
CHAPTER 7

INVESTIGATION ON THERMOELASTIC BEHAVIOR OF A

FUNCTIONALLY GRADED SPHERICAL SHELL UNDER HEAT

CONDUCTION MODEL WITH A DELAY1

7.1 Introduction

The basic structural elements like plate, disk, cylinder, sphere, etc. have

practical applications in engineering design problems and the expected

loads play very critical role in designing such structural elements. The

concept of functionally graded materials (FGMs) is originated in Japan in

1984 during the space plane project in the form of a proposed thermal bar-

rier material that is capable of withstanding a surface temperature of 2000

K and a temperature gradient of 1000K across a cross section < 10mm.

Thereafter, an extensive research on FGMs are being persuaded to un-

derstand their proper utility in realistic sense as compared to composite

materials. The functionally graded materials (FGMs) are now considered

as new advanced heat resisting materials used in modern technologies due

to their potential to carry ultra high thermal stresses. Furthermore, these

materials are corrosion and erosion resistant and have high fracture stiff-

ness. The basic concept in such materials is to mix different materials (for

1The content of this chapter is communicated to an International Journal , 2018.
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example ceramic and metal) such that the material properties continuously

vary from one constituent material to the other. In effect, the material

properties are coordinate dependent, as they are treated as functions of

position.

A great interest is being paid during last two decades to analyze the

responses of FGMs under different applied mechanical and thermal loads.

However, since the governing equations for the temperature field and the

associated thermoelastic field become nonlinear, it is difficult to obtain the

exact solutions. In order to solve the thermoelastic problems of FGM ap-

proximately, introducing the theory of laminated composites is efficient.

Several studies (see Tanigawa(1995), Ootao et al. (1995) and Tanigawa et

al. (1996) and references therein) have been proposed to analyze the tran-

sient thermoelastic problems of FGMs by using the theory of laminated

composites. Tanigawa obtained the closed-form solutions of problems with

the steady-state condition for the heat conduction problems and analyzed

thermal stresses that occur in a structure made of non-homogeneous ma-

terials. Obata and Noda (1994; 1995) investigated the thermal stresses

in a functionally graded circular hollow cylinder and sphere by using the

perturbation method. Solution for stresses in spheres made of function-

ally graded materials is discussed by Lutz and Zimmerman (1996). Zim-

merman and Lutz (1999) obtained the exact solution for the problem of

uniformly heating cylinder by considering the case when the elastic mod-

uli and thermal expansion coefficient vary linearly with radius. Later on,

Shabana and Noda (2001) investigated the thermoelastoplastic stresses in

a full functionally graded plate subjected to a thermal load. Sankar and
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Tzeng (2002) obtained the axial stress distribution for a FGM beam by

solving the thermoelastic equilibrium equations. It must be mentioned

that Liew et al. (2003) analyzed the thermal stress behavior of FGM

hollow circular cylinders. Here, the solutions are obtained by a novel lim-

iting process that employs the solutions of homogeneous hollow circular

cylinders, with no recourse to the basic theory or the equations of non-

homogeneous thermoelasticity. Here, conclusions are made regarding the

general properties of thermal stresses in the FGM cylinder. Reddy and

Chin (1998) reported a thermo-mechanical analysis of FGM cylinders and

plates. Darabseh and Bani Salameh (2010) used classical heat conduction

model to investigate the transient thermal stresses in a FGM cylinder with

different thermal boundary conditions. They have employed a numerical

method based on implicit finite difference scheme to calculate the tem-

perature, radial displacement and stress distributions within the cylinder.

Bakhshi et al. (2006) studied the response of FG hollow disk based on

the classical theory of thermoelasticity under thermal shock loads. We also

refer a recent book by Hetnarski and Eslami (2008) in this respect. By con-

sidering FGMs in generalized thermoelasticity theories, Ghosh and Kano-

ria (2008; 2009), Mallik and Kanoria (2007), Banik and Kanoria (2013),

Hosseini (2009) reported some investigations. Bahtui and Eslami (2007a;

2007b) investigated the coupled thermoelasticity and generalized coupled

thermoelasticity of FG cylindrical shells subjected to thermal shock, re-

spectively. Later on, the response of a FG disk is studied by Bagri and

Eslami (2008) under the LS theory. Hein et al. (2012) made a compari-

son of the temperature and stresses obtained by finite difference method
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and finite element method. Recently, Kothari and Mukhopadhyay (2013)

studied a problem of functionally graded hollow disk under three phase-lag

and dual-phase-lag thermoelasticity theories. Zhang et al. (2013) tackled

the non-linearity of the thermoelasticty problem generated by FGM using

Green’s function approach.

