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Abstract

We consider the homogeneous Dirichlet problem for the anisotropic parabolic equation

N
ur = Y Dy, (IDxulP @02 Dgu) = £,

i=1

in the cylinder Q x (0, T), where @ c RY, N > 2, is a parallelepiped. The exponents of nonlinearity p;
are given Lipschitz-continuous functions. It is shown that if p; (x,t) > ]3—_?_’2,

i pi(x,t 1 .
W =sup M <14 —, |Dxiu0|max{p’("0)’2} c LI(Q), fe L2(0, T: Wé2(g2))’
or min; pi(x, 1) N

then the problem has a unique solution u € C([0, T]; LZ(Q)) with |Dy,u|Pi € L*(0, T; Ll (), u; €
L2(QT). Moreover,

pitr o 1 - _ pi2 1.2
| Dy, u] e L' (Qr) withsomer =r(u,N)>0, |Dy;u| 2 Dyu € W>=(Qr).

The assertions remain true for a smooth domain 2 if p; =2 on the lateral boundary of Q7.
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1. Introduction

We consider the Dirichlet problem for the model anisotropic parabolic equation

N
uz—jZ::le <|Dj’4|p"(Z)72Dj”)=f(Z) in O, an

u=00ndR2 x (0,T), u(x,0) =up(x) in Q.

Throughout the text we denote by z = (x, #) the points of the cylinder Q7 = Q x (0, T') with the
base §2. The domain Q c RY, N > 2, is either a parallelepiped

Ki={xeRY: x €(aa), i=TN|

with the faces parallel to the coordinate planes and the edge lengths 2a;, or a domain with the
smooth boundary 32 € CX, where k > 2 is a sufficiently large natural number. The assumptions
on the exponents p; (z) differ according to the choice of the domain. The exponents of nonlinear-
ity p; and the right-hand side f are given functions whose properties will be specified later. The
notation D ju is used for the partial derivative with respect to x , iju =D; (Dju),i,j=1,N.

Equation (1.1) with p; = p is sometimes called the equation of orthotropic diffusion [9,22].
It appears in the mathematical modeling of the diffusion processes where the diffusion rates are
proportional to |D julp_z. In the present work, we are interested in the anisotropic case where
the diffusion rates differ according to the directions x;. The exponents p; > 2 correspond to
the directions of slow diffusion, while p; < 2 means that the diffusion is fast. Since we allow
p; to be functions of the variables (x, 1), it is possible that the character of diffusion in the jth
direction changes from point to point.

At the points where D ju = 0 for some j € {1,2,..., N}, equation (1.1) degenerates if p; > 2
or becomes singular if p; < 2. Despite the resemblance with the celebrated evolution p-Laplace
equation

u, = div (|W|P—2vu) —f 1<p<oo, (1.2)

which degenerates or becomes singular at the points where |Vu| = 0, the properties of the so-
lutions to equation (1.1) are in striking contrast with the properties of the classical p-Laplacian
(1.2). Unlike equation (1.2), it may happen that the solutions of problem (1.1) vanish in a fi-
nite time if the equation includes only one direction of fast diffusion with p; < 2. Conversely,
the speed of propagation of disturbances may be finite or even zero in the direction of slow
diffusion, see [17,4]. The difficulties brought in by the anisotropy and the nonhomogeneity of
the diffusion operator are illustrated by the analysis of the self-similar solutions of Barenblatt
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type [15,22]. Unlike the isotropic case where the typical geometry is defined in terms of balls in
R¥, in the anisotropic case it is defined by parallelepipeds with the edge lengths related to the
exponents p;.

In recent years, parabolic equations with anisotropic nonlinearity have been studied very ac-
tively. The theory of such equations, with constant or variable exponents p;, includes theorems
of existence and uniqueness of weak solutions, properties of propagation of solutions in space
and time, as well as certain regularity properties of solutions. For the existence results for equa-
tion (1.1), as well as more general equations with the anisotropic principal part, nonlinear terms
of lower order with variable nonlinearity, and under different regularity assumptions on the data,
see, e.g., [3,28,4,26,6,24,8,1,11,12,30] and further references therein. The methods of proof in
these works vary in dependence on the assumptions about the data and the exponents of nonlin-
earity.

The regularity of local solutions to equation (1.1) has been studied by several authors. We
refer, e.g., to [20,19] for results on local continuity of solutions to equation (1.1). In [18,25,14,13]
the Harnack inequality and Holder continuity of local solutions is established. It was recently
proven in [9] that the spatial gradient of the local solution of equation (1.1) is bounded. The
above results refer to the local solutions of equation (1.1) and do not depend on the geometry of
the boundary of the space domain 2. One of the key tools of the proofs are inequalities of the
Caccippoli type, which prevents one from a straightforward extension of the regularity results to
the whole of the cylinder Q7.

In the present work, we are interested in the global regularity properties of solutions to prob-
lem (1.1). This issue has been recently studied in several works. It is shown in [29] that problem
(1.1) with constant p; > 1 admits Lipschitz-continuous solutions. This is true if the domain €2 is
either a parallelepiped, or is convex, C2-smooth, and satisfies some geometric restrictions. The
results of [29] are obtained under the following assumptions:

N

f£=0. ugeC*(Q), max ) |D;(|Diug|"~*Djug)| < oo.
[
i=1

Moreover, it is shown that Dl.zju € L?(Qr), provided that p; < 2. The key ingredient of the proof
is the technique of “doubling the space variables”, which allows one to estimate the Lipschitz
constant of the solution without differentiating the equation. Problem (1.1) with the variable
exponents p; € C*[0, T], @ € (0, 1), and the nonlinear source f = f(x,t,u, Vu) is considered
in [31]. Under the same assumptions on the geometry and smoothness of the space domain 2 as
in [29], the authors prove that if f(x, ¢, u, Vu) satisfies certain growth conditions with respect to
u and Vu, ug is Lipschitz-continuous, and for every i = 1, N either p;(¢) > 2, or p;(¢) € (1, 2]

for all ¢ € [0, T'], then the problem has a unique solution which is Lipschitz-continuous in the
space variables. Moreover, if p; (1) >2foralli =1, N, then u(x, -,) € C% [0, T].

Apart from these works, we are unaware of results on the global regularity for parabolic prob-
lems driven by the anisotropic operators, whilst the results for equations with the nonlinearity
depending upon both space and time variables seem to be completely missing. Addressing this
issue, we establish global higher integrability and second-order regularity of solutions to the
anisotropic parabolic equation (1.1). For problems of this type, an extension of previous contri-
butions is particularly delicate due to varying anisotropy in both space and time variables. Let us
describe the results of the present work. First we consider problem (1.1) in a rectangular domain
Q with the data satisfying the conditions
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N
feL*(0.T; Wy (), Z/ | Dy ™ 2P0} gy < oo,
i=lg
The exponents p; are Lipschitz continuous functions and satisfy conditions (2.3), (2.9). The latter

condition means that at every point z € Qr the maximum and minimum of p; (z) are sufficiently
close. The following is a brief account of the results in the case when 2 is a parallelepiped:

e problem (1.1) has a unique solution u € C ([0, T]; L%(2)) such that
w € LX(Qr),  uweLl®0,T:Wy*(Q),  DueLl™0,T;L'(Q), i=1N;

e the solution possesses the property of global higher integrability of the partial derivatives:

/|D,~u|["'(z)+’dz<oo, re,r*, i=1,N,
or

max; p;(z)

with some r* depending on the space dimension N and the number sup,, ————;
min; p;(z)

o there exist the second-order derivatives

pj(@)-2

IDjul” 7 Djuew"(Qr),  j=T1N;
e the same existence and regularity results hold for the regularized anisotropic equation
N .
5 2 pj@-2
ur =Y Dj((€+|Dju»)" 7 Dju)=f. ee(0,1); (1.3)
j=l1

e itis not required that any of the exponents p; (z) belongs to the range corresponding to fast or
slow diffusion; each of p;(z) may vary within the interval 1\%—12 P (z)), where the critical
exponent pj(z) is defined in (2.2).

The results are extended to the solutions of the problem posed in a smooth domain. However,
in this case we additionally assume that p;(z) =2 on 02 x [0, T'].

2. Assumptions and main results
To formulate the results we have to introduce the function spaces the solution of problem

(1.1) belongs to. For a given vector p(z) = (p1(2), ..., pn(z)) with measurable and bounded
components defined on O, p;(z) > 1 in Qr, we define the functions

N
pn(@) = 5 the harmonic mean of pi(2),..., pn(2), 2.1

Yisl 5D
and
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Npi(z) )
pi@) =1 N—pi@) ifN > pa(a), 2.2)

any number from (1, 00) if N < p;(2).

Assume that

pi: Or = (1,00), <pi(2) <pi(x)inQr, i=1,N. (2.3)

N+2

Given a measurable function g : Q — (1, 00), let L4 () be the linear space
L19(Q) = { u is measurable on Q : Pg(H () = / )99 dx < oo} . (2.4)
Q

The space L10)(€2) equipped with the norm

u

lullge).e =inf{k >0 pg() <)») < 1}

is a Banach space. For a vector g(x) = (q1(x), ..., gy (x)) with the components satisfying con-
ditions (2.3) in €2, we define the variable anisotropic Sobolev space

N
1,’ .
A 10(Q) = ! the closure of C§° () w.r.t. the norm ||u||W01,,;(.>(Q) = Z I Diuell py 2 f -
i=1
2.5)

The equivalent definitions of these spaces and the main properties of their elements are discussed
in Section 3. To deal with the functions defined on the cylinder Q7, we introduce the spaces of
functions depending on x and 7. For a vector p: Q x (0,T) = Q7 — R¥ with the components
satisfying conditions (2.3)

1

V(@) =W, P (@), forae.int e (0,T),
(2.6)
W(Qr) ={u: 0. 7) > Vi@ s ue L2Qr), D" e L'(Qp), i =T, N}.
The space W (Q7) is equipped with the norm
N
lullw = llull2, 0, + Z | Diullp;).0r-
i=1
We will also need the following functions:
pY@=max{pi1(2),....pn(@)},  p () =min{p1(2),..., pn(2)}. 2.7)

Definition 2.1. A function u is called weak solution of problem (1.1) if
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(i) ueCO(0,T]; L2 () N W(Qr), u; € L*(Q7),
(ii) for every ¢ € W(Qr)

N
/ (w+Z|Diu|f’f<z>—2DiuDi¢> dz= [ fodz 238)
or

Or i=l1
(iii) for every ¢ € L>(R) (u(x,t) — up(x), $)2.o — O ast — 0*.
The main results of the work are given in the following assertions.

