
CHAPTER 3

THERMO-MECHANICAL RESPONSES OF AN ANNULAR

CYLINDER WITH TEMPERATURE DEPENDENT

MATERIAL PROPERTIES UNDER THERMOELASTICITY

WITHOUT ENERGY DISSIPATION

3.1 Introduction

This chapter is concerned with thermoelasticity theory without energy dissipation

(TEWOED) for a problem of an infinitely long annular cylinder. While studying the

problems of thermoelasticity, the material properties of the medium are in general

considered to be constant. However, the structural elements are often subjected to

thermal loads due to ultra-high temperature, ultra-high temperature gradient, cyclical

changes of ultra-high temperature etc. as reported by Noda (1986,1991). The material

parameters in these circumstances remain no longer constant and they depend on

temperature. Hence, in order to perform more accurate analysis of thermoelastic

behavior of the structural elements, temperature dependency of material properties needs

to be considered. It is to be noted that Suhara (1918) studied a thermoelastic problem of

hollow cylinder by considering temperature dependent shearing modulus. Subsequently,

several investigations have been reported on the thermal stress analysis in elastic

and inelastic materials with temperature dependent properties. The survey/review

articles by Noda (1986, 1991) and the references there-in may be recalled in this

context. We also recall some investigations on thermoelastic deformation of several

basic structures like disk, cylinders, tubes etc. with temperature dependent properties
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as reported by Ezzat et al. (2011), Othman (2002), Ezzat and Othman (2002), Othman

(2011), Eraslan and Kartal (2004), Ezzat et al. (2004), Youssef and Abbas (2007),

Argeso and Eraslan (2008), Mukhopadhyay and Kumar (2005), Othman et al. (2013,

2015), Kalkal and Deswal (2014), Wang et al. (2013), Abbas (2014) etc. In these

studies the temperature dependent properties of the medium have been considered.

Recently, Abbas and Youssef (2012), Zenkour and Abbas (2014a, 2014b), He and Shi

(2014) employed generalized thermoelasticity theory by Lord and Shulman (1967) to

investigate the effects of temperature dependent material properties on the numerical

solution of thermoelastic problems obtained by finite element method. Mukhopadhyay

and Kumar (2009) investigated the effects of temperature dependent material properties

on thermoelastic interactions in the context of Lord-Shulman model.

In the present work, we aim to investigate a problem of an infinitely long annular cylinder

in the context of thermoelasticity theory without energy dissipation (TEWOED). We

assume that the material properties like, modulus of elasticity and thermal conductivity

vary with temperature. Hence, by considering temperature dependency of material

properties, we formulate the governing equations under TEWOED theory as introduced

by Green and Naghdi (1993). The governing equations in this case are derived as

coupled non-linear partial differential equations because of varying material parameters.

The outer boundary of the annulus is assumed to be stress free and is maintained at

reference temperature, while the inner surface is subjected to two different types of

variation in temperature together with zero stress. Using the finite difference method,

the governing equations are transformed into a system of coupled difference equations

and the numerical solution of the problem is obtained. The values of the field variables

inside the annulus for copper material are simulated directly in space-time domain.

Results are displayed graphically. We analyze the effects of temperature dependency

of material parameters. We also compare the results with the corresponding results

obtained for temperature-independent material properties. A thorough comparision

between the results predicted by the present model with corresponding results under

thermoelasticity with one thermal relaxation parameter reported by Mukhopadhyay and

58



Chapter 3/THERMO-MECHANICAL RESPONSES ...contd.

Kumar (2009) is further presented. This study brings to light several points highlighting

the effects of temperature dependency of material properties under thermoelasticity

without energy dissipation theory that accounts for the finite speed for the thermal

disturbance.

3.2 Basic Governing Equations

We consider an isotropic, linear and thermally conducting elastic medium with tem-

perature dependent mechanical properties. The governing equations for thermoelastic

model without dissipation of energy by Green Naghdi (1993) in the absence of external

body forces and heat sources can therefore be written as follows:

Stress-strain temperature relation:

σij = 2µeij + (λe−βθ)δij (3.1)

Strain-displacement relations:

eij =
1

2
(ui,j + uj,i) (3.2)

Equation of motion in absence of body forces:

σij,j = ρüi (3.3)

Heat conduction equation in absence of heat sources:

(k∗θ,i),i = kη
∂2θ

∂t2
+ βθ0

∂2e

∂t2
(3.4)

Here η is the thermal diffusivity, where η = ρcE
k
.

