
CHAPTER 5

AN INVESTIGATION ON THERMOELASTIC INTERACTIONS

UNDER AN EXACT HEAT CONDUCTION MODEL WITH A

DELAY TERM1

5.1 Introduction

The thermoelasticity theories with phase-lags have been introduced to over-

come the inadequacy of the classical theory. These theories have drawn the

serious attention of researchers in recent years who have investigated several

features of various models. Qualitative analyses on dual-phase-lag ther-

moelasticity have been reported by Quintanilla (2003) and Quintanilla and

Racke (2006a; 2006b). The stability of the three-phase-lag heat conduc-

tion equation was discussed by Quintanilla and Racke (2008). Quintanilla

(2009) also studied the spatial behavior of solutions of the three-phase-lag

heat equation. Subsequently, some critical analysis on these models are also

reported. Dreher et al. (2009) have reported a critical analysis on dual-

phase-lag and three-phase-lag heat conduction models and