Theorem 2.1. Let Q = K be a parallelepiped. Assume that the vector p(z) satisfies conditions
(2.3) and

\
pec(@p, p=supl
or P

1
14+ —. 2.9
<1+ N (2.9

Then for every uo € Wo2(Q) 0 Wy P“%(Q) and f € L2(0, T; Wl 2(Q)) problem (1.1) has a
unique weak solution u € W (Qr). Moreover,

we L0, T; W@ nwePO@),  w e L2(0r)

with

luell2, o + ess (%U%)) flu ||W(;,2(Q) +ess (%u%)) ||M||W01,ﬁ<nr)(9)
’ ’ (2.10)
=< C (1 + ”f”Lz(O,T;WOI'Z(Q)) + ||u0||W012(Q) + ”uO”W(}vﬁ(uO)(Q)) .

Remark 2.1. The conditions of Theorem 2.1 allow the exponents p;(z) to vary within the in-

terval <1\?_4A—]2 pZ) This means that the diffusion rate in the jth direction depends on the point

z € Qr and may be slow on a part of the domain, i.e. p;(z) > 2, and fast on its complement
where p;(z) < 2. The second condition in (2.9) can be relaxed if the diffusion type in each di-
rection does not change on the whole of the domain. Relabeling the directions, we may assume
pi(z) = 2in Q fori =1, K (slow diffusion) and p;(z) <2 — o for i = K + 1, N with some
o > 0 (fast diffusion). In this case, Theorem 2.1 can be proven under the weaker gap condition
in (2.9) (see Remarks 6.2, 7.1, 7.2):

/L:suppv(z) <1—i—2
or P"() N’

Remark 2.2. In case of fast diffusion in jth direction, i.e. p;(z) <2 in Qr, we have the follow-
ing inclusion:

DjueLPiV(Qr) forall i=T,N
- see Remarks 8.1 and 8.2
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Theorem 2.2. Let the conditions of Theorem 2.1 be fulfilled and u be the weak solution of prob-
lem (1.1).

(i) The solution has the property of global higher integrability: for everyi =1, N

4—-2N(pn—1
/ |Diu|POt dz < 0o foreveryr e (0,r"), r*= 4=V =1 (2.11)
N+2
or
(ii) The solution has the second-order derivatives in the following sense:
pi(2)—2 1.2 . -
|Diu|" 2 Dijue W>=(Qr), i=1,N. (2.12)

Remark 2.3. The assertions of Theorem 2.2 remain true if p;(z) > 2 foralli =1, N in ET and

2
n<l1l+ v see Remarks 7.1 and 7.2.

Remark 2.4. The property of higher integrability of the gradient is well-known for the solutions
of the isotropic parabolic equations with (p, g)-growth, see, e.g., [7,5]. Let p;(z) = p(z) for all
i =1, N. In this special case pV(z) = p”(z) = p(z), 4 = 1, and Theorem 5.2 (i) recovers the
maximal possible gap between the exponents p and g found in [7] for the case of isotropic slow
diffusion: 2<p<qg < p+ 573-

Remark 2.5. The assertions of Theorems 2.1 and 2.2 hold true for the solutions of the regularized
equation (1.3). Moreover, the study of the regularized equation constitutes the bulk of the rest of
the work. The conclusions of Theorems 2.1, 2.2 follow by passing to the limit as € — 0 in the
corresponding results for the solutions of the regularized problem given in Theorems 5.1, 5.2.

The next result addresses the situation where the domain €2 is smooth. Following the same
scheme of arguments, we show that the assertions of Theorems 2.1 and 2.2 remain true but under

additional restrictions on the anisotropy of the diffusion operator.

Theorem 2.3. Let Q be a bounded domain with 92 € C¥,

1 1 n v
k>1+N 55— ) pT=supp’(2).
2 p or

Assume that p;(z) =2 on dQ x [0, T). If p(z) satisfies conditions (2.3), p; € Co’l(aT), and

1 — 2
=su <14+ —, or () >21in and n <1+ —,
W Qf Q) N pi(2) Qr and p N

then for every ug € W) N W PC0(Q) and f € L2(0, T; Wl2(Q)) problem (1.1) has a

unique weak solution u € W (Qr) such that
00 .wl2 Lp() 2
ue L0, T; Wy ()N W, 77 (R)), ur € L°(Qr).
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The solution u satisfies estimate (2.10). Moreover, the solution possesses the property of higher
integrability of the gradient (2.11), and inclusions (2.12) hold.

Let us outline the contents of the work. In Section 3 we introduce the variable Lebesgue
and Sobolev spaces and collect the known results on the anisotropic Sobolev spaces used in the
rest of the work. The rectangular domains are natural for the anisotropic spaces because they
allow one to extend a given function to a broader domain or the whole space by a function
from the same anisotropic space. This is not always possible in a smooth domain because the
standard procedure based on rectifying the boundary portion mixes the partial derivatives, which
have different orders of integrability. This difficulty may be overcome by considering the class of
domains with “p(-)-extension property”, i.e., the domains for which such an extension is possible
without altering the anisotropic space, see [8]. A parallelepiped is one of the known examples of
anisotropic p(-)-extension domains, although the complete characterization of this class is not
available thus far.

In Section 4 we construct the basis for the anisotropic variable Sobolev space in the rectan-
gular and smooth domains. In both cases we take for the basis the set of eigenfunctions of the
Dirichlet problem for the Laplace operator and show that it is dense in the anisotropic variable
Sobolev space.

In Section 5 the regularized nondegenerate problems for equation (1.3) in a rectangular do-
main are formulated. The regularized problems are solved with the method of Galerkin in the
basis constructed in Section 4. Section 6 is entirely devoted to deriving a priori estimates for
the solutions of the finite-dimensional approximate problems. The global regularity of the ba-
sis functions allows one to obtain global uniform estimates on the higher-order derivatives of
the approximate solutions. These estimates entail the regularity of the sought solution, which is
obtained later as the limit of the sequence of approximations.

It is proven in Section 7 that the partial derivatives of the finite-dimensional approximations
are integrable in Q7 with the orders p;(z) + é with some § > 0, instead of the orders p;(z)
prompted by the equation. The integrals are bounded by a constant that does not depend of €
and the number of the approximation. To derive these estimates we prove a special anisotropic
interpolation inequality and combine it with the uniform a priori estimates on the second-order
derivatives obtained in Section 6.

The main results are proven in Section 8. We prove first the existence and regularity results
for the solution of the regularized problem (1.3). The proof of the existence theorem relies on the
weak and strong compactness of the sequence of the approximate solutions, which follow from
the uniform a priori estimates. The limits of the nonlinear terms are identified by monotonicity.
Moreover, the property of higher integrability of the spatial derivatives allows one to prove the
strong and pointwise convergence of the gradients, which is used then in the proof of the second-
order regularity of the obtained solution. The proofs of Theorems 2.1, 2.2 follows the same
scheme with the difference that now we have to pass to the limit as € — 0 in the family of
solutions of equation (1.3), which requires an additional step in the arguments.

In Section 9 the results are extended to the case of a smooth domain with the boundary 9$2 €
C*. It turns out that such an extension is possible if at every point of the lateral boundary of the
cylinder Q7 the flux vector with the components |D;u|Pi®~2D;u either equals zero, or points
in the direction of the normal to the boundary. The latter is true either if all p;(z) =2 on the
boundary, or if the normal vector has only one nonzero component, which means that Q is a
rectangular domain. In the isotropic equation (1.2) this restriction does not appear because the
flux |Vu|P@~2Vy is always proportional to V.
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3. The function spaces
3.1. Variable Lebesgue spaces

A thorough insight into the theory of variable Lebegue and Sobolev space can be found in the
monograph [16]. Here we confine ourselves to presenting only the properties of the Lebesgue
spaces (2.4) needed in this work. Let @ ¢ R" be a bounded Lipschitz domain, and p : Q — R
be a measurable function with values in an interval [p~, pT] C (1, 00), p™ = const. The space
LPO)(Q) is defined by the modular

Pp() () = / uP™) dx
Q

The dual space of LP)(Q) is the space L”/(')(Q) with the conjugate exponent p’(x) = pfx()xil .
The generalized Holder inequality holds: for every f € LP)(Q2) and g € L”/(')(Q)
/ Ifgldx <2[ fllpe).allglpo.a- (3.1
Q

If p, g are measurable functionsin Q and 1 < p(x) < g(x) < oo a.e. in 2, then the embedding
L10(Q) c LPY(Q) is continuous and

lullpoy,e < Cllullg),e-
The relation between the modular and the norm of L) () is given by the following inequalities:
min {1lul? ) o 2, o} < ppery@) < max flul?, ol (3.2)
pO. 1Hlpo @ = PpOM) = pe. Hip0af - .
The set C5°(Q) is dense in L0 (Q).
3.2. Anisotropic variable Sobolev spaces
Let po, p1, ..., py be measurable functions defined on €2 and lﬁx) =(p1(x),..., pn(x)) be

a vector. By Clog () we denote the set of functions continuous in € with a logarithmic modulus
of continuity:

— 1
lg() =gl =w(x =y, Vx.yeQ, |x—yl<z, (3.3)

where w is a nonnegative function such that

1
limsupw(s)In—-=C, C = const.
s—>0t s

Let us assume that
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pi € Ciog(Q), pitx)e[p . pt]c(,00), i=1,N.

