CHAPTER 6

FUNDAMENTAL SOLUTIONS OF
THERMOELASTICITY WITH A RECENT HEAT
CONDUCTION MODEL WITH A SINGLE DELAY

TERM

6.1 Introduction

Fundamental solutions or Green’s functions for a boundary value problem play an
important role in both applied and theoretical studies on the physics of solids. They
form basic building blocks of many further works. For example, fundamental solutions
are used to construct many analytical solutions of practical problems when boundary
conditions are imposed. They are essential in the boundary element method as well
as the study of cracks, defects and inclusions. Specially, fundamental solutions in
elastodynamic theory are important in deriving the solutions of problems involving
impulse responses. In the classical theory of thermodynamics, representations of
solutions were presented by Nowacki (1964). The fundamental solution in the classical
theory of coupled thermoelasticity was first studied by Hetnarski (1964a, 1964b).
Ciarletta (1991) proposed the representation theorem of the Galerkin type in the
theory of thermoelastic materials with voids. Later on, Iesan (1998) developed the
fundamental solutions on theory of thermoelasticity without energy dissipation and
Kothari et al.(2010) established fundamental solution of generalised thermoelasticity

with three phase-lags.

The present work is concerned with the thermoelasticity theory based on a very recently
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proposed heat conduction model: a heat conduction model with a delay term introduced
by Quintanilla (2011). Here, we aim to obtain the fundamental solutions of this theory.
We derive the solution of Galerkin-type field equations for the case of homogeneous
and isotropic bodies. With the help of this solution, we determine the effects of
concentrated heat sources and body forces in an unbounded medium. We further obtain

the fundamental solutions of the field equations in case of steady vibrations.

6.2 Basic Equations

We consider a body that at time t = t; occupies the regular region B of the three-
dimensional Euclidean space that has piece wise smooth surface boundary 0B. We refer

motion of the continuum to a fixed system of rectangular Cartesian axes Ox;(i = 1,2, 3).

By following Quintanilla (2011) and Leseduarte and Quintanilla (2013), we consider
the following field equations under linear theory of thermoelasticity for a homogeneous

and isotropic material :

pAT 4+ (N + p)grad divi — Sgradf + pb = pii (6.1)

0 o 1,07 - .
— 4+ (147174 =T"==) Al = Vil - 2
{kat+k ( +Tat + 57 atz)} 0 = BOydivi + pcpl — w (6.2)

on B x (07t1)
Here w = pr is the heat source and A is Laplacian operator.

We suppose that

3N+2u>0, u>0,k>0,k"> 6,>0 (6.3)

Now, we introduce the notations
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A 2u \/ﬁ o 2
C = , C2 = —, C3 = —, 4= 7,
p P pCE k*

m290 90 2 2 PCE
— p—— — = = .4
€ 2R o (1 G =0 K= (6.4)
Therefore, equations (6.1) and (6.2) can be written in the form
Ryt + cograd divir — égrad@ =—f (6.5)
p
N0 — Bbdivii = —% (6.6)

where, we have introduced the operators

Ri—A-L 2 (i=1,2,3)

20t2’

RNy +(a+7)AL 12N D

Hence, we establish the following theorem that gives a solution of Glerkin type of the

field equations given by (6.5) and (6.6):

Theorem — 1 : Let

S 2 A o ) 0 =, B
U=c [ RR—ex BYe CoR — €RCI 505 grad divF + EgradG (6.7)

0= bﬁc%g{g 8

BTE divF + 2R,G (6.8)

where the fields F; of class C® and G of class C* on B x (0, 1) satisfy

82
XRQ {9‘{1% — EKJAa 2:| i = C%C% fZ (69)
o SNl PR (6.10)
e T T T '
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Then @ and 6 satisfy equations (6.5) and (6.6).

Proof: We find that the operators 2Ry, Ry satisfy the identity

AR — ARy = c,A (6.11)

Hence, above theorem can be proved in an analogous way by following the proof of the
corresponding theorem of the classical theory (see Carlson (1972)) and thermoelasticity

theory without energy dissipation given by Iesan (1998).

6.3 Fundamental Solutions

In this section, we shall use the preceding theorem-1 to determine the fundamental
solution of the field equations. We consider a problem of thermoelastic body that
occupies the three dimensional space. Let x = (21, x9, x3) be the any point of this three

dimensional space. We assume the initial conditions as follows:

. (6.12)
0(z,0) =0, 0(Z,0) =0
We further assume the conditions at infinity as
Uj —7 0, Uik — 0
for |Z| — oo (6.13)
0—0,0;—=0
The initial conditions for the function F; and G are defined as
oPF; G, B o
o (#,0) =0, %(I,O) =0, 7€ B(p=1,2,...... 5 q=1,2,....3) (6.14)

It follows from equation (6.7) and (6.8) that the condition (6.14) imply the initial

conditions (6.12).