Our goal is to investigate the effects of temperature dependent material properties on

thermoelastic behavior.

59



Chapter 3/THERMO-MECHANICAL RESPONSES ...contd.

Therefore, we assume that, λ = λ0f(θ), µ = µ0f(θ), k = k0f(θ ), k∗ = k∗0f(θ), β =

β0f(θ).

where λ0, µ0, k0, k
∗

0 and β0 are considered to be constant material properties at reference

temperature θ0, and f(θ) is a given function of temperature. It is to be noted that

the case of temperature-independent material property corresponds to the case when

f(θ) = 1 , i.e., λ = λ0, µ = µ0, k = k0, k
∗ = k∗0, β = β0. In general, different material

properties vary in different manner with the increase of temperature. For example,

Young’s modulus, shearing modulus, density, thermal conductivity etc. usually decrease

with the rising of temperature, while the coefficient of Poisson ratio, and linear thermal

expansion usually increase with the increase of temperature. However, the dependency

of some properties like, Poisson ratio is less than the that of other material properties

(Noda (1991)). Hence, for simplicity of the present problem it is assumed that λ, µ, k,

k∗ and β vary as per above law and the other properties are assumed to be independent

of temperature for our present analysis.

In view of the above assumptions, equations (3.1), (3.3) and (3.4) yield

σij = [2µ0eij + (λ0e− β0θ) δij] f (θ) (3.5)

ρüi = [2µ0eij + (λ0e− β0θ) δij],j f (θ) + (f (θ)),j [2µ0eij + (λ0e− β0θ) δij] (3.6)

[k∗0f (θ) θ,i],i = k0ηf (θ)
∂2θ

∂t2
+ β0θ0f (θ)

∂2e

∂t2
(3.7)

3.3 Problem Formulation

We consider an infinitely long annular cylinder of isotropic elastic material. It is

assumed that the material properties, except density and specific heat, of the cylinder

are temperature dependent. (r, φ, z) are taken as cylindrical polar coordinates with

the origin at the center of the system and z-axis is taken to be along the axis of the
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cylinder. We consider axi-symmetric plane strain problem and the physical quantities

are assumed to be the functions of radial coordinate r and time t. Since modulus of

rigidity and many other properties decreases monotonically with the rise of temperature

(see Rishin et al. (2005)), we assume f(θ) = e−αT . However, for simplicity and without

any loss of generality we approximate the function f(θ) as f(θ) = 1− αθ, where α is

an empirical material parameter of the dimension K−1 (Noda (1991)).

Therefore, with the help of (3.5), we get the non-zero stress components as

σrr =

[

(λ0 + 2µ0)
∂u

∂r
+ λ0

u

r
− β0θ

]

(1− αθ) (3.8)

σφφ =

[

(λ0 + 2µ0)
u

r
+ λ0

∂u

∂r
− β0θ

]

(1− αθ) (3.9)

We use the equation (3.3) to get the equation of motion in the cylindrical co-ordinates

as

∂σrr

∂r
+

1

r
(σrr − σφφ) = ρ

∂2u

∂t2
(3.10)

By using (3.8)-(3.10), we obtain

(λ0 + 2µ0)

[

∂2u

∂r2
+

1

r

∂u

∂r
−

u

r2

]

(1−αθ)−

[

α

{

(λ0 + 2µ0)
∂u

∂r
+ λ0

u

r
− β0θ

}

+ β0 (1−αθ)

]

∂θ

∂r
= ρ

∂2u

∂t2
(3.11)

Equation (3.7) then yields

k∗0
k0

(

∂2θ

∂r2
+

1

r

∂θ

∂r

)

−
k∗0
k0

α

(1−αθ)

(

∂θ

∂r

)2

= η
∂2θ

∂t2
+

β0θ0

k0

∂2

∂t2

(

∂u

∂r
+

u

r

)

(3.12)

For our convenience, we now introduce the following non dimensional variables and

notations:

r′ = c0ηr, u
′ = c0ηr, t

′ = c20ηt, θ
′ = θ−θ0

θ0
, σ′ij =

σij

(λ0+2µ0)
, λ1 = λ0

(λ0+2µ0)
, c20 = (λ0+2µ0)

ρ
,
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a0 =
k∗
0

k0c
2

0
η
, a1 =

β0θ0
(λ0+2µ0)

, a2 =
β0

k0η
, γ = αθ0.