Let py, p}'» p¥, p” be the functions defined in (2.1), (2.2), (2.7). Apart from the space Wy ”) ()
introduced in (2.5), we consider the following spaces:

(i) Wh(POPON Q) = {u e LPO(Q) : Diue LPO(Q), i =T, N},
el 0.5 () = Nttll poc).2 + SN IDiull .0
i) Wl,(pv,ﬁ(d)(gz) ={ue va(‘)(Q) : Diue LPiO(Q),i =1, N},
”u”WL(Pv(')-ﬁ(‘))(Q) = ”u”pv(~),52 + ZzNzl ||D,-u||pi(,),9,
RTON0) i
(i) W (@) = W05 (@) A Wl (@),
o L(pY(),p() -
w (Q) = le(Pv(')’[’('))(Q) N Wolsl (Q),

(iv) Wo P OPO) (@) = {the closure of C3°(R) w.r.t. the norm of W1(?"0:F0) (@) }
3.3. Preliminaries

By a rectangular domain 2 we mean a parallelepiped K;. The boundary of a rectangular
domain €2 is represented in the form 02 =19 U T", where

1. T is composed of (N — 1)-dimensional open sets I';, which are the faces of I" and lay in the
coordinate planes x; = %a;,

2. TI'g contains the edges and vertices and has the surface measure zero.

Proposition 3.1 (/21], Th.Z.i and [32], Sec.13). Let @ C RY be a bounded domain with Lips-
chitz boundary. If p; € Ciog(2), then

o L(pY(),p() o L,(PY(),p() 1L(pY (), p()
1. C3°(2) is dense in W () and, thus, W () =Wy ’ (2);
2. C®(Q) is dense in Wl’(pv(')*’;('))(ﬁ) if Q2 is a rectangular domain.

Proposition 3.2 ([21], Th.2.5). Let Q be a rectangular domain and p € COQ)N. Ifq € cY(Q)
and

q(x) < max {pv(x), pZ(x)} forall x € Q,
then
Wl’(PV(‘)”;(‘))(Q) < LIO(Q) (compact embedding).
Proposition 3.3 (/2/], Th.2.6). Let Q be a bounded domain and p; € C°(Q), i =1, N. If
pY(x) < pi(x) forallx €, (3.4)
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then

N
L(pYV (), p(
Il pv 2 <C Y IDjullpre forallue Wy P (@) (3.5)

i=1

with a constant C independent of u. Hence, under condition (3.4) the functional
Y
ZINZI | D;ull p; .y, defines an equivalent norm of W(;’(p (')’p('))(Q).

Proposition 3.4 ([21], Th.2.7).

1. Let Q2 be a rectangular domain and p; € c%Q),i=1,N. If (3.4) holds, then
WL(PV('),I"?('))(Q) — le(Po('),ﬁ('))(Q)

for any po € C%(Q) satisfying po(x) < Py, (x) everywhere in Q.
2. Let Q be a bounded domain, p; € Co(ﬁ), i=1,N.If(3.4) holds, then

vy 7 = o L(pY().p() o 1,(1,p()
W()l’(p ():P())(Q) — WOL(LP(')) (Q), and w (Q) =W (Q)

Proposition 3.5 ([2]], Th.2.8). Let Q be a bounded domain, p; € C°(Q), i =1, N. If (3.4) is
fulfilled, then

1, =0 1, Vi, i =

We distinguish between the cases where 2 is a rectangular domain, or has the smooth bound-
ary.

4.1. The rectangular domain K;

Let us consider first the case 2 = K;. The eigenfunctions of the Dirichlet problem for the
Laplace operator

AYi+ Yk =0in Kz,  yYx=0onT, @.1)

form an orthogonal basis of L*(K ). The solutions of problem (4.1) have the form

N kix; N g2
—C . iXi . A= 2 _i7 4.2
Yi() Hsm( a ) =Y (42)
i=1 i=1 "1
where k = (k{,...,kn), ki € N, C = const > 0 is the normalizing constant. It follows that

Ay =00nT =0Q\Ty.Forallke N" and s e N
Ay + (=) Y =01in €, Ay =00nT =9\ Io.
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The set of eigenpairs (Y, Ak) can be reordered and presented in the form

Wi}, O0<A <A <...<X —00asi— 0o,

where V; corresponding to different A; are orthogonal in L?(£2), but the same eigenvalue A; may
correspond to various ;. The eigenfunctions are normalized by the condition ||¥;]2.0 = 1.
Fixm =1,2,.... For every multi-index « € RY and any vector k, k; =1,2,...,

| Dy | = anm]_[< ) @; (x;),

i=1

where

sin (”5”)‘ if @; =0 or ¢; is an even number,

—) ‘ if @; is an odd number.

It is straightforward to check that for |«| =

20 N k; 20
1
”Dawk”29:C2 4m1_[< ) ||q)i||%,(—ai,ai):7-[4m1_[<_) .

i=1 i=1
Let us denote k = max; k;, a4 = max; a;, a— = min; a;. Then
N 2a; 4m N ;2 2m 4m 4m
k\ a k: 1 af ay
[T(=) ==(>.%) = ZZ =(=—) 1A"yl5q.
a; 4m 2 ]T4m 4m Ta s

i=1 a i=1 % i—1 ¢

Thus, for every m =0, 1, 2, ... there exists a constant C = C(a+, N, M, m) such that

IID‘WkII%,Q < CIIA’"WkH%,Q, loe| = 2m. 4.3)
Let || =2m —1,m=1,2,..., be an odd number. Since k; > 1, in this case we have
N 2\ % 22m—1) 4m 14
[1(5) = = ()45
2 = 20m-1 = %= 4
i=1 \% a”®" b a- aiy"

sﬁ(%) (22 ) = Claz, m)| A" yxl3 g,

i=1
whence
IID“wkllﬁ,QSC/IIAmtlka%,Q, loe] =2m — 1. 4.4
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4.2. Density of [y}, in Wo " ()

Consider the Hilbert space
H™(Q) ={u:D% e L*(Q), a = (a1,...,ay), |a| = Zai <m}

equipped with the usual norm

lullzmy =Y I1D“ull2.-

0<|a|=m

Proposition 4.1. Let 2 be a rectangular domain. For every v € Cg°(S2)

/|Av| dx = Z/m |2 dx.

i,j= IQ

Proof. Integrating by parts two times we obtain

/|Av| dx—/dlv(Vv)Avdx— /(U Vv)AvdS — Z/D vdiv(V(Dj;v))dx

Q zll—~ 119

—Z/(" Vv)AvdS — ZZ/DU(U v(D; v))dS—i—/ Z ‘D dx,

i= lr Jj=li=lp i,j=1
where V is the outer normal to I';. Since supp v € €2, the boundary integrals vanish. O

Proposition 4.2. For every v € C{°(R2)

<l|Av]3 g < Il 4.5)

CHUHHZ(Q) ()

with an independent of v constant ¢, and || Av||2,q is an equivalent norm of C3°(€2) N H*(Q).

Proof. The second inequality is obvious. To prove the first one we represent v € C;°(£2) by the
Fourier series in the basis {{;}: v = Zloil vivi, vi = (v, ¥i)2.Q,

k
0 = Zv,-lp,- — v in LZ(Q).

i=1

By inequality (3.5) with p; =2 we have |[v|2,o < C||Vv|2,q with a constant C which does not
depend on v. Since v € Cgo(Q), then Av € L%(Q) and using the fact that {1;} are orthonormal,
we get
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o
2 2.2
||Av||2’Q = Z)”i v; < 00.

i=1
For every k e N

k
IVo®3 o = (Vo®, vo®), g = —(Av®,v®)y o =) " aiv}
i=1

1 1
k 2 k 2
S(Zkfv?> (Zv%) <llAvlzalv®2q.
i=1

i=1

(4.6)

Hence, ||[Vo® ll2.2 < Cl|Av||2, where the constant C is from (3.5). Repeating these estimates
for the function V(v(k) — v™)Y we obtain

IV® —v™)|3 o <2 Avl2ellv® —v™|2e— 0 ask,m— oo.

By the Cauchy inequality and due to monotonicity of the sequence {A;}

k k

|vi] Low ®)

W®N5a=> vt =>" (\/Ai|vi|)s—||v 2.2l Vo® l2.q.
im1 o Vi 2

Inequality (4.6) entails the uniform estimate |Vv® |, o < C||Av]|2.q. It follows that Vo®) —
Vv in L%(2) and

vl + IVVl2.e < C'lIVVl2e < C"llAv]2.0

with independent of v constant C”. By Proposition 4.1, Z{szl ||Di2jv||%j2 = ||Av||%’9. Gather-
ing these estimates we conclude that there is a constant C > 0 such that for every v € C;°(2)

2 2
C > D5 =lAv]5g. O

0<ar|<2
Proposition 4.3. Let m > 2 be an even number. There is a constant C"” > 1 such that for every

veCE(RQ)

1 z ” m
EHAQ V2, < Ivllam@) < CTIIAZ V]2 .