In the previous chapter, we studied a problem of non-homogeneous

thermoelastic medium by considering the temperature dependent mate-

rial properties of the medium. In the present chapter, we make an attempt

to investigate a problem of spherical shell with functionally graded mate-

rial in the context of the recent heat conduction model (Quintanilla, 2011).

We employ Galerkin type finite element method along with Laplace trans-

form technique to solve a system of non-linear coupled partial differential

equations arising out in the coupled problem. We consider a metal-ceramic

FGM by assuming that the inner boundary of the shell is stress free and

is subjected to thermal shock while the other boundary is insulated with

temperature and fixed with some rigid support. We consider a law of mix-

ture of material constituents so that the effective material properties follow

a rule of volume-fraction. We show that the present problem can be solved

by trans-finite element method, i.e., firstly, we use the Laplace transform

technique to remove the dependency of governing equations on time. Then,

in order to tackle the non-linearity of governing equations generated due to

dependency of thermal parameters on spacial coordinate, we apply finite

element method by considering that the geometry of the shell is divided

into discrete elements of equal length along the radius of the shell. We

carry out our computational work in MATLAB programming code and ob-

146



tain the numerical solution of the problem. The results are displayed in

different graphs to display the distributions of the field variables inside the

shell at different time and for various types of non-homogeneity condition.

A detailed comparative study on the obtained results is discussed to fo-

cus on the functionally graded material and the effect of non-homogeneity.

The present work specially considers to highlight the necessity of the fi-

nite element method to tackle the problems on coupled thermoelasticity

for functionally graded materials and to display a comparative analysis of

the results under present model and the same under other different coupled

thermoelasticity theories.

7.2 Formulation of the Problem

We consider a spherical shell of functionally graded materials (FGMs) con-

stituent with metal and ceramic. The effective material properties of FGMs

are generally defined by a relation that exhibits the effective material prop-

erties of the FGM to the constituent material properties. It is assumed that

the composition of the metal and ceramic is followed by a law of mixture

of material constituents and the effective material properties of FGM are

defined as

P = Vm(Pm − Pc) + Pc (7.1)

where Vm is the volume fraction of the metal, P is the effective property

of FGM and the subscriptsm and c indicate the metal and ceramic features,

respectively. Therefore, Pm and Pc denote the properties of metal and
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ceramic, respectively.

7.2.1 Basic Governing Equations

The basic governing equations in the context of the different generalized

thermoelastic theories incorporated for a non-homogeneous medium in ab-

sence of any body force or heat source is given by the following relations:

Equation of motion:

σij,j = ρ
..
ui (7.2)

Stress-strain-temperature relation:

σij = 2µeij + (λekk − γθ) δij (7.3)

Strain displacement relation:

2eij = ui,j + uj,i (7.4)

From Eqns. (7.2) and (7.3), we get

[2µeij + (λekk − γθ) δij],j = ρ
..
ui (7.5)

We consider an unified heat conduction equation as

(

δ2z + δ1z
∂

∂t

)

(Kθ,i),i +

(

1 + τ1
∂

∂t
+ z1

τ 21
2

∂2

∂t2

)

(K∗θ,i),i

=

(

1 + τ0
∂

∂t

)(

δ2z + δ1z
∂

∂t

)[

ρcE
∂θ

∂t
+ T0γ

∂e

∂t

]

(7.6)

where, K and K∗ are the thermal conductivity and conductivity rate,

respectively. η = ρcE
K

and cE is the specific heat at constant strain. τ and
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τ0 are the delay parameter/thermal relaxation parameter. The material

properties, except the thermal relaxation parameters or delay term, which

appeared in the preceding equations (7.2)–(7.6) for the FGMs are the effec-

tive material properties and are treated as position dependent functions.