Therefore, the dimensionless forms of equations (3.8)-(3.12) are obtained as follows

(after dropping the primes for convenience):

[

∂2u

∂r2
+

1

r

∂u

∂r
−

u

r2

]

{1− γ (θ + 1)} −

[

a1 {1− 2γ (θ + 1)}+ γ

(

∂u

∂r
+ λ1

u

r

)]

=
∂2u

∂t2

(3.13)

a0

(

∂2θ

∂r2
+

1

r

∂θ

∂r

)

−
γa0

{1− γ (θ + 1)}

(

∂θ

∂r

)2

=
∂2θ

∂t2
+ a2

∂2

∂t2

(

∂u

∂r
+

u

r

)

(3.14)

σrr = {1− γ (θ + 1)}

[

∂u

∂r
+ λ1

u

r
− a1θ

]

(3.15)

σφφ = {1− γ (θ + 1)}

[

λ1
∂u

∂r
+

u

r
− a1θ

]

(3.16)

3.3.1 Initial and Boundary Conditions

We assume that initially the annulus has no deformation and have the reference

temperature θ0 and also has the zero rate of change of temperature. Therefore, initial

conditions are expressed to be homogeneous i.e, we have

u (r, 0) =
∂u(r, 0)

∂t
= 0, θ(r, 0) =

∂θ(r, 0)

∂t
= 0, a ≤ r ≤ b. (3.17)

where a and b are the dimensionless inner and outer radii of the cylinder.

It is assumed that both the inner and outer curved surfaces of the annulus are stress

free and the inner surface is subjected to a temperature which is varying as f(t) with

time t, where as the outer surface is maintained at the reference temperature. The

boundary conditions are therefore taken to be as follows:

σrr = 0, θ = f ∗(t) at r = a, t > 0 (3.18)
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σrr = 0, θ = 0 at r = b, t > 0 (3.19)

3.4 Solution of the Problem (Numerical scheme)

The governing equations obtained in the last section are non linear partial differential

equations. For the solution of the problem we therefore use the finite difference method.

We assume that the solution domain a ≤ r ≤ b, 0 ≤ t ≤ t0 is replaced by a grid

described by the set of node points (rm, tn), in which rm = a + mp, m = 0, 1, ..., N

and tn = nl, n = 0, 1, ..., P. Therefore, p = (b−a)
N

is taken as mess width and l = t0
P
is

assumed to be the time-step. Here, we assume that t0 is the final value of time. In

the following equations we use the notation un
m in place of u(rm, tn), m = 0, 1, . . . , N

and n = 0, 1, . . . , P. The finite difference approximations for the partial differential

coefficients with respect to the independent variables r and t are obtained as follows:

∂y

∂r
=

ynm+1 − ynm−1
2p

+ o(p2),

∂2y

∂r2
=

ynm+1 − 2ynm + ynm−1
p2

+ o(p2),
∂y

∂t
=

yn+1
m − yn−1m

2l
+ o(p2) (3.20)

In view of equation (3.20), after detailed manipulations, the equations (3.13) and (3.14)

are then replaced by the explicit forms of finite difference equations as follows:

un+1
m = 2un

m − un−1
m

+v {1− γ (θnm + 1)}

[

(

un
m+1 − 2un

m + un
m−1

)

+
p

2rm

(

un
m+1 − un

m−1

)

−
p2

r2m
un
m

]

−−
v

4

(

θnm+1 − θnm−1
)

[

2a1p {1− 2γ (T n
m + 1)}+ γ

(

un
m+1 − un

m−1

)

+
2pλ1

rm
un
m

]

(3.21)
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θn+1
m = 2θnm − θn−1m

+a0v

[

(

θnm+1 − 2θnm + θnm−1
)

+
p

2rm

(

θnm+1 − θnm−1
)

]

−
γa0v

4 {1− γ (T n
m + 1)}

(

θnm+1 − θnm−1
)2

−
a2

2p

(

un+1
m+1 − 2un

m+1 + un−1
m+1

)

−
(

un+1
m−1 − 2un

m−1 + un−1
m−1

)

−
a2

2p

[

2p

rm

(

un+1
m − 2un

m + un−1
m

)

]

(3.22)

where, we have used the notation υ = l2

p2
.