Proof. The first inequality immediately follows from the definition of the norm in H™(£2). To
prove the second one we argue by induction. For m = 2 the required inequality coincides with
(4.5). Assume that [|v]| g (o) < C||Akv||2,g for some k > 1. Set g = Awv. By the induction con-
jecture

gl g2 o < CllA*gll2,0 = CllAM ]l q.
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Set F, = D%v, |a| = 2k. Since F, € C(‘)’O(SZ), it follows from Proposition 4.2 that

N
DDl o= Y IAFlig= Y D IDjFalig= Y, D3

lor|=2k lor|=2k loe|=2k i, j=1 loe|=2(k+1)

Gathering the last two lines and using the induction conjecture we conclude that
o]l g2 gy < CllA vhg. O

Corollary 4.1. By virtue of (4.3), (4.4) the assertion of Proposition 4.3 is true for the eigenfunc-
tions of problem (4.1): there is a constant C = C(a, N, m) such that

m
Wkl = D, IDVkl3g <C Y IAYKIE g < ClYkl g

0<|a|<2m s=0

Given a function f € LZ(Q), let

k
fO=3"fwi fi= e

i=1
denote the partial sum of the Fourier series of f in the basis {;}, f® — f in L>().

Proposition 4.4. Let m be a positive even integer. For every f € C3°(R2) and € > 0 there is
lo € N such that

If = fOllgmy <€ foralll >l

Proof. Set m =2k and denote by F; and f; the Fourier coefficients of the functions AX f and f
in the basis {¥;} of LZ(SZ). The Fourier coefficients of A¥ f are defined by
Fi= (A fiyiae=—(VA ), Ve = —a(A " iy
= =D (L Y= D2 fi,  VieN.

Since f € C{°(2), it follows from Proposition 4.3 that there exists a constant C such that

o0

1 o0 o0
W ey <IA*fI =D F? =3 a3 f2 =D A'f} <oo.

i=1 i=1 i=1

The convergence of this series means that the sequence of partial sums {f®)} is a Cauchy se-
quence in H™(L2). Since f) are linear combinations of {i};_,, it follows from Corollary 4.1
that for [ < s and m =2k

N
I F& — f(l)”sz(Q) <C Z x;”ff —0 asl/— oo.
i=I+1
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Hence, f®) — fin H™(Q). O

Lemma 4.1. The system of eigenfunctions {\;} is dense in W&’ﬁ(')(ﬂ).

Proof. Take a function v € Wol’ﬁ(‘)(Q) and fix an arbitrary € > 0. By density of C;°(R2) in

Wol‘p(')(SZ), there exists ve € C3°(2) such that [jv — ve”w(}'ﬁ(')

()
norm in WO1 P (‘)(Q) and the generalized Holder inequality, for every w € WO1 P (‘)(Q)

< €. By the definition of the

N N
+
Il .50, = 2 IDwlpo.0 < D Cilpi 1D Diwl pr.g < CIIVl v 0
i=1

i=1

By the Sobolev embedding theorem, for every w € C§°(£2)
Il 1t ) < CIVWI p+ 0 < Cllwllgm ),

where pt > ]3—_?_’2 andm>1+N (% — 1%) is an even integer. By Proposition 4.4, there is

ko € N such that vék) = Zf‘{:l Ve Wi satisfies the inequality ||ve — vék) lam@) <€,V k=>ky, and

v — @ +C've = vP Nl gm@) < (1 +Che. O

— < _ -
Wi = llv UGHWO‘J’“)(Q)
4.3. Domains with smooth boundary

If 9 € C* with k > 2, we take for the basis of Lz(Q) the set of eigenfunctions of the Dirichlet
problem for the Laplace operator

(Voi, Vi)re =1 (Vi ¥) V¥ € Hy(Q). 4.7

It follows from the classical elliptic theory that ¥; € H¥(R). Define the closed subspace of
H'(Q)

Hj(Q) = {u e H*(Q): A*'u=00n3Q\ Ty, s=0,1,..., [%}} HY(Q) = L*(Q).

The relations

(A% f, Agg)z,sz if k is even,

Lf. gl = = ~

o

define an equivalent inner product on HI")(Q): [f.glk= Z )\i-‘ figi, where f;, g; are the Fourier
i=l1

coefficients of f, g in the basis {¢;} of L(£2). The corresponding equivalent norm of H%(SZ) is

defined by ||f||§_1k @ = [f, flk. Let f0" = Y 'L, fi¢i be the partial sums of the Fourier series
D

of f € L2(Q). The following assertion is well-known.
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Lemma 4.2. Let 9Q € CX, k > 1. A function f can be represented by the Fourier series in the
system {g;}, convergent in the norm of HX(Q), if and only if f € HY(Q). If f € H5(Q), then
the series Y io, Ai-‘fiz is convergent, its sum is bounded by C|| f || g ) with an independent of f
constant C, and || f™ — Sk = 0as m — oo.

Letu e Wol’ﬁ(')(Q) and € > 0 be an arbitrary number. By Proposition 3.1 the set C§°(2) is

dense in Wg,ﬁ(')(Q), therefore there exists v € Cg°(2) C Hik)(Q) such that ||u — ve|| whio gy <
0

€. By Lemma 4.2 one may find m € N and w, € span{¢q, ..., ¥} such that ||ve — Wi || gk () <
€. Following the proof of Lemma 4.1 we arrive at the following assertion.

Lemma 4.3. Set Py, = spani{oi, ..., ¢m). If 32 € CX with k > 1 + N(% - [%) and p; €
Ciog(R), then U_ P, is dense in W ().
4.4. Spaces of functions depending on z = (x,t)

Let p: 2 x (0, T)= Q7 R¥ be a vector-valued function,

2N

N2 <pi@ <pi@,  pieC™ Q).

The space W (Qr) defined in (2.6) is the closure of C*°([0, T']; C§°(£2)) in the norm of W (Q7).
Let

Sp=u:u=Y_ d®)Yi(x), di €C*'[0. T} .
k=1

Then, | Sy is dense in W (Q7) (see [4, Lemma 1.17]).

m>1
4.5. The interpolation inequality
Let p € RV be a given constant vector such that

2N
N+2

<ph<p’<pj. (4.8)

Proposition 4.5 (Lemma 2.1, [2]). Let K be a rectangular domain. If p satisfies condition (4.8),
there exists a constant C such that for every u € Wh-(LP) (K3)

N
lull . x; < C (Z IDiull .k + ||u||1,1<;,> : (4.9)
i=1

Inequality (4.9) remains valid if the norm ||u (|1, is substituted by [|u||2, g, It is well-known
(see, e.g., [10, p.133]) that for every constant s, g satisfying 2 < s < g
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_ . 1 6 1-6
lully < el lluelly™  with S=ot (4.10)

Gathering (4.10) with (4.9) we obtain the following interpolation inequality.

Lemma 4.4. Let p satisfy (4.8). There exists a constant C = C(N,a) such that for u €
whEP(Kg)

N
llulls,x; < |Iu||,, Kgllullz K = Z IDiullp,.; + el k) luell) . K (4.11)

forevery?2 <s < pj and

L1
N

0= € (0, 1).

2
N+2 1
2N Ph
The interpolation inequality (4.11) can be adapted to the case of variable exponents p;. Given
a vector p(x) defined on K, set

_ . _ N
p; =minpi(x),  pf=maxpi(x),  p =g (4.12)
K; K; Zi:l PT
Lemma 4.5. Assume that p; € Co(fa)for alli =1, N, and
Np, -
2N _ _ —h ifp, <N
N3 <P =P =p <) =1V "
+ any finite number if p, > N.
Then there exists a constant C = C(N, a) such that for every u € Wl’(z”;('))(Ka)
lullsey,kz < Cllulls+ k; < IIMII . K<|Iu||2 K*
N (4.13)
<Y (1Dl g, + ok, ) Nl
i=1
where s € Co(fa),
1_ 1
=
2<s +=r% s(x) < (p)*, 9=N_<2+2_A¢€(0’1)' (4.14)
2 Py

Corollary 4.2. Let the conditions of Lemma 4.5 be fulfilled and ||ull2.@ = Mo be a known con-
stant. Then

N
lulls+k; <€ Y IDul- . +C’ (4.15)
i=1 P
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with constants C, C' depending on a, N, and M.
5. Regularization. The approximate problems

The solution of the problem (1.1) is obtained as the limit of the family {u,}¢~o of solutions to
the regularized nondegenerate problems

ZD ((e +1|D; u|) Du) f in Qr,
o (5.1)

u=00ndR2x (0,7), u(x,0)=up(x)in 2, €e€(0,1).
The solution of the problem (5.1) with € € (0, 1) is a function satisfying the following conditions

(i) ue € CO[0, T1; L*(R)) N W(Q7), ue; € L*(Qr),
(ii) for every ¢ € W(Q7)

f<u5t¢+2(e + 1D ™5 DiueD; ¢> dz—/fd)dz, (5.2)

or i=1
(iii) for every ¢ € L2(Q) (uc(-,1) —uo, ¢)2.0 — Oast — 0%,

Theorem 5.1. Let Q = K; and p(z) satisfy the conditions of Theorem 2.1. Then for every € €
(0, 1) and every ug € Wo2() N Wy ") and f € L2(0, T; W2 *(R)), problem (5.1) has a
unique weak solution

ue € W(Qr)NL®0,T; W@ nwy " (@),
with

lluerll2, 0 +ess sup [luellyi2 ) +ess SUP llueel Wl
or o 0.7 )

(5.3)
<C (1 + 1 f 20wz + ||MO||W(1 2 T lluolly, Lt 0)(Q)>
with an independent of € constant C. Moreover,
N AIN(1 — ) + 4
Z/ |Djuc|P Ot dz < C foreveryr e (O, N——|-2> 54

with a constant C independent of €, and the constant i defined in (2.9).
A solution of problem (5.1) is constructed as the limit of the sequence of finite-dimensional
Galerkin’s approximations in the basis {i;}. Let u™m = DL em,i ()Y (x) where the coeffi-

cients ¢ = (Cm.1, - - - » Cm.m) are defined from the system of ordinary differential equations
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N
i ® ==Y (F7@ D), D) |+ (60 Vs,
j=1 ’

. (5.5)
emi0) =@ Yira, i=1m,

pj@)-2

.7:}6)(2, Djuém)) — (62 + |Dju£m)|2) 2 Djugm).