We use Laplace Transform of a function f(¢) for the solution of the problem that is

defined as
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)= [ et (e,

0
where s is the Laplace transform parameter.

We use the following notations in the preceding expressions.
m;:A—g, (i=1,2,...3)

R =R+ (a+7)As+ir2A%

The Laplace transform of equations (6.7) and (6.8) along with the initial conditions

(6.12) gives
u=c (9{’19‘{’ - EHASQ) F— ((:09%/ — emcfﬁ) grad divF + égradG
P
0= bﬁcgﬂ%;szdivﬁ + ARG

where F' and G satisfy the equations

1

%, [RR — ends?| F = i
162
[9‘{/ R — EI{ASZ] G = —Lw
' Ak*
Equation (6.17), (6.18) can be written as
! ! / 1 2 2 2 _ 1 B
Ry (R (R + (a+T7)As + -77As™ | —ekAs™ | Fy = ——= fi
2 165
' ! 1 2 2 21 A 1 _
R, %3+(Q+T)AS+§T As® | — exAs G:—%w
1

Now, equation (6.19) and (6.20) can be written as

' 1 1 4 _ 0(s) -
Ry [AQ — s%c112(s) <c‘11!2(s) + 2 + €/€> + SQQ(S):| i = (QS)fi
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1 1 st _ 2(s) _
where 2(s) = c;*(1 +as+7s+ 172)7 L.
We write equations (6.21) and (6.22) in the forms
/ _ (0 _
(A —md)(A - md)Fy = -2, (6.23)
2
_ 0
(A —m2)(A - md)G = — k(f)w (6.24)
where m; and ms are the roots of the equation
m* — s () ! + z + ek | m? + 8—4!2(5) =0 (6.25)
' af2s) o & '

Now, we consider two different cases:
Case — I : Concentrated Body Force

We consider that there is a concentrated time dependent body force which acts at a

point ¥/ in the direction of z;-axis (j = 1,2, 3), i.e. we assume that

fi=0i0(F = 9)g(t), w=0 (6.26)

where §(.) is the dirac delta function, ¥/ is a fixed point and g¢(¢) is any function of time.
We denote the solutions for displacement components and temperature for this case as

ul(j) and 09, Then we take F, = dijp, G =0.

Therefore, from equation (6.23) we conclude that the function ¢ satisfies the equation

A = ) — ) = ~ o - gl (6.27)
Let
r-- ”(f?&(f ~ Dals) (6.28)
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Then above equation reduces to

Ry(A —mi)(A—mi)p =T (6.29)

Now, if the functions @1, @2, @3 satisfy the equations

Ropr =T, (A—m})py =T (A—m3)p; =T (6.30,)

then from equation (6.29), we get that ¢ can be expressed in the form

@ = Ai(s)p1 + Aa(s)p2 + As(s)ps (6.31)

Next, in view of the conditions at infinity given by equation (6.13) and the equations

(6.28) and (6.30), we get

__(s)g(s) —ep _ £2(s)g(s) - o $2As)g(s) - L
frd c2 = mir = mar h — —_
4mesr c drc3r c v dmc3r e, where 1= |7 — ]
(6.32)
We note that for Z # J we have
[cosﬁ’ - mciﬁ] & = [Bi(5)@1 + Ba()@s + Bs(s)@s) (6.33)
- P2 — P3 -
Ryp = ma (A —mi)(A —m3)p = ¢ (6.34)

where
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u(s) = i e {m = L) ansetas) (6.35)

Therefore, in view of equations (6.15), (6.16), (6.33) and (6.34), we obtain the solutions

for u; and 6 as

, 1
al(?) — 7(2(5) ©10;; — (B1(s)@1 + Ba(s)p2 + Bs(s)@s).ij (6.36)
. bBc2s? B B
() — 2 _

Case — II : Concentrated Heat Source

Next, we consider that f; = 0 and w = §(Z — ¥ )h(t). Here, we denote the solutions
for displacement components and temperature for this case as u'™ and 0@, In this case,

i

we find F; = 0 and G satisfies the equation

(A =m)(A =m)G = ——=0(Z = §h(s) ((6.38))

(& - m)dr =~ 2tz - igs) (6.39)
(&~ mi)ds = - 2s(z - yh(s (6.40)

Next, we write the function G as

1 _ _
7 =)\ 92) (6.41)

my

é:

where
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T Q(S)B(S) —mir
1= iy € (6.42)
T Q(S>B(S) —mar
by == e (6.43)