In order to analyze our results in the present context with the corre-

sponding results in the contexts of some generalized thermoelastic models

namely, Lord-Shulman theory (LS Model), Green-Naghdi thermoelastic-

ity theory of type-II (GN-II Model) and thermoelasticity theory given by

Quintanilla (New model), we consider a unified heat conduction equation

given by Eqn. (7.6). The individual heat conduction equation for differ-

ent theories can be extracted from Eqn. (7.6) by assuming the values of

parameter constants as follows:

(i). LS Model (Lord and Shulman (1967)): z = 2, τ0 > 0 and K∗ = 0

(ii). GN-II Model (Green and Naghdi (1993)): z = 1, τ1 = 0, τ0 = 0 and K = 0

(iii). New Model (Quintanilla (2011)): z = 1, z1 = 1, τ0 = 0 and τ > 0

In the context of present problem, we take a thermoelastic functionally

graded spherical shell at rest and reference temperature T0. The inner

radius and outer radius of the shell are assumed to be ra and rb, respectively.

Considering radially symmetric motion, the only non-zero component of

the displacement is the radial displacement component u. Hence, the two

non-zero strain components are

err =
∂u

∂r
; eφφ =

u

r
. (7.7)
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Figure 7.1: Variation of volume fraction of the constituents of functionally graded material

Therefore, Eqns. (7.2)-(7.3) and (7.5)-(7.6) reduce to the following

forms:

∂σrr

∂r
+

2 (σrr − σφφ)

r
= ρ

∂2u

∂t2
(7.8)

σrr = 2µ
∂u

∂r
+ λ

(

∂u

∂r
+

2u

r

)

− γθ (7.9)

σϕϕ = 2µ
u

r
+ λ

(

∂u

∂r
+

2u

r

)

− γθ (7.10)

(λ+ 2µ)

[

∂2u

∂r2
+

2

r

∂u

∂r
−

2u

r2

]

+
∂ (λ+ 2µ)

∂r

∂u

∂r
+

2u

r

∂λ

∂r
−

[

γ
∂θ

∂r
+

∂γ

∂r
θ

]

= ρ
∂2u

∂t2
(7.11)

[

K

(

δ2z + δ1z
∂

∂t

)

+K∗

(

1 + τ1
∂

∂t
+ z1

τ 21
2

∂2

∂t2

)](

∂2θ

∂r2
+

2

r

∂θ

∂r

)

+

[

∂K

∂r

(

δ2z + δ1z
∂

∂t

)

+
∂K∗

∂r

(

1 + τ1
∂

∂t
+ z1

τ 21
2

∂2

∂t2

)]

∂θ

∂r

=

(

1 + τ0
∂

∂t

)(

δ2z + δ1z
∂

∂t

)[

ρcE
∂θ

∂t
+ T0γ

∂

∂t

(

∂u

∂r
+

2u

r

)]

(7.12)

Further, we assume material composition in the functionally graded shell
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along the radial direction in such a manner that the inner surface and outer

surface of the shell are made of ceramic and metal, respectively and the

gradual change in composition of the constituent materials in the radial

direction is assumed to vary in the form of the law

Vm =
(

r−ra
rb−ra

)n

where r is the radial coordinate and n is the non-homogeneity index that

govern the distribution of the constituent materials through the shell (as

shown in Fig. (7.1)). Here, the non-homogeneity index, n may be varied

to obtain different profiles for the distribution of constituent materials.

Clearly, the present composition indicates that the effective properties of

shell are followed by metal in the case when n → 0 , and they are followed

by ceramic, when n → ∞

Now, to simplify the problem, we introduce the following non-dimensional

parameters and notations:

r′ = c0η0r, θ
′ = θ

Td
, (t′, τ ′0, τ

′
1) = c20η0 (t, τ0, τ1), u

′ = c0η0(λm+2µm)
γmTd

u,
(

σ′rr, σ
′
ϕϕ

)

=
(σrr,σϕϕ)
γmTd

, c20 =
(λm+2µm)

ρm
, η0 =

ρmcm
Km

.

where Td is a dimensionless characteristic temperature.