By Lemma 4.1, the sequence {cy, ;(0)} can be chosen so that

m

ul" ()= emi Oy > uo in Wyl g;(x) = max{pi(x,0),2}.

i=1

By the Carathéodory existence theorem, for every ug € WO1 40) Q), fe L%, T; W01’2(§2)) and
m € N problem (5.5) has a solution ¢, = (Cp.1,Cm.2, - - - » Cm.m) ON an interval [0, T,,]. The pos-
sibility of continuation of each of ¢, ; to the interval [0, T'] will follow from the uniform a priori
estimates on ugm) derived in the next section.

The global second-order differentiability for the solution to (5.1) is given in the following
theorem.

Theorem 5.2. Under the conditions of Theorem 5.1

pi(2)=2

(€ + |Diucl "7 Diuc e WH3(Qr),  i=T1,N.

6. A priori estimates

Fix a number m € N and consider the function ué’”). For the sake of presentation, when
deriving the a priori estimates for the solutions of the regularized problem (5.1) we omit the
indexes € and m and write u = ué’"). Multiplying the ith equation of (5.5) by ¢;,,; and summing

up for i = 1, m, we arrive at the relation

pi(2)—2

N

1d
M||u(~,r>n%,g+/Z<ez+|Diu|2> = | Djuf?dx

Q i=1

6.1)
1 2 1 2
= f”dxfE”f(',f)”z’gz"‘E”“('J)”zyg-
Q

Lemma 6.1. The approximate solutions u = uém) satisfy the uniform estimate

N
pi(2)-2
sup [lu(n)3 o + CZ/(e2 + [ Diuf®) "2
0.1 i=15
T

|Djul*dz < C’ (||f||%,Q, - ||uo||%,g) (6.2)
with independent of m and € constants C = C(T), C' = C'(T).

Proof. Estimate (6.2) follows after multiplication of (6.1) by e™! and integrationin t. O
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Multiplying the i th equation of (5.5) by ¢, ;(¢), summing the results over i = 1, m, integrating
in ¢t and taking into account the identities

(€ + |Du) " DiuDjuy = —<e+|Du|> (|Du|)

Pit

i

3(—(e+|Du|)z> ”%2+wunz— (€ +Diu®)* In(e + |Djul?)

ot
i
we arrive at the inequality

1
||u,||2QT+Z/—<e + 1D dx <~ ||u,||%,QT+5||f||%,QT

llQ

N
1 Pi(x.0)
+§j/ (€ + Do) 5 dx

) pix,0) ’

N
Z/(p”(ZJrIDuI) ’;”(2+|Du|> 1n<e+|Du|>>

1

The estimate on the first integral in the last line follows from (6.2). The second integral is bounded
by

CMZ/<1+|D u )1,()+n>

i= lQT

with any constant p > 0 by virtue of the following elementary inequalities: for every p > 0, there
is a constant C, such that

Pifs>1
m2s<c, i’ U= 6.3)
s~P ifse(0,1),

and

i+ . e N
{(ﬁ)" SEEES ce(1h @), ceon,

V2IEDPite if[E] > €

Lemma 6.2. If |pi;| < L a.e. in Qr, then for every constant p € (0, 1) the functions u = ugm)

satisfy the estimates
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||u,||2QT+Zsupf—<e D)™
(6.4)

<c 1+||f||2QT+Z/|D ol P50 i +C,/|Du|,,,(z)+pdz
i=lg Or

with constants C, C' depending on p but independent of m and €.

Let us multiply the nonlinear flux term in the kth equation of (5.5) by Agcm k(t), and sum up
the results for k = 1, m. Recall the convention to denote u = ué ™ For everyi=1,N

_ <]:i(€)(Z, Diu), Zkkcm,k(t)Dil/fk> fD ((6 + | D; u|
2,Q

k=1 Q

/(6 + |Diu |) Ducos(v xi)AudS — /(6 + |D;u | ”

j=1

/(e D) = Diu cos(7, x,)Au—Zcos(u xj)D}u | ds

Z/ 16

where V is the exterior normal to d€2. In the first line of (6.5) we integrated by parts and used the
fact that ¢ = 0 on 02. By splitting the integrals over d€2 into I'; and using the fact that for the
rectangular domain cos(v, x;)|r, = 0 if i # j, we obtain

)Dizjudx,

(6.5)

/D((e D) T Du)Audx—Z/D((e Dy Du)D udx =1,

Q =g
The straightforward computation shows that

N

Z/ = (D?ju)2 dx

jpiln(e? + |Diu) D} udx = Ji + Ja.

Q
N
Z/e+|Du|
=Q

The second term is bounded by Young’s inequality: for every § > 0
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-2 2 2
2 (Diju) dx

N
p;i(2)
+G Y [@ 4 1DuP) S 1€ 4 D) d
j=lg

N
=5 [ €+ 1Dup

J=1g

Applying (6.3) we find that

T <

2
(iju) dx+C 1+/|D,~u|l’i<2>+ﬂdx
Jj= IQ

Choose é so small that min; p;” > 1+ 8. For every p € (0, 1), we obtain the inequality

N
1d 2 pi(@—2 2 \2
i,j=1 Q
(6.6)
N
Z/wmpl@“dx +/Vf Vudx.
i=lg Q
The last term is estimated by
1 2 1 2
(Vf,Vu)o < E”Vf”z,fz + E”V”‘”ZQ'
Arguing as in the proof of Lemma 6.1 we obtain
Lemma 6.3. If |Vp;| < L a.e. in Qr, then the functions u = ugm) satisfy the estimates
-2 5 2
sup IVu@l5. + Z /  (DRu) az
i,j= lQT
(6.7)

N
<c|1+ Zf |Diul PO dz + | Vuoll3.q + IV £113,0,
i=1
or

with any p € (0, 1) and a constant C independent of m, €.

Remark 6.1. An analogue of estimate (6.7) holds true if |p;| + |Vp;| < L a.e.in Qr and f €
L2(QT) N W&’q(‘) (2) with g; (z) = max{p;(z), 2}. In this case we apply the Young inequality to
obtain
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1
qi(z)

; |Diu|q’(z) dx
p;i(2)

N N
1 '
(V/ Vo< :f 1Dy F19O dx + S :/
i:lQ i:lQ

N N
52/|Dif|q;(z>dx+c ||Vu||%’9+2/|Diu|m(z)dx
i=19

i=lg
and use Lemma 6.2 to estimate the last term.

Remark 6.2. Let us assume that x; is the direction of fast diffusion: there exists o > 0 such that
pi(z) + 0 <2 in Q. Then the integral of |D;u|? % on the right-hand side of (6.6) can be
estimated by Young’s inequality, provided 0 < p < o:

/|Diu|”"(2)+pdx§C 1+/|Vu|2dx
Q Q

Multiplying (6.6) by e "¢’ we absorb these terms in the derivative of ||Vu||% Qe_C’ on the left-
hand side and integrate the result in 7. It follows that the right-hand side of (6.7) does not include
the integrals of |D;u|?@*? corresponding to the directions of fast diffusion. The integrals of
| Dju|Pi@+P with max p;(z) > 2 require special estimating.

7. Higher integrability of the gradients

Let us fix the index m € N and consider the function u = u'™. Integrating by parts we find

that for every constant r > 0

pi+r—2 pi+r—2

/(62+|D;u|2) 2 (D,~u)2dx:[(ez+|D,-u|2) > D;uD;udx
Q Q

> 2 2 pitr=2 2 ) pit+r=2 2
= [ ucos(v,x;)Diu(e” +|Diu|) 2 dS— | u(e”"+|D;ju|”)" 2z Djudx
a0 Q
1 2 2\ bitr=2 2 2
—3 uDju(e” +|D;jul”)" 2 In((e” + | D;ju|")D; p; dx
Q
2 2\ Pitr—4 2112
— | ulpi +r—=2)(e" +|Diul)" 2z |Dju|"Dj;udx
Q
2 N /L 2 2 2 N /L
<C [ |ul(e” +|D;iul”) 2 |Dijul||In((e” + |Dju|")|dx + Co [ lu|(e” + |Dju|”)Z  |Dj;uldx
Q Q
=7+ 1.
(7.1)

The integral over d€2 on the right-hand side of (7.1) vanishes because # = 0 on I';. The integrals
7; are estimated separately.
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Estimate for 7. For the sake of simplicity of notation, we assume first that the exponents p; are
independent of ¢. For every v € (0, 1) and A > 0

pitr—1+v

Ilsc1/|u|<ez+|Diu|2> S x4 G+ ul o)
Q

pitr=2
2

2 2 2 pitr
SC—‘F)\ (6 +|Dlu| ) |D1u| d)C—'—C‘)L |],{|lfv d_x7
& Q
which allows one to choose A so small that the first term can be absorbed in the left-hand side

of (7.1). To study the second term, we cover 2 = K by a finite number of cubes K7 j, with the
edge length by < B such that

14
K; = U K&’,bk~
k=1

The cubes from the cover {Kj p, }ﬁzl may overlap. It is sufficient to derive the needed estimates
for each of Kj j, and then sum up the results. The number of cubes K 5, in the chosen cover
depends on g; and on the modules of continuity of p;(x). For the sake of simplicity of notation
we will denote Kj 5, = K, . Take a cube Ky, , a vector Fr=@r...,r)€ RN, re (0, 1), and set

p; =minp;(x), p;=maxp;(x),

K[’k Kbk
g=p+7F, G =gy, qy), 7.2)
- N . o
4% ==y T - the harmonic mean of ¢ .
Yiz1g=

pjtr
To estimate the integrals of |u|11—_V, j =1,N, we want to apply (4.15) in the cube Kj, to a

function u € Wl’(z"f)(Kbk) with the exponent

+ +
p; +r q;