Further, equations (3.15) and (3.16) reduce to

[σrr]
n

m = {1− γ (θnm + 1)}

[

un
m+1 − un

m−1

2p
+ λ1

un
m

rm
− a1θ

n
m

]

(3.23)

[σφφ]
n

m
= {1− γ (θnm + 1)}

[

λ1

un
m+1 − un

m−1

2p
+

un
m

rm
− a1θ

n
m

]

(3.24)

From the initial condition (3.17) and by using equation(3.20), we get

∂u0
m

∂t
=

u1
m − u−1m

2l
= 0,

∂θ0m
∂t

=
θ1m − θ−1m

2l
= 0 (3.25)

Now, using equation (3.25) we can eliminate u−1 um and θ−1 from equations (3.21) and

(3.22) to get the equations satisfied by un
m and T n

m for the first level of t (i.e., n = 0) as

u1
m = u0

m +
v

2

{

1− γ
(

θ0m + 1
)}

[

(

u0
m+1 − 2u0

m + u0
m−1

)

+
p

2rm

(

u0
m+1 − u0

m−1

)

−
p2

r2m
u0
m

]

−
v

8

(

θ0m+1 − θ0m−1
)

[

2a1p
{

1− 2γ
(

θ0m + 1
)}

+ γ
(

u0
m+1 − u0

m−1

)

+
2pλ1

rm
u0
m

]

(3.26)
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θ1m = θ0m +
a0v

2

[

(

θ0m+1 − 2θ0m + θ0m−1
)

+
p

2rm

(

θ0m+1 − θ0m−1
)

]

−
γa0v

8 {1− γ (θ0m + 1)}

(

θ0m+1 − θ0m−1
)2

−
a2

2p

[

(

u1
m+1 − u0

m+1

)

−
(

u1
m−1 − u0

m−1

)

+
2p

rm

(

u1
m − u0

m

)

]

(3.27)

In view of boundary condition (3.18) and equation (3.23) , we get for the line r = a as

un
1 − un

−1

2p
+ λ1

un
0

r0
− a1θ

n
0 and θn0 = f ∗(tn) (3.28)

Now, substituting the expression for un
−1 from equation (3.28) into equation (3.21), we

get the equation satisfied by un
m for r = a (i.e. for the level m = 0) as

un+1
0 = 2un

0 − un−1
0 + 2v {1− γ (θn0 + 1)}

[{

un
1 − un

0 + p

(

λ1
un
0

r0
− a1θ

n
0

)}

−
p2

2r0

(

λ1
un
0

r0
− a1θ

n
0

)

−
p2

2r20
un
0

]

−
pv

2
(−3θn0 + 4θn1 − θn2 )

[

a1 {1− 2γ (θn0 + 1)}

−γ

(

λ1
un
0

r0
− a1θ

n
0

)

+
λ1

r0
un
0

]

(3.29)

Similarly, by using equation (3.19) we get for the line r = b as

un
N+1 − un

N−1

2p
+ λ1

un
N

rN
− a1θ

n
N = 0 and θnN = 0 (3.30)

Therefore, substituting un
N+1 from equation (3.30) into equation (3.21), we obtain the

equation for the level m = N as follows:
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un+1
N = 2un

N − un−1
N + 2v {1− γ (θnN + 1)}

[(

−un
N + un

N−1 + pλ1
un
N

rN

)

−−
p2λ1

2r2N
un
N −

p2

2r2N
un
N

]

−
pv

2

(

3θnN − 4θnN−1 + θnN−2
)

[

a1 {1− 2γ (θnN + 1)}

−γλ1
un
N

rN
+

λ1

rN
un
N

]

(3.31)

The equations (3.21)-(3.31) therefore constitute the model of finite difference scheme

for the present problem to determine the values of the physical field variables u, θ, σrr

and σφφ at different points of the solution domain a ≤ r ≤ b, 0 ≤ t ≤ t0 .