Using the above parameters and notations and dropping the primes for

convenience Eqns. (7.9)-(7.12) take the following forms:

σrr =
2µ

(λm + 2µm)

∂u

∂r
+

λ

(λm + 2µm)

(

∂u

∂r
+

2u

r

)

−
γ

γm
θ (7.13)

σϕϕ =
2µ

(λm + 2µm)

u

r
+

λ

(λm + 2µm)

(

∂u

∂r
+

2u

r

)

−
γ

γm
θ (7.14)
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(λ+ 2µ)

(λm + 2µm)

[

∂2u

∂r2
+

2

r

∂u

∂r
−

2u

r2

]

+
1

(λm + 2µm)

∂ (λ+ 2µ)

∂r

∂u

∂r

+
1

(λm + 2µm)

2u

r

∂λ

∂r
−

1

βm

[

γ
∂θ

∂r
+

∂γ

∂r
θ

]

=
ρ

ρm

∂2u

∂t2
(7.15)

[

K

Km

(

δ2z + δ1z
∂

∂t

)

+
K∗

a0

(

1 + τ1
∂

∂t
+ z1

τ 21
2

∂2

∂t2

)](

∂2θ

∂r2
+

2

r

∂θ

∂r

)

+

[

1

Km

(

δ2z + δ1z
∂

∂t

)

∂K

∂r
+

1

a0

(

1 + τ1
∂

∂t
+ z1

τ 21
2

∂2

∂t2

)

∂K∗

∂r

]

∂θ

∂r

=

(

1 + τ0
∂

∂t

)(

δ2z + δ1z
∂

∂t

)[

ρcE

ρmcEm

∂θ

∂t
+

ǫγ

γm

∂

∂t

(

∂u

∂r
+

2u

r

)]

(7.16)
where a0 = c2

0
η0Km and ǫ = T0γ

2

m

ρmcm(λm+2µm) .

7.2.2 Boundary Conditions

We assume that the inner surface of the spherical shell is assumed stress

free but exposed to a thermal shock while the outer surface is rigidly fixed

and thermally insulated. The mechanical and thermal boundary conditions

at the inner and outer surfaces of the shell are therefore defined as

θ (a, t) = θ∗H(t), σrr(a, t) = 0.

∂θ
∂r
(b, t) = 0, u(b, t) = 0.











(7.17)

7.3 Solution using Galerkin Finite Element Method

Applying the Laplace transform to Eqns. (7.13)-(7.17), the equations trans-

form to the following forms:
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σrr =
2µ

(λm + 2µm)

∂u

∂r
+

λ

(λm + 2µm)

(

∂u

∂r
+

2u

r

)

−
γ

γm
θ (7.18)

σϕϕ =
2µ

(λm + 2µm)

u

r
+

λ

(λm + 2µm)

(

∂u

∂r
+

2u

r

)

−
γ

γm
θ (7.19)

(λ+ 2µ)

(λm + 2µm)

[

∂2u

∂r2
+

2

r

∂u

∂r
−

2u

r2

]

+
1

(λm + 2µm)

∂ (λ+ 2µ)

∂r

∂u

∂r

+
1

(λm + 2µm)

2u

r

∂λ

∂r
−

1

γm

[

γ
∂θ

∂r
+

∂γ

∂r
θ

]

=
ρs2

ρm
u (7.20)

[

K

Km

(δ2z + sδ1z) +
K∗

a0

(

1 + τ1s+ z1
τ 21 s

2

2

)]

(

∂2θ

∂r2
+

2

r

∂θ

∂r

)

+

[

(δ2z + sδ1z)

Km

∂K

∂r
+

1

a0

(

1 + τ1s+ z1
τ 21 s

2

2

)

∂K∗

∂r

]

∂θ

∂r

= (1 + τ0s) (δ2z + δ1zs)

[

ρcEs

ρmcEm

θ +
ǫγs

γm

(

∂u

∂r
+

2u

r

)]

(7.21)

θ (a, s) = θ∗

s
, σrr(a, s) = 0.

∂θ
∂r
(b, s) = 0, u(b, s) = 0.











(7.22)

Now, we employ finite element method to solve the coupled Eqns. (7.20)

and (7.21). For this, the geometry of the shell is divided into M discrete

elements of equal length, h along the radius of the shell. Considering the

base element as el, (l = 1, 2, ...M), the displacement and temperature fields

over the base element are approximated as
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uel =
d

∑

i=1

N el
i U

el
i and θ

el
=

d
∑

i=1

N el
i θ

el
i (7.23)

where the N el
i denotes the shape function that approximates the dis-

placement and temperature fields in the base element and d is the number

of nodes in the base element. U
el
i and θ

el
i (i = 1, 2, ..., d) are therefore the

nodal values of displacement and temperature, respectively. The arrange-

ment of elements are shown in Fig. (7.2).