1—v 1—v

§j=

If the parameters satisfy the conditions

Ngj, . _
N B B — b if N >gq,,
@ 5 <4 = g < (g = VN4 . h
+ any number from [1,00) if N <g,,
b  sj<(g,) (7.3)
0 11
© <1, f=551e0D,
i N T
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then for every j =1, N

3j0j

9;

N
/|u|sfdx§CZ /|D,~u|qfdx +C’
i=1

Koy b

with constants C, C' depending on pj#, a, N and |lul|2, Kp, - The extra condition (7.3) (c) will
provide the possibility to extend this estimate to functions defined on the cylinder with the base
K}, . Condition (7.3) (c) can be written as follows: forall i, j =1, N

+ _
i0; i N+2 1 q; N+2 ;
S]—,]<1 & S—]—1<q-_(;——> & si= J <;qi_+2<l—qL>.

q; 2 ! 2N q, 1—v N q,
(7.4)
By continuity of g(x), (7.4) is true for a sufficiently small cube K}, and small v, provided that
the following strict inequality is fulfilled:

N+2 _ - (N+2 1 o
4f <, +2<1—‘i_>52+2qi <———_), i,j=TN. (15
qp

Note that the indexes on the right and the left-hand sides of (7.5) are not related. Accept the
notation

o =maxgqT, 0~ =ming; . (7.6)
i i
Since % < XE2 inequality (7.5) is fulfilled for all , j if
N+2 1 1 1 1
O§G+—0_<2+20_<—+————_>=2+20_(———_). (1.7)
2N 2 q, N a,
Proposition 7.1. Let max; |V pjlloo,o = L and
\2
(x) 2
= sup <14+ —. (7.8)
o P () N
Then condition (1.7) is fulfilled in every cube Kj, with the parameter
<l—(u+vy) N
‘) - —’
= nTy N2
ifby <B=p8@,L,N, pji)forallkz 1,2, ..., ¢ with B so small that
(N +2)? P 2
y:ZﬁL\/ﬁW(mjaxpj —|—mj1npj +2)<1+N—,u. 7.9
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Proof. Take an arbitrary cube Kj, and assume that at least one of p;(x) is nonconstant. The

case of the constant p is a simple corollary. By convention we use notation (7.2). Since the value

p;." is attained at some point xp € fbk , by the Lagrange mean value theorem

1
pj(x) =pj+/ij<sx+<1 —s))ds - (x—x0) = pf =8, §=2pVNL,
0

and p;(x) < pj_ + 8. Assume S is so small that 28Lv/N < max p;' — min; pj_. For every
x € Kp,

v max{p.++r—5,j=1,N} +_ ot
pA(x) > —2 d > y+— (7.10)
p(x) min{p; +r +3, j=1,N} o~ +346

with y > 8(oT + o7 )(o ™) 2. The last inequality follows from the definition (7.9) of y:
(N )
y = 2/3L«/— (maxp] +m1np] +2)

> 2/3L\/ﬁ%(0+ +07)>8(c" +a_)(a_)_2.

According to (7.4), v should be chosen from the inequality

Since

it is sufficient to claim that

+ N+2 N+2 1 N+2 1
? < + 0" =2+420" Nre L <2420~ —+——_ .
N 2 - 2N

1—v

Solving the first inequality for v we obtain v < 1 — f w43 - Plugging (7.10) we obtain
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<l—-(u+vy) N
V — E—
= M VN+2

The case of a constant vector p follows from the considered one because in this case § = y =
0. O

Proposition 7.2. Let the conditions of Proposition 7.1 be fulfilled.

1. Let x; be a fixed direction. If p;(x) +r —2>0in Q, or

iAg; <1+%, 7.11)

then (7.3) (a) holds true.
2. Condition (7.3) (a) implies condition (7.3) (b).

Proof. To prove (7.3) (a), it is enough to claim that
gi(x) <gj(x) forxeQandViel,N.

Suppose p;(x) +r > 2 forx € Q. By using (7.8), we obtain the following chain of relations:

) <qi)=——D e v(x)<L—l><N
qi qn _ZlNzlql(%)—l q (,IA()C)

pv(x) \2 < 2) \4 \2
—(p'+r)<N <« N 1+N —(p'+r)<N & 2<p’(x)+r.

ph(x)

If (7.11) holds, then

<=

—(p 4 <N

N p’(x)
gix) <qi)=———— & N
’ " R pAx)

1
= N(1+N)—(pv+r)<N = 1<pY(x)+r,

where the last inequality holds trivially. If g, > N, we may take for s; an arbitrary positive num-

ber. Let g, < N. Then, (g, )* > 2 because q; =p; +r> 1\%—-}:2 By virtue of Proposition 7.1
* N+2 N+2 1 N+2 1
5; < g <o~ + =2420" N+e 1 <2420~ —+—T .
1—v N 2N o~ 2N q,

) |

N+2 1 2
<2+2q; <%——_)=2+qi <1—( =
qp qy

Since (g;, )* > 2, condition (7.3) (b) follows from the inequality
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— 2 —\ 3k — —\ %k
24q; |1- — <(gy) < q; <(q;)",
(qh )
which coincides with (7.3) (a). O

Summarizing the above arguments we can formulate the following assertion.

Lemma 7.1. Assume that p(x) satisfies fhe conditions of Proposition 7.2 (1). Then, B can be
chosen so small that for every u € Wl’(z"f('))(Kbk) with by < B, and every A >0

+
/|u|sfdx<k2/ |Diul% dx +C',  sj= =, (7.12)

Kbk 1= lK[,k

with a constant C depending on ||ul|2, Kpy» A, and v defined in Proposition 7.1.

Corollary 7.1. If p is a constant vector, then in Proposition 7.1 y = 0. It follows that the asser-
tion of Lemma 7.1 is true for every q, q; = p; +r with r € (0, 1), provided that

\%

Po_q4 ] cdandp <14 2
=— < —, or i >2an < —.
w="x N qi u ¥

Estimate for 7. By Young’s inequality, for every § € (0, 1)

(r 3]
Iz<8/(e T D) T (Dzu)zdx+C5/ W22+ D) T dx,

Q

so that the first term of these estimates can be absorbed in the left-hand side of (6.7). Let us take a
finite cover of 2 = K; composed of cubes K; 5, . Denote K, = K j, and consider the integral

+2(r b} +(V

dxz/u(e —|—|Du|) dx.
Ky

J= /u(é +|Du|)

Ky,

k k

We assume that the conditions of Lemma 7.1 are fulfilled, and g; +r — 2 > 0, which is true for

r> NT2 By Young’s inequality, for every A > 0
J<Ccm) / ] dx + A / @ +Dju) ¥ dx
K}’k Kbk
with

Kj _gqj+tr—2 s,
2 2 5=2

The first integral is already estimated in Lemma 7.1. The second integral is bounded if /</J.r <q;:
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q; q;
+ J - J
T+r—2<—\(s;—2)=¢q; —2—,
q./ + — 5 ( J ) q,/ 5
which is equivalent to
4

. 9
quj —q; <2—r—2?:2—r—2—+(1—v).
J J

Since q}" — qj_ — 0% as by — 0, to fulfill this condition suffices to claim that the right-hand side
is strictly positive:

q:
r<2v§2<1—i+(1—v)>.
q .
J
This inequality gives the admissible value of r. By Proposition 7.1

2N

w=<2—(u+ :
r<w=2-tViys

Comparing the lower bound r > 5 with the above upper bound, we obtain:

2N

1
N+2>’ provided M+)/<1+N- (7.13)

2
el——,2—-
r (N+2 (n+y)

Remark 7.1. Let us assume that the diffusion in the direction x; is slow or linear: p;(z) > 2 in
Q7. Then the inequality p j +2(@ — 1) > 0 holds trivially and the admissible value of r is given
by

€(0,2 (+)—2N ided -+ 1+2
s & s roviae < —.
rEYIN T prov n+y N

Lemma 7.2. Let the conditions of Lemma 7.1 be fulfilled and < 1 + % Then for every cube
Ky, with the edge length by < B and B so small that

1
1 —
HEy < +N

with y defined in (7.9), every u € Wl’(z"i('))(l(bk) with q; (x) = p;(x) +r and r satisfying (7.13),
and for every A > 0

N
*75)‘2/ |Diul% dx +C
j=1](bk
with a constant C depending on ||lul2, x; and A.
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Corollary 7.2. If p is a constant vector, Lemma 7.2 is true if

iDj 1 2 2
=M<l+— and re<—,2—u—N).
min; p; N N+2 N+2

Moreover, if p; = p, then uw =1 and the assertion of Lemma 7.2 holds for ¢ = p + r with every

. 2 4
N+2'N+2)°

Gathering the estimates of Lemmas 7.1, 7.2, we arrive at the following assertion.

Lemma 7.3. Let |V pillco.q < L foralli =1, N,

1
Assume B is so small that u+y < 1+ I with y defined in (7.9). Then for every smooth function
u, every

€ 2 —(n+ )—2N
.
N2t WYY

and any § € (0, 1) the following inequality holds:

/(e LDy |Du| dx<52/(e D) T (D2u)2dx+c (7.14)
J= ]Q

with a constant C depending on §, B, and ||ull2,q.
Let us consider the case p; = p;(x, t). Accept the notation
Shphr = Kp, x (r, T+ h).

As before, K, are cubes from the finite cover of the domain K. Divide the interval (0, T') into
m sub-intervals (¢;, t; + h), and represent Q7 =  x (0, T') as the union of the cylinders Sy, .
Let

p}" = max p; @, p;= Smln pj ().
bty by (7.15)

p’ () =max{pi(2),...,pn(@)}, p"(2) =min{p1(2),..., pn(@)}, z€ Or.