3.4.1 Truncation Error

Now, we expand the finite difference equations (3.21) and (3.22) by using Taylor series

expansion and subtract from the equations (3.13) and (3.14), respectively. Therefore,

we find the truncation error associated with finite difference equations (3.21) and (3.22)

as follows:

T.E.u = l4
[

1

12

∂4u

∂t4
+

l2

360

∂6u

∂t6
+ ....

]

−l2p2 (1− γ − γθnm)

[(

1

12

∂4u

∂r4
+

p2

360

∂6u

∂r6
+ ....

)

+
1

rm

(

1

6

∂3u

∂r3
+

p2

120

∂5u

∂r5
+ ....

)]

−γh4

(

1

6

∂3θ

∂r3
+

p2

120

∂5θ

∂r5
+ ....

)(

1

6

∂3u

∂r3
+

p2

120

∂5u

∂r5
+ ....

)

(3.32)

T.E.θ = l4
[

1

12

∂4θ

∂t4
+

l2

360

∂6θ

∂t6
+ ....

]

−l2p2a0

[(

1

12

∂4θ

∂r4
+

p2

360

∂6θ

∂r6
+ ....

)

+
1

rm

(

1

6

∂3θ

∂r3
+

p2

120

∂5θ

∂r5
+ ....

)]

+
l2p2a0γ

(1− γ − γθnm)

[

1

3

∂θ

∂r

∂3θ

∂r3
+ p2

{

1

36

(

∂3θ

∂r3

)2

+
1

60

∂θ

∂r

∂5θ

∂r5

}

+ ....

]

+
l4a2

rm

[

1

12

∂4u

∂t4
+

l2

360

∂6u

∂t6
+ ....

]

(3.33)
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The truncated errors given by equations (3.32) and (3.33), indicate that lim(p,l)→(0,0) T.E.u =

0 and lim(p,l)→(0,0) T.E.θ = 0. This implies that the difference equations (3.21) and

(3.22) are consistent. Thus, the finite differences (3.21)and (3.22) has the accuracy of

orders o(p4, p2l2, l4) and o(p2l2, l4) respectively.

3.5 Numerical Results and Discussion

We consider following two types of problems by taking two types of variations in the

prescribed temperature distribution f ∗(t) at the inner surface of the cylinder:

Case-I: f ∗(t) = e−ωt

This implies that the temperature at the inner surface of the cylinder decreases expo-

nentially with time and ✇ is the decaying exponent.

Case-II: f ∗(t) = sin(ωt)

Here, we assume that the temperature at the inner surface of the cylinder varies like

sine function.

For our numerical work, we consider copper material and the physical data for which is

taken as follows (see Sherief and Salah (2005)):

θ0 = 819K, λ0 = 7.76× 1010Nm–2, µ0 = 3.86× 1010Nm–2, ρ = 8954 kgm–3,

αt = 1.78× 10–5K–1, η = 8849.6 m−2s. We assume ω = 0.1.

The inner radius and the outer radius of the cylinder are taken as 1.0 and 5.0, respectively

and we assume t0 = 1.0 and υ = 0.0156. Now, by using the equations (3.21), (3.22)

and (3.26)-(3.31), the numerical (discrete) values of dimensionless displacement u and

dimensionless temperature θ are computed simultaneously for different values of specified

domain. Then, the values of stresses are computed from equations (3.23) and (3.24). We

get the nature of variations of different field variables like, displacement, temperature

and stresses inside the medium with the help of computer programming. In order to

see the effects of temperature dependency of the material parameters, the computations
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Fig. 3.1(a,b): Variation of displacement, u with r at times, t=0.4 and t=0.8,

respectively for Case-I.

(a) (b)

Fig. 3.2(a,b): Variation of temperature, θ with t at times, t=0.4 and t=0.8,

respectively for Case-I.

are done for different values of the parameter α. Clearly, α = 0 indicates the case of

temperature independent material properties. The results are displayed in different

Figures to show the variations of different fields with respect to radial coordinates.