Figure 7.2: Graphical representation of base elements and nodes of finite element method

Employing the approximated fields for the displacement and temper-

ature in the base element (el) and applying the Galerkin finite element

method over the volume of the base element V(e), Eqns. (7.20) and (7.21)

yield

ˆ

Vel

[

(λ+ 2µ)

(λm + 2µm)

(

∂2uel

∂r2
+

2

r

∂uel

∂r
−

2uel

r2

)

+
1

(λm + 2µm)

∂ (λ+ 2µ)

∂r

∂uel

∂r
+

2

r (λm + 2µm)

∂λ

∂r
u
el

−

ρs2

ρm
u
el

]

N
el
i dVel −

ˆ

Ve

[

1

γm

(

γ
∂θ

el

∂r
+

∂γ

∂r
θ
el

)]

N
el
i dVel = 0 (7.24)
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−

ˆ

Ve

[{

(1 + τ0s) (δ2z + δ1zs)
ǫγs

γm

(

∂uel

∂r
+

2uel

r

)}]

N el
i dVel

+

ˆ

Vel

[{

K

Km

(δ2z + sδ1z) +
K∗

a0

(

1 + τ1s+ z1
τ 21 s

2

2

)}

(

∂2θ
el

∂r2
+

2

r

∂θ
el

∂r

)

+

{

(δ2z + sδ1z)

Km

∂K

∂r
+

1

a0

∂K∗

∂r

(

1 + τ1s+ z1
τ 21 s

2

2

)}

∂θ
el

∂r

− (1 + τ0s) (δ2z + δ1zs)
ρcEs

ρmcEm

θ
el

]

N el
i dVel = 0 (7.25)

where i = 1, 2, ..., d.

Now, the weak formulation is applied to the terms involving the deriva-

tives of the second order to lower their orders and to extract mixed bound-

ary conditions with respect to the radial variable. Using the local coordi-

nates ξ = r−rl, where rl is the radius of the first node of the base element,

(el) in radial direction and using dVel = rdr = (ξ + rl) dξ, Eqns. (7.24)

and (7.25) reduce to the following equations:

ĥ

0

[

(λ+ 2µ)

(λm + 2µm)
(ξ + ri)

2 ∂N
el
i

∂ξ

∂uel

∂ξ
+

{

(λ+ 2µ)

(λm + 2µm)
−

2 (ξ + ri)

(λm + 2µm)

∂λ

∂ξ
+

ρs2

ρm
(ξ + ri)

2

}

N
el
i u

el

]

dξ

+

ĥ

0

1

γm

[

γ
∂θ

el

∂ξ
+

∂γ

∂ξ
θ
el

]

(ξ + ri)
2
N

el
i dξ =

[

(λ+ 2µ)

(λm + 2µm)
(ξ + ri)

2
N

el
i

∂uel

∂ξ

]h

0

(7.26)

ĥ

0

(1 + τ0s) (δ2z + δ1zs)
sγǫ

γm

[

(ξ + ri)
∂uel

∂ξ
+ u

el

]

(ξ + ri)N
el
i dξ+

ĥ

0

[{

K

Km

(δ2z + sδ1z)

+
K∗

a0

(

1 + τ1s+ z1
τ2

1 s
2

2

)}

(ξ + ri)
2 ∂N

el
i

∂ξ

∂θ
el

∂ξ
+ (1 + τ0s) (δ2z + δ1zs)

ρcEs

ρmcEm

(ξ + ri)
2
N

el
i θ

el

]

dξ

=

[{

K

Km

(δ2z + sδ1z) +
K∗

a0

(

1 + τ1s+ z1
τ2

1 s
2

2

)}

(ξ + ri)
2
N

el
i

∂θ
el

∂ξ

]h

0

(7.27)

Here h is the length of the base element (el) along the radius.
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Using eqn. (7.23) into the Eqns. (7.26) and (7.27), we can form the

finite element formulation in the Laplace transform domain as





[P el] [Qel]

[Rel] [Sel]









[U
el
]

[θ
el
]



 =





[F el]

[Gel]



 (7.28)

where the sub-matrices
[

P el

]

,
[

Qel

]

,
[

Rel

]

,
[

Sel

]

, each of order (d× d)

and
[

F el

]

,
[

Gel

]

, each of order (d × 1), defined for the base element (el)

are obtained as follows:

