω2∆

}

+ ǫκω2c21

]

Φ,kj (6.67)

θ∗(j) = −mbc22ω2(∆ + η2)Φ,j (6.68)

Next, we consider the case when f ∗i = 0 and w∗ = δ(~x− ~y). In this case, we assume

F ∗i = 0 and G∗ = Ψ, where Ψ is the solution of the equation
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(∆ + l21)(∆ + l22)Ψ =
Q∗

k∗c21
δ(~x− ~y)

We find that

Ψ =
Q∗

4πrk∗c21(l
2
2 − l21)

[exp(il1r)− exp(il2r)] (6.69)

Hence, equation (6.57) and (6.58) yield the solution as

u
∗(4)
k =

β

ρ
Ψ,j (6.70)

θ∗(4) = c21(∆ + ξ2)Ψ (6.71)

Consequently, the functions u
∗(j)
k , θ∗(j), (j = 1, 2, 3, 4) represented by equations (6.67),(6.68)

and (6.70), (6.71) express the fundamental solutions in the case of steady oscillation.

6.6 Conclusions

The present work is concerned with the thermoelasticity theory based on a very recently

proposed heat conduction model: a heat conduction model with a delay term introduced

by Quintanilla(2011). Here we aim to obtain the fundamental solutions of this theory.

We derive the solution of Galerkin-type field equations for the case of homogeneous

and isotropic bodies. With the help of this solution we determine the effects of

concentrated heat sources and body forces in an unbounded medium. We further obtain

the fundamental solutions of the field equations in case of steady vibrations.
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