Figures 3.1(a,b), 3.2(a,b), 3.3(a,b) and 3.4(a,b) show the variations of displacement

u, temperature θ, radial stress σrr and circumferential stress σφφ, respectively at two

different times t = 0.4 and t = 0.8, when the inner boundary temperature is varying

exponentially (case-I) and Figs. 3.5(a,b), 3.6(a,b), 3.7(a,b) and 3.8(a,b), show the

variations of u, θ, σrr and σφφ , respectively at two different times t = 0.4 and t = 0.8,

when the inner boundary temperature is varying as a function of sine (case-II). The
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Fig. 3.3(a,b): Variation of radial stress, σrr with r at times, t=0.4 and t=0.8,

respectively for Case-I.
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Fig. 3.4(a,b): Variation of transverse stress, σφφ with r at times, t=0.4 and t=0.8,

respectively for Case-I.

nature of variations of various fields observed in different figures indicate that our system

of difference equations (3.21)-(3.31) efficiently compute the numerical solutions of the

problem and the solutions obtained are in complete agreement with the theoretical

boundary conditions of the problem. We observe several important facts evident from

the graphical results as mentioned below.

Figures 3.1(a,b) and 3.5(a,b), showing the distributions of displacement indicate that

the nature of variation of displacement inside the annulus is similar in both the cases:

whether the inner boundary surface of the annulus is subjected to exponentially varying

temperature or to sinusoidal varying temperature. However, there is a significant
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effect of the temperature dependency on the material parameters. The numerical

values of displacement is maximum in temperature independence case and the values

of u decreases with the increase of parameter, α. The differences of displacement

profiles for the cases of temperature dependent material properties and the case of

temperature independent properties increases with the increase of time and the region

of influence increases with time. Figures 3.1(a,b) and 3.5(a,b) further indicate that

the effect of temperature dependency of material parameters on displacement is more

significant in case of exponentially varying temperature applied at the inner surface

of the cylinder as compared to the case of sinusoidal temperature distribution applied

at the inner boundary. The displacement field achieves zero values in all the cases

after some distance from the inner boundary which proves the fact that the theory of

thermoelasticity without energy dissipation accounts for finite speeds of elastic as well

as thermal disturbances.

The variation of temperature can be observed from Figs. 3.2(a,b) and 3.6(a,b). Figures

3.2(a, b) show the variation of this field when exponentially decaying temperature is

applied at the inner surface of the cylinder and Figs. 3.6(a,b) depicts the case when

the inner boundary is subjected to sinusoidal temperature distribution. The nature

in variation in temperature in these two cases are very much different, specially near

the inner boundary. The variation is oscillatory in nature near the boundary in the

case-I as compared to the case-II. Temperature shows larger value in the case when we

consider that material parameters are independent of temperature. Furthermore, the

effect of temperature dependency of material parameters is very much significant in

the first case, while it is almost negligible in the second case of prescribed boundary

temperature. The region of influence increases with the increases of time for this field

too.

Figures 3.3(a,b) and 3.7(a,b) show the variation of radial stress and we observe a

significant difference in the nature of variation of radial stress in cases of two types of

boundary temperatures prescribed at the inner boundary of the annulus. In the second

case, the radial stress is fully compressive, while it is tensile for some region after some
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Fig. 3.5(a,b): Variation of displacement, u with r at times, t=0.4 and t=0.8,

respectively for Case-II.
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Fig. 3.6(a,b): Variation of temperature, θ with r at times, t=0.4 and t=0.8,

respectively for the Case-II.
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Fig. 3.7(a,b): Variation of radial stress, σrr with r at times, t=0.4 and t=0.8,

respectively for Case-II.
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Fig. 3.8(a,b): Variation of transverse stress, σφφ with r at times, t=0.4 and t=0.8,

respectively for Case-II.

distance from the inner surface and thereafter becoming compressive. Like temperature

field, radial stress also shows oscillatory nature in the first case. However, the effect

of α is very much pronounced in both the cases. Numerical values of radial stress is

maximum in the case of temperature independent physical parameters and the value of

radial stress decreases with the increase of α. Circumferential stress distributions for

two different cases can be observed from Figs. 3.4(a,b) and 3.8(a,b). Like the case of

radial stress, circumferential stress also shows significantly different trend of variation

in two different types of temperatures prescribed at the inner surface of the cylinder.