P
el
ij =

ĥ

0

[

(λ+ 2µ)

(λm + 2µm)
(ξ + ri)

2 ∂N
el
i

∂ξ

∂N
el
j

∂ξ
+

{

(λ+ 2µ)

(λm + 2µm)
−

2 (ξ + ri)

(λm + 2µm)

∂λ

∂ξ
+

ρs2

ρm
(ξ + ri)

2

}

N
el
i N

el
j

]

dξ

(7.29)

Qel
ij =

ĥ

0

1

γm

[

γ
∂N el

j

∂ξ
+

∂γ

∂ξ
N el

j

]

(ξ + ri)
2
N el

i dξ (7.30)

Rel
ij = (1 + τ0s) (δ2z + δ1zs)

s2ǫ

γm

ĥ

0

γ

[

(ξ + ri)
∂N el

j

∂ξ
+N el

j

]

(ξ + ri)N
el
i dξ

(7.31)

Sel
ij =

ĥ

0

[{

K

Km

(δ2z + sδ1z) +
K∗

a0

(

1 + τ1s+ z1
τ 21 s

2

2

)}

∂N el
i

∂ξ

∂N el
j

∂ξ

+(1 + τ0s) (δ2z + δ1zs)
ρcEs

ρmcEm

N el
i N

el
j

]

(ξ + ri)
2
dξ (7.32)

F el
i =

[

(λ+ 2µ)

(λm + 2µm)
(ξ + ri)

2
N el

i

∂uel

∂ξ

]h

0

(7.33)
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Gel
i =

[

{

K

Km

(δ2z + sδ1z) +
K∗

a0

(

1 + τ1s+ z1
τ 21 s

2

2

)}

(ξ + ri)
2
N el

i

∂θ
el

∂ξ

]h

0
(7.34)

where, i, j = 1, 2, ..., d.

After assembling the element matrices given in the Eqn.(7.28) for all the

elements, we get a system of dM+d number of linear algebraic equations in

unknown nodal values of displacement and temperature. While assembling,

we interchange the rows and columns of element matrix so that the terms

in the right hand sides of the Eqns. (7.26) and (7.27) canceled out by each

other between any two adjacent elements, except the first node of the first

element and last node of the last element. Further in-canceled terms of the

right side of Eqns.(7.26) and (7.27) are known and related to the inner and

outer boundary conditions as given by the Eqn.(7.22).

After using Eqns. (7.17) and (7.22) we get,

θ
e1
1

=
θ∗

s
, −a (λc + 2µc)

∂ue1

∂ξ
|1 = λcU

e1
1
−

a (λm + 2µm) γc
γm

θ
e1
1

(7.35)

∂θ
eM

∂ξ
|d = 0, U

eM
d = 0 (7.36)

Further, using Eqn. (7.22), we obtain

∂θ
e1

∂ξ
|1 = 0, and

∂ueM

∂ξ
|d = 0 (7.37)

Therefore, the sub-matrices of the global force matrix





[F ]

[G]



 are given

by
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[F ] =



















λcU
e1
1 −

a(λm+2µm)γc
γm

θ
e1
1

0

...

0



















, and [G] =



















0

0

...

0



















(7.38)

Now, in obtained system of algebraic equations, θ
e1
1 and ueMd are known

to us. Therefore, two rows and two columns intersecting the nodal values

θ
e1
1 and ueMd are deleted from the global stiffness matrix. At the same time

in global force matrix





[F ]

[G]



, the sub-matrices will turn accordingly.

Therefore, all the unknown nodal values of displacement and tempera-

ture in (r, s) domain can be obtained by solving the updated linear system

of algebraic equations given by Eqn. (7.28). To get the final solution in

space-time domain, we employ the numerical method of Laplace inversion

proposed by Zakian et al. (1969) for the better accuracy, since this method

uses the complex numbers as nodes and weights for numerical integration

appeared in the inverse of Laplace transform. The outline of the method

has been provided in the Appendix section (A-2). We apply the second

order finite difference scheme to get the solution for the stress components

using the Eqns. (7.18)-(7.19).