Therefore, from equations (6.15) and (6.16), we get the solutions for the components of

displacement and temperature in the Laplace tranmsform domain as

ﬂ§4) = 72/6_ (61— h2) (6.44)

p(mi —mj3)

- 2 2\ _ 2N\ _
R T ng _ ;) F1— <mg _ ;) @] (6.45)

6.4 Small Time Approximated Solutions

The solutions obtained in the previous section represent the solutions in Laplace
transform domain and we can obtain the solutions in space time domain by inverting
Laplace transforms. However, the closed form analytical solutions is a formidable task.
Hence, we aim to find the small time approximated solutions. Assuming s to be very
large, and neglecting higher powers of %, we get the roots of the equation (6.25) by

Maclaurin’s series expansion as

2 2
my = as +a2+a3g

m% :bl —bgg

where
1 — 2re
ay = 2 a2 = "3
_ 2 _ Aat7)
bl - 0372 b2 - 537'4
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Now, we expand all the quantities involving s in the equations (6.36), (6.37), (6.44),
(6.45) in the power of % Then after long derivations and neglecting the higher powers of
%, we obtain the short-time approximated solutions for the distributions of displacement
components and temperature in the Laplace transform domain for above two cases in

the following forms:

Case- I:

i qg _ s, 0? g B _ s,
'L_LEJ) — &6 co 5” — |: g(s) { <B11 _|_ ;2> e <2
S

4c3r Ox;0x; | Amcic3rs?
B o B B 2
# (B ) ey (Ze 2 el )
s s s

40 Wﬁ@)‘91[<1+Ch)g«m#ﬁn_<1+ch>gwr?ﬂ (6.47)

20,3772 Oy |\ 82 83

Case- 1I:

2a13mpr2kx Oz r [\ st 8P st

u@_BW”31K1+Qvgwww;(l+ava%@ﬂ(m&

7o _ h(s) Du | Dz (asr22) Dor | D\ _(5,t2y, 6.49
- 2mrr2ay Ak 52 —i_si3 € B ?—i_? ¢ (6.49)
where
al:i7a1:é761:£752:%7
. Co _ CO(GQ—bl(lng-Fbl) Cg(—QCO—QC%EKCE)
By = F-an’ By = (%—al)z + 73 Ga)

ag by
c, +bia1—
o(g %) agcoT?—2co—2c3erch

B21 = BQZ =

al(alfﬁ%ﬂ Tzal(alfc%) ’
2 2

Co
(-2’
<
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c2 2, 2c%ek 2 dac, dac?er 4e, 4c%er
B31:£(b100_7c§:2_ =7), By = 2(— bzco+c§Ti =+ ot ),

T e

Ci = Dy = X a+T) , D1 = a101 =1, Dip= 72(@(:1—1) ; Doy = —1, Dyy = = 2odn),

T2

6.4.1 Laplace Inversion

Now, we use the following formulae for the inversion of the Laplace transforms:

~ % - %
L] = (t) I,(2Vat), Re(v)> —1,a>0

_Su+1_ a

Here, J,, I, are the Bessel and modified Bessel functions of order v.

We assume that g(t) = h(t) = 0(t), i.e, we consider the case of instantaneous body force

and instantaneous source of heat at the medium.

Therefore, after using above formulae of Laplace Inversions for the equations (6.46)-

(6.49), we finally get the fundamental solutions in the physical domain as follows:

Case- I:

‘ 2
ul(»]) = 71 ot — 1)%‘ 0 [ ! { (311X2(t - 1) + BiaXy(t — T))

4c3r Ca Ox;0x; |Amcicar Co s

+ <B21 (t ;;17’) ’ Ji (2 aor(t — 0417“)> + By (t ;2i1r> ’ Js3 (2 aor(t — Oéﬂ”)))
e <331 (ﬁ;) L (2 Bzrt) n 332(ﬁ;)214 (2 mm)) H (6.50)
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4 b3 t—aqr
Pl — 2 t—
2a,277r? 836] [ < Qor > ( oz alr))

+ Oy (t - alr) o (2 ar(t — ozlr)) )
- e—ﬁl’“{ (627")2 ' ( Bort ) + Cll(ﬁ;)lg (2 Bgrt> H (6.51)

Case- II:

w__ B 0L toamr -
u; = 2a10%7rp7'2k* Oz, 1 {{ < ot ) J3 <2 azT(t 0417")>
Lo (t ;;ﬁ) Ju (2 agr(t — alr)) }
2
_ eﬁlr{ <;2T> I (2 ﬁth) +Cy (ﬁ;) 1, (2 /82Tt) }] (6.52)

T
+D12< > agrt—alr)}

—eﬁ”{Dzl <;> <\/ﬁ7~> + Day ( )12 (2\/@) H (6.53)

-

6.5 Fundamental Solutions for Steady Oscillation

To determine the fundamental solutions of the field equations in case of steady oscilla-
tions, we use the representations of the equations (6.7) and (6.8). For this, we consider

that

f = Re[f*(@)exp(—iwt)], w = Re[w*(Z)exp(—iwt)] (6.54)
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where w is the frequency of the vibration and i = v/—1.