The nature is more oscillatory near the inner boundary in the case when exponentially

decaying temperature is prescribed. The effect of α is more pronounced in the first case

as compared to the second case and the absolute value of this stress is maximum in

the case of temperature independent physical properties. The difference in the trend of

variation increases with the increases of time as well as with α.

It is interesting to make a comparison between the results in case-I of Green-Naghdi

model and the corresponding results predicted by Lord-Shulman model as discussed by

Mukhopadhyay and Kumar (2009) to demonstrate the effects of temperature dependent

properties. Figure 3.1(a) and the corresponding figure for displacement of Mukhopad-

hyay and Kumar (2009) show that u has a maximum value nearer to the boundary

of annulus cylinder in case of both the models while this maximum value is slightly
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smaller in case of GN-II model. Further, the displacement decreases as the value of α

increases which agree with the corresponding figure of LS model. From Fig. 3.2(a), the

temperature distribution shows a oscillatory behaviour in the region nearer to the inner

boundary of the annulus in case of GN-II model and there are extreme points. However,

the corresponding figure of LS model exhibits that temperature distribution shows a

smooth decrements without any local extreme points. The temperature also decreases

with α under both the models. Fig. 3.3(a) shows that in the context of GN-II model,

the radial stress is tensile for some region nearer to the inner surface and thereafter

becoming compressive, but in the case of LS theory, the radial stress, σrr was shown to

be fully compressive (Mukhopadhyay and Kumar (2009)). Furthermore, it is clear that

σrr is inversely proportional to α for GN-II model while it is directly proportional to α in

case of LS model which found to be a notable difference in two different thermoelasticity

theories. On comparision of the Fig. 3.4(a) with the corresponding figure under LS

model, the effect of α is similar in nature for both the models. Furthermore, both the

stresses show oscillatory type variation through the radial direction in case of GN-II

model while LS model shows smooth variation in stresses. The region of influence for

each phyical field is observed to be finite under both the theories supporting the fact

that thermal wave propagate with finite speed in the context of LS-model as well as in

case of GN-II model. However, the influence area for all physical quantities is much

much narrow under GN-II model (see Figs. 3.1(a), 3.2(a), 3.3(a), 3.4(a)) as compared

to LS model (Mukhopadhyay and Kumar (2009)).

3.6 Concluding Remarks

The effects of temperature dependency of material properties on thermo-mechanical

responses of an annular cylinder whose inner surface is subjected to time dependent

temperature fields has been analyzed by employing thermoelasticity theory of type

GN-II. The governing equations are derived by employing this theory and considering

temperature dependent physical properties. Governing equations are obtained as non-

73



Chapter 3/THERMO-MECHANICAL RESPONSES ...contd.

linear coupled partial differential equations and we apply finite difference method for

solving the coupled system for the present problem. We showed that the present problem

can be efficiently solved by finite difference method. We obtain the orders of truncation

error for displacement and temperature.

Our results highlight the significant effects of temperature dependent material properties

on thermoelasticity. We considered two different types of temperature distributions

prescribed at the inner boundary surface of the cylinder where as the outer surface is

kept at reference temperature. The effects of temperature dependent properties are

shown to be of different nature in two cases. However, in both the cases it has been

observed that under the present context, the difference in the numerical results with

temperature dependent properties and temperature independent properties are very

much pronounced. The region of influence is observed to be finite for all field variables.

We note a significant difference in the prediction of results for exponential temperature

distribution prescribed at the inner boundary of the cylinder in the present context

with the corresponding results under thermoelasicity with one relaxation parameter.

The region of influence if much smaller in case of GN-II model as compared to the same

under LS model. For more accurate analysis of thermoelastic behavior of structural

elements, the temperature dependency needs to be considered. Hence, this study is

believed to be useful in characterizing the thermoelastic responses of structural element

with temperature dependent properties under different thermoelastic models.
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