7.4 Numerical Results and Discussion

In the previous section, we formulated finite element modeling of the present

problem and obtained a system of linear algebraic equations. Now, in this

section we carry out our computational work by using MATLAB program-
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ming and obtain numerical solution of the present problem.We aim to ana-

lyze the effect of non-homogeneity of the material (non-homogeneity index

n), time and relaxation parameters, τ , and τ0 on distributions of displace-

ment, temperature and stresses inside the spherical shell.The spherical shell

is supposed to be initially at reference temperature, T0 = 298K.Titanium

and Zirconia are used for the metal and ceramic constituents for the func-

tionally graded material. Therefore, the inner radius (ra = 1) and outer

radius (rb = 3) of the shell are made of Titanium and Zirconia, whose

physical properties are taken in SI units as follows (Bahtui and Eslami,

2007a):

Thermoelastic constants for the Titanium:

Em = 66.2 GPa, αm = 10.3×10−6 K−1, cEm = 808.3 JKg−1K−1, ρm = 4410 Kg m−3, Km = 18.1 K−1s−1,

νm = 0.321.

Thermoelastic constants for the Zirconia:

Ec = 117.0 GPa, αc = 7.11× 10−6 K−1, cEc = 615.6 JKg−1K−1, ρc = 5600 Kg m−3, Kc = 2.036 K−1s−1,

νc = 0.333.

The value of phase-lag parameters are taken as τ0 = 0.1, τ = 0.1.

The formulation of the present set up is made for the general problem.

However, in our computation, we use the linear Lagrangian polynomials as

the shape functions in the base element. We break the shape of the spheri-

cal shell into M = 100 elements along the radius of the shell.Each element

(el) is divided into d = 2 nodes. The displacement, u and temperature, θ in

the space and Laplace transform domain, (r, s) are obtained by solving the

system of Eqns. given by (7.28). The stresses in the (r, s) domain are com-

puted by employing second order finite difference scheme from Eqns. (7.18)

and (7.19) and by using the computed values of displacement and temper-
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Figure 7.3: Variation of displacement, u vs. r
at t = 0.3 for different values of n

Figure 7.4: Variation of temperature, θ vs. r

at t = 0.3 for different values of n

Figure 7.5: Variation of radial stress, σrr vs.
r at t = 0.3 for different values of n

Figure 7.6: Variation of circumferrential
stress, σϕϕ vs. r at t = 0.3 for different values
of n

160



ature of (r, s) domain. Finally, we employ the Zakian technique (1969) for

the numerical inversion of Laplace transform to obtain the desired field

variables in space-time (r, t) domain.

All the calculations are carried out for three different values of non-

homogeneity index, n (n = 1, n = 2 and n = 3).

The obtained results for displacement (u), temperature (θ), radial stress

(σrr) and tangential stress (σϕϕ) for LS model, GN-II model and New model

are shown by different 2D and 3D plots. The 2D2 representation of dis-

placement, temperature, radial stress and tangential stress are displayed

in the Figs. (7.3-7.6), respectively for a fixed time, t = 0.3 to show the

effect of non-homogeneity index on the distributions of different physi-

cal fields predicted by different models. The 3D graphs are shown in the

Figs. 7.7(a, b, c)-7.10(a, b, c) to characterize the the effect of time, t on

the field variables. The 3D plots in the Figures sketched in magenta color

(Figs.7.7(a), 7.8(a), 7.9(a), and 7.10(a)) display the variation of differ-

ent field variables predicted by LS model. The Figures sketched in red

color (Figs.7.7(b), 7.8(b), 7.9(b), and 7.10(b)) represent the variation of

the fields predicted by GN-II model, and the Figures sketched in green

color (Figs.7.7(c), 7.8(c), 7.9(c), and 7.10(c)) show the variation of the

fields predicted by New model (Quintanilla model, 2011). In all the Figs.

(7.7(a, b, c)-7.10(a, b, c)), we take the non-homogeneity index, n = 2.

Fig.(7.3) and Figs. 7.7(a, b, c) show the variation of displacement, u un-

der different models at different time. Fig.(7.3) indicates that the predic-

tions by different models are significantly different. At any particular time,

2Note: In the 2D plots, variation of filed variables is shown up to r = 2 , since the field variables vanish beyond r = 2.
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Figure 7.7: (a,b,c). Variation of displacement, u for different values of r and t and for n = 2

Figure 7.8: (a,b,c).Variation of temperature, θ for different value of r and t and for n = 2
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the numerical values of displacement is maximum in case of New model and

is minimum in case of LS model. Further, it is concluded from the Fig.(7.3)

that displacement is directly proportional to the non-homogeneity index, n

for a particular model. Also as the radial distance, r gets closer to the ra-

dius of outer boundary of the shell, the displacement becomes zero which is

in agreement with the boundary condition prescribed for the displacement.