Theorem 7.1. Assume that |p;;| + |V pil| < L a.e. in Qr foralli =1, N, and
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Then, for every smooth function u, every number

OIN(l—p) + 4
S 0,7 9
N +2

and every § € (0, 1)

/(e +|Du|

with a constant C depending on §, L, and esssupg 7 |lul2, -

dz+C  (7.16)

=g,

Proof. It is sufficient to prove (7.16) for r > the case r € (O ] follows then by

N+2’ * N+2
Young’s inequality. The proof imitates the proof of Lemma 7.3. The difference consists in the
choice of parameters by and &, which now should be chosen so small that condition (7.7) is
fulfilled in every cylinder Sy, j , of the partition of Q7. For every cylinder Sy, 5, we take

N
y =L/4NB? + h2(4;)(maxp +m1npj +2)

1
with p;.t defined in (7.15), and choose §, h as small as is needed to obtain u + y <1+ I in

every cylinder Sp, ;. This leads to estimate (7.14) in every cube K, for a fixed f € (#,# + h).
The conclusion follows then upon integration of (7.14) in ¢ over the intervals (7, # + h) and
summation of the results. O

Remark 7.2. The assertions of Lemmas 7.2, 7.3 and Theorem 7.1 remain true if p;(z) > 2in O

2
and p <1+ v - see Remark 7.1.

8. Existence, uniqueness and regularity of solutions
8.1. Proof of Theorem 5.1

Theorem 7.1 allows for the following refinement of the a priori estimates of Lemmas 6.1, 6.2,
6.3.

Lemma 8.1. Let Q = K. Assume that p(z) satisfies the conditions of Theorem 7.1. Then, the

(m)

finite-dimensional approximations u = u¢ ~ satisfy the following uniform estimate

N

3,0, + sup lul3.q + sup ||w||m+Zsup f(e + 1D dx
i= 1

2
(iju) dz+Z/|Diu|”"(Z)+’dz (8.1)
i=l1

i,j= ]QT
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N

<C|1+1fI50, +IV I, + :/|Diuo|f’f<X~°>dx+||u0||3vl,2(m
. 0
IZIQ

with any

c(_ 2 2NA-pw+4
r 9
N+2 N +2

The constant C is independent of m and €.
Estimate (8.1) allows one to find functions u., n;, and a subsequence of {u(m)} such that

ui’”) — u #-weak in L®(0, T; L*(Q)),

Vul™ — Vu, x-weak in L=(0, T; L*(Q2))",

u = ugy in LA(Qr), 82)
D,-ug ™ s Djue in L/ (Qr),

FD(z, Dju™) = n; in L7V (Qr).

Since Wé’ﬁ(')(Q) C Wl’pA(Q) < L2(Q), the functions u™ are uniformly bounded in
L>®0,T; W0 P (R2)). Since u(m) are uniformly bounded in LZ(QT) the sequence {u(m)} is

relatively compact in CO([O, T1; Lz(Q)), see [27, Sec.8, Cor.4]. Thus, u6 ) ue a.e.in Qr.
By the method of construction, for every k < m

/ (m¢+§:fmchuW5D¢ dm_/j¢da Vo € S (8.3)

or j=l

Letting m — oo we obtain the equality

/ vt Y D dz—/f¢dz (8.4)

or j=l

with any ¢ € S, with a fixed k. Since W(Q7) = Ukzl Sk, the same is true for every ¢ €
W (Qr). The functions ]-}(j)(z, &) are monotone: for all £, n € R

& —nl? if p>2,

p— 8.5
& — 0P+ EP + )T ifpel,2) ®-)

(Fz2,8) = FP@m)E —n=C {

with an absolute constant C. By using monotonicity and density of Ukzl Sk in W(Qr) we
identify n; by the standard arguments (see, e.g., [5, Sec.6]):
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/r;ij¢dz:/]—'E(j)(z,D,-ue)Dmdz Vo € W(Qr).
or or

It follows that the limit u. is a solution of problem (5.1). Moreover, the uniform estimate (8.1)
entails the estimate

N
Zf |Diue PO dz < C (8.6)

=g,

with an independent of € constant C.

Uniqueness of the constructed solution is an immediate byproduct of the monotonicity (8.5):
testing (5.2) for the solutions u¢, 1, ue 2 with ¢ = ue 1 — uc 2 we obtain the inequality ||ue,1 —
ue2ll3 o) <0forae. t € (0,T).

8.2. Strong convergence of the gradients

The strong convergence uém) — U In LZ(QT), the weak convergence D jugm) — Djuc in

LPiO(Q7r) and the Mazur Lemma (see [10, Ch.3, Cor.3.8]) yield the existence of a sequence

{v"™} of convex combinations of {ugk)}Z’=1 such that v — u, in W(Q7). Let us define w,, €
S, as follows:

lwm — uellw(oy) =min{lw — ucllwo) : w € Sn}-

)

The functions uém , Wy € Sy, are admissible test-functions in (5.2) and (8.3). Combining these

equalities with the test-function uém) we obtain

N N
> K EZ/@(”(L Diul™) — F(z, Diue))(Diu™ — Diuc)dz

i=1 zleT

N
=—/(u£71> —ueu"™ dz — Z/(fe(i)(z,Diuém)) — F(z, Diue)) Diue dz.
Or =107

Choosing w, for the test-function we have the equality

N
—~ f(ug’;” — U)Wy dz—Z/(fS)(z, Diu™) — F(z, Dijue)) Diwy, dz = 0.
or i=lor

Subtracting the second equality from the first one we find that
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N
(m)
DK < 1l = ueillz.or (Nue = willz.or + 14 = uclz, o )
i=1

N
+ 32 (IFO @ D™ .0, + IFD @ D)l 5,01 ) I Ditte = Ditim 0,07

i=1

By the choice of {w,} both terms on the right-hand side tend to zero as m — oo. Fixi =1, N
and consider ;. Let us denote Q;r =Q0r N{pi(z) =2} and Q; = 01 \ Q:r. By (8.5)

/ (FD (2, Du™) — FO (2, D)) (D™ — Dyue)dz = C f D™ — Dyue | dz.
of of

On @, we apply the generalized Holder inequality (3.1):

S

(m) 2 (m) 2
/wi(ugm)_ueﬂp,—(z)dzzf (€ + 1D P+ D) " 1Dy —wP )

2 4\ D;ul™ 2 4 |D; 2y %2
o o (€ + Dud P + | Diuc?)

pi

P2 2
(€ + 1Dl P+ D™ 1D @™ — uo) )

2 —
pl-(<)’Qi

x [+ 1Diul™ 2+ 1Dy Py -
Z—pi(-)’Qi

Due to relation (3.2) between the norm and the modular in the variable Lebesgue space, the
second factor is bounded by a constant independent of m and €. Because of (8.5) with p € (1, 2)

and (3.2), the first factor tends to zero as K; — 0. It follows that || D; (ué"” —u)lp;),0r = Oas
m — 0o, which yields the pointwise convergence Diuém) — Djuc ae. in Q7. By (8.1) and the

Vitali convergence theorem D; u(m) — Dju in LPiO+r (Qr) with every r from the conditions

of Lemma 8.1.
8.3. Proof of Theorem 5.2
Foralli,j=1,N

D; (€ +1Du™ P Du(m))—(e + D™ )5 D2 u™

pi —

(E —|—|Du(m)| )__I(D u(m)) D2y m

z]e

+
pi=2 1
+ (€2 + |Diu§’">|2)TD,-u§m>ZDjpi In(e® + | D;ul™|?),
whence, with the use of (6.3),
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B2 Piyp
‘Dj (‘7.'[(5)(1’ D”,té"ﬂ))) < C(Ez + |Dlu£m)|2) 7 |D12JMEWL)| + C/(Ez + |Diuém)|2) T+5 + c.
By virtue of (8.1)

|D; (FO@ D) , =€ 8.7)

It follows that there exist ¢;; € L?(Q7) such that (up to a subsequence)
D; (FO @ Diu™)) = gj in L*(Qr) as m — oo.
Due to a.e. convergence D;ul™ — Dju., for every ¢ € C5°(0r)

- T | r© )
(&ijs $)2.0r = mll)moo (D] (.7:1 (z, Djug )) ’¢)27QT

= — lim (F9@ Djul). Dj$).0; = —(F{”z Diue), Dj$)2.0;-

Thus, &; = D, F\ (z, Djuc), and estimate (8.7) holds for D; F\ (z, D;uc).
Remark 8.1. Assume that for some p;(z) <2 in Q7 for some j. By Young’s inequality,

Pj

2

pj—2
((ez +(Djul™y?) T |D?ju§’">|2> dz

pj2-pj)

/|Di2ju§’")|17.i dz=/(62+(D,-ugm>)2)
or Or

p;i—2 i
< /(e2+(Dju§’">)2)’T|Di2ju§’">|2dz+C/(ez+(1),~ugm>)2)7’ dz.
or or

By virtue of (8.1), the integrals on the right-hand side of this inequality are uniformly bounded
with respect to m and e. It follows that there exist ¢;; € L/ (')(QT) such that ijugm) - &jj

in LPi(Q7) (up to a subsequence). Since Djug’") — Djuc in L*(Qr), then for every ¢ €
C5(0r)

=~ lim (D;ul), Di¢)2,0; = (Djuc. Di),0;-

This further implies that ¢;; = Dizj u. and by lower semicontinuity of the modular, || Dl-zj uellp;cy,0r
<C.
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8.4. Proof of Theorems 2.1, 2.2

The proofs imitate the proofs of the corresponding assertions for the regularized problem
(5.1). Let {uc} be the family of solutions of problem (5.1). The uniform estimates (5.3) and (5.4)
allow us to choose a sequence {u¢, } (we simply write u.) which has the convergence properties
(8.2) with some u € W(Q7) and n; € LP/(Qr). To pass to the limit as € — 0 one may repeat
the arguments of [5, Sec.7]. The higher integrability of D;u follows from the independent of €
estimate (8.6).