We represent

F = Re[F*(Z,w)exp(—iwt)], G = Re[G*(Z,w)exp(—iwt)] (6.55)

If we consider

U = Re|u"(7,w)exp(—iwt)], 0 = Rel0"(Z,w)exp(—iwt)], (6.56)
then the differential equation reduce to a differential system for the amplitudes «* and
0.

Therefore, from the system of equations (6.7) and (6.8), we obtain the representations

as

T =348+ —iutatTIA+ )
1 .
- irszA(A +&) + €I€w2A:| F*
1 -
- [Co {(A +7°) —iw(a +7)A ~ QT%QA} + emﬂc?] grad divF*

+ igrad G* (6.57)

0" = (A + )G — mBAW*(A + n?)div F* (6.58)

where, we used the following notations

w
5277 n= y V=
C1

d d
C2 a3
The functions F*and G* involved in the equations (6.57) and (6.58) satisfy the equations
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(A+7") [(A+E)(A+7°) —iw(a+T)(A + %))

1 - 1
—*TQWZA(A + 52) + 6/€ng:| F:k :ﬁ i* (659)
2 cics

A+ (A+79?) —iw(a+T7)(A+ 52)}

1 1
—57’2CJJ2A(A + 52) + EK]CL)ZA:| G* = — Q—k*w* (660)
1

Now, we use the following notation:

H(A) = A% + {(§2+72) —iw(a+ 7)€ — 5

1
—722%% 4+ €/€w2} Q*A + 24*Q*  (6.61)

where, Q* = {1 —iw(a +7) — %7’%}2}_1.

It is easy to see that H(A) = (A + A)(A + )A3), where A\? and A} are the roots of the

equation, H(—\) = 0. Equations (6.59) and (6.60) can therefore be written as

A+ + A+ W)E = — Lo (6.62
1%2
(A+X2)(A+ )G = _gk*w* (6.63)
1

If we assume that f = §(Z — ¢)d;; and w* = 0, then we take F}" = ®J,;; and G* = 0.
Hence, from equation (6.62), we can conclude that the function @ satisfies the equation
A+ (A+BY(A+DD =1 (6.64)

where
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Lhi=Mla=X,l3=m, I = 5(95 - ?7) (6-65)

We further assume that the function @,(j = 1,2, 3) satisfy the equations

(A+ 1)y = —1, (A+ 1)y = —1, (A+13)Ps = —1

Then, the function @ can be expressed in the form

b= Oél(pl + 062@2 + Oég@g
where

3

o' = J[ @-1), n=1.2,3)

j=1,j#n

Therefore, solution of the equation (6.64) is obtained as

47rclc . Za]exp il;r) (6.66)

Also, in view of the equations (6.57) and (6.58), we get the functions uz(j)(k =1,2,3)

and 0*0) as

wD = 5, (A + A (A + A2

1
- |:Co {(A + %) —iw(a+7)A — 272w2A} + enwzcﬂ D 1j (6.67)

0*0) = —mbc2w? (A + n?)P (6.68)

Next, we consider the case when f = 0 and w* = 0(& — ). In this case, we assume

Fr =0 and G* =¥, where ¥ is the solution of the equation
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(A+ A+ B = L 55— )
k*cf
We find that
Q" : :
lexp(ilyr) — exp(ilyr)] (6.69)

T Arrkr (2 - 12)

Hence, equation (6.57) and (6.58) yield the solution as

u = i%— (6.70)

0@ = (A + )W (6.71)

Consequently, the functions uz(j ), 09 (j =1,2,3,4) represented by equations (6.67),(6.68)

and (6.70), (6.71) express the fundamental solutions in the case of steady oscillation.

6.6 Conclusions

The present work is concerned with the thermoelasticity theory based on a very recently
proposed heat conduction model: a heat conduction model with a delay term introduced
by Quintanilla(2011). Here we aim to obtain the fundamental solutions of this theory.
We derive the solution of Galerkin-type field equations for the case of homogeneous
and isotropic bodies. With the help of this solution we determine the effects of
concentrated heat sources and body forces in an unbounded medium. We further obtain

the fundamental solutions of the field equations in case of steady vibrations.
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