For a fixed time, t, the displacement starts increasing from the radius of

inner boundary of the shell and after getting a maximum value, it tends to

zero values in all cases. The Figs.7.7(a, b, c) characterize the displacement

with the variation in time for a particular value of the non-homogeneity

index, n. We consider the case when n = 2. It shows that as time increases,

the maximum peak in displacement shifts in the increasing direction of r.

Further, the displacement gets zero after traveling less distance at lower

time and it travels larger distance to get zero value as time increases for

each and every model. The region of influence inside the shell is minimum

in case of GN-II model and it is maximum in case of New model. The

region of influence increases with time in the context of each model.

Fig. (7.4) indicates the behavior of temperature. It clearly reveals that

the inner boundary condition given to the temperature (θ) is satisfied. We

further note that there is significant disagreement in predictions by different

models for temperature field too. The temperature for New model is higher

as compared to the LS model, while GN-II model shows the highest value

for temperature nearer the inner boundary of the shell and gets lowest

value after traveling some radial distance, r as compared to the other two

models. The temperature field achieves higher values for larger value of
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Figure 7.9: (a,b,c). Variation of radial stress, σrr for different values of r and t and for n = 2

Figure 7.10: (a,b,c).Variation of circumferential stress, σϕϕ for different value of r and t and for n = 2
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non-homogeneity index n nearer to the inner boundary of the spherical

shell, while after traveling some radial distance, it gets larger values for

smaller values of n. GN-II theory predicts very small negative value for

some small interval of radial distance, r as it is obvious from previous

literature in the case of thermoelasticity theory for GN-II model. The

temperature tends to zero as radial distance tends to the outer radius of

the shell. Figs. 7.8(a, b, c) show more clearly the variation of temperature

for different models at different times and for the case when n = 2. It is

clear that at the larger time, the temperature travels till larger distance to

get zero value under LS model and New model. However, it sharply tends

to zero in case of GN-II as compared to the other models. This implies

that at any time the region of influence for temperature is minimum in the

context of GN-II model as compared to the other two models.

From the Figs. (7.5) and (7.6), it is evident that both the stresses are

compressive in nature nearer to the inner boundary of the shell and radial

stress σrr satisfies the inner boundary condition. Also it is evident that

both the stresses show one local minimum and one local maximum in the

context of each model. The effective region for both the stresses under

three models shift along the right direction in the order as GN-II, LS and

New model and local maximum also shifts in the same order. Further, the

effect of non-homogeneity index, n is very much prominent on both the

stresses σrr and σϕϕ. Generally, the values of stresses increase for larger

value of n but this result is in reverse order for some small interval of radial

distance, r. Figs. 7.9(a, b, c) and 7.10(a, b, c) depict the 3D plots of stresses

to characterize the effect at different time for a particular non-homogeneity
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index. From these Figures, it is clear that at a larger time, t the stresses

travel more radial distance to get zero values and the effective region of

influence increases with time in case of each model.

7.5 Conclusions

We investigate a problem concerning thermoelastic interactions inside a

medium with functionally graded material properties. Some important

points of the present study can be demonstrated as follows. The spher-

ical shell made with functionally graded materials is highly supported in

modern design of engineering. Therefore, the thermoelastic investigation

for such problems is very popular now. It considers realistic situation that

takes into account the coupling effects of temperature and mechanical fields

involved in the problem. The importance of finite element method to tackle

the problem has been illustrated. Previously, Bellman method or Fourier

series method or Stehfest method are used for Laplace inversion to get

the final solution in space time domain. However, we employ here the

method proposed by Zakian et al. (1969) for the better accuracy. FEM

software packages like ANSYS, ABAQUS are commonly used in thermoe-

lasticity theories but we give a detailed mathematical description of the

finite element method to tackle the problem. We carry out our computa-

tion successfully. The present study also highlights the effects of employing

the New heat conduction model proposed by Quintanilla (2011) over the

cases of other two existing thermoelastic models. We observe that the pre-

dictions of different models are significantly different and the New model

shows the highest disturbance range due to thermal loading as compared to
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the other two models. The GN-II model has the lowest region of influence

for each field at any time.
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