The strong convergence of the gradients follows from the strong monotonicity of the flux
functions. Let u., us be two solutions of the regularized problem (5.1). Combining equalities
(5.2) with the test-function ¢ = u, — ug € W(Qr) we write the result in the form

N
2/ (fi(e)(z, Djue) —E(e)(z, Dm)) (Diue¢ — Dius) dz = f(ue —ug)(ue —us)dz
i=lor or

N

2 822 2, b2
=30 [ (@ 41Dy = @ 4 1Ds) ™5 ) Dits (Dite ~ Dis) .
i=1
Or

Due to (8.2), the first term on the right-hand side tends to zero as €, § — 0 as the product of the
weakly convergent sequence, (4, — us); — 0 in LQ(QT), and the strongly convergent sequence
Ue —ug — 01in Lz(QT). The second term tends to zero by the Vitali convergence theorem. On
the one hand, the integrand tends to zero a.e. in Q7 as € —§ — 0. On the other hand, due to (8.6)
it belongs to L'+ (Q7) with a sufficiently small o > 0. Indeed: by Young’s inequality

140
72, Dius) = FO (@, D) | IDiae — )|+
= € (1+1Dus| PP (1Diuec 7 + | Djus | +7)

= € (1Dl F 4  Dyas PO 4 €7 (14 Djus ),

therefore the integrand of the second term belongs to LT (Q7), provided o is so small that

0 maxg pY(2) < NL+2 Using (8.5) to estimate the left-hand side from below and then arguing

as in the proof of the strong convergence of the gradients for the solutions of the regularized

problems, we conclude that D; (ue —ug) — 0in LP: (')(QT) and, thus, a.e. in Q7. The inclusions
i (2)—2 .

|Dju| s Diu € W2(Q7) follow now as in the proof of Theorem 5.2.

Remark 8.2. The assertion of Remark 2.2 follows by repeating the same arguments for u, in
place of ugm) as in Remark 8.1 and in the proof of Theorem 5.2.

9. Problems (1.1), (5.1) in a smooth domain. Proof of Theorem 2.3

We turn to the problems posed in a cylinder Q7 = Q x (0, T) with Q2 € ckk>1+
N (% — p%r) The proof of Theorem 2.3 is an imitation of the proofs of the corresponding asser-
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tions in the rectangular domains. For this reason, we omit the details and present the arguments
where the role of the domain geometry becomes crucial.

The solution of problem (5.1) is sought as the limit of the sequence uém) € Sy, in the basis
composed of solutions of problem (4.7). For every m € N the coefficients cl-(m)(t) are defined as
the solutions of problems (5.5), the existence of a sequence u™ (x, 0) — uq in WO1 40 (2) with
qi(x) = max{2, p;(x,0)} follows from Lemma 4.3. The energy relation (6.1) and the a priori

estimates (6.2), (6.4) for the approximations u = ugm) do not change if the rectangular domain

K3 is substituted by a smooth domain 9€2.

Lemma 9.1. Ler 9Q € CK with k> 1+ N (% - p%) If pi(z) satisfy the conditions of Theo-
rem 2.1, then the approximations u = uém) satisfy the uniform estimates (6.2), (6.4).

The difference between the cases of rectangular and smooth domains reveals in the derivation
of the analog of equality (6.7). The boundary integrals, that were vanishing due to the geometry
of the domain K, are now present and lead to new restrictions on the admissible anisotropy
of the equation. We will follow the proof of [23, Th.3.1.1.1], which allows one to present the
estimate in the form independent of the particular choice of the parametrization of 9<2. Let us
take a point £ € 92 and choose C 2 curves {l1,...,Iny—1} that are orthogonal at &. Denote by
{71, ..., Tv—1) the unit vectors tangent to /;, and by s; the curve length along the curve [;. By v
we denote the normal vector to 3€2. Given a smooth vector v, we decompose it on 3€2 into the
sum of the tangent and normal components:

N-1
V=1v; + UV, vrzg v;iT;, vj=(v,T1)).
j=1

Let ¥ and w be two given smooth vectors. Integrating by parts and literally following the proof
of [23, Th.3.1.1.1] we arrive at the formula

N
/divi}divﬁ)dx=/(vvdivﬁ)—((§-V)JJ)-T)) dS+/ > DjviDiw;dx. ©.1)
Q 30 o L=l

(cf. with (6.5)), where the boundary integral can be reduced to the form
/ (o divid — ((3- V)@) - 7) dS = — / (3o Ve (- B) + B Ve (3 7)) dS
Q2 Q2

—/B(T),;ﬁ)r)dS—/vvatrBdS.

R Q2

9.2)

Here B is the matrix of the second quadratic form of the surface 9€2. In the local coordinates {y;}
with the origin £ the surface 9€2 is represented by the equation yy = ¢ (y1, ..., yn—1) where
(y1, ..., yN—1) belongs to the tangent plane and yy points in the direction of the exterior normal
v. For every two vectors ¢, i tangent to dS2 at the point £ € 92
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N-1

B@;m= ) Dy, ¢@en;,  wB= ZD”MS).

i,j=1

Lemma 9.2. Let the conditions of Lemma 9.1 be fulfilled and, in addition, p;(z) =2 of Q2 x
[0, T']. Then the functions u = ui’”) satisfy the uniform estimates

i (2)=2 5 2
2 (D,-ju) dz

sup V()1 + 5 /

i,j= IQT
9.3)

<c|1+ Zf |DulP O dz + | Vuoll5.q + IV 3.0,

with any p € (0, 1) and a constant C independent of €, m.

Proof. We use the notation u = u ™) . Multiplying the kth equation in (5.5) by Axcm k(2), in-

tegrating by parts, and using (9.1), (9.2) with v; = ]—"i(e)(z, D;u) and w = Vu, we arrive at the
equality

||VM||2Q+ Z/ (

>Di2judx—/Vf-Vudx
Q

i,j= IQ
=/5,vf(ﬁ)-a)ds+/w,vf(a-ﬁ)ds+/8(vf,w,)ds+/vvwvtr8ds
Q2 Q2 Q2

9.4

The second and the third terms on the right-hand side vanish because w; = V;u = 0 on 3$2. To
eliminate the first term we claim that v, = 0, that is, at every point of 92 the vector with the
components ]—'i(é)(z, D;u) (the flux) either equals zero, or points in the direction of the normal

- . - A% . - .
v to d2. Since v = |V—u| at the points where |Vu| # 0, this is true if p;(z) =2 on 92 for all
u

i=1,N: _E(E)(z, D;u) = D;u. The last term is then bounded by

/|Vu| dS<KZ/(6 D) 2 ds

i=lyg
with a constant K depending on the main curvature of 9€2. By [23, Lemma 1.5.1.9] there exists
a function ji € C*°(Q)"N such that /i - v > & > 0 on <2 for some constant § depending on 3.
Then
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2 2\ Pi® . 2 9 P
8 [ (e“+|Djul”) 2 dS< | div| (e“+|Djul”) 2 ) dx
aQ Q
- 2 2, P 2 /A N
= u-V|(€+|Diul”)y z )dx+ | (¢ +|Djul*) 2 divudx.
Q Q
The second term on the right-hand side is bounded by
C max | div ji| 1—1—/ | Diu|Pi® dx SC/—i—C”/ [D;ulPi® dx.
Q
Q Q

By applying (6.3) and Young’s inequality, we estimate the first term as follows:

N
pi(2)—1 Pi2
CZ/pi(z)(eerlDiulz) 2 |D?,-u|dx+C/<ez+|Diu|2> 2 [In(e” + | Diul?)||V pi| dx
i=lg Q

N 1
i (2) i (2)=2 2 i (2)+
5C’§ /(62+|Diu|2)_p4 ((62+|Diu|)p 3 (D,Zju)2> dx+c’f(62+|D,-u|2)” T dx
j=1 Q

=

i (2)—2 )
1Y [+ 1D 5 Dl dx ¢ [ 10O x4 7
J=lg Q

with arbitrary constants A, p € (0, 1). Transforming the second term on the left-hand side of (9.4)
as Z; in (6.5), and then plugging into (9.4) the last two inequalities with sufficiently small A and
p, we arrive at the differential inequality

pi(2)—2
2

N
1d
EEHWHQQJF > /(62+(D,-u)2) (D}u)* dx

ij=1g
9.5
y 9.5)
5c+c/||W||§,Q+C”Z/|D,-u|1’f+/’dx+/|Vf|2dx.
i:IQ Q

Inequality (9.3) follows after integrationin . O

The proof of higher integrability of the gradient mimics the proof given in the case of a
rectangular domain. The geometry of the domain €2 is important in the proof of Proposition 7.1
where the anisotropic interpolation inequality (4.15) is employed. To apply this inequality, we
take the smallest rectangular domain Kz that contains €2, and consider the zero continuation of
u from Q to Kz with p;(z) =2 in Kz \ .

Lemma 9.3. Assume that 3Q € CX, k> 14+ N (% - p]—+) and the exponents p;(z) satisfy the

conditions of Theorem 2.3. Denote by L the maximal of the Lipschitz constants of p;(z) in Qr.

If
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P 1—|—l or i(z) >2in Q7 and <1—i—g
/\() Na pl = T M N’

w= up

then for every smooth function u, every number

IN(l —p)+4
r e O,_ )
N+2

and every § € (0, 1)

/(e 4 1D D2 d dz+C  (9.6)

i=lg,

with a constant C depending on §, L, and esssup g 7y lull2,q-

Since the rest of the proof of Theorems 5.1, 5.2, 2.1, 2.2 is independent of the geometry of
Q, the assertions of Theorem 2.3 with dQ € C* follow by a literal repetition of the proofs of the
corresponding assertions in the case of a rectangular domain.

Data availability
No data was used for the research described in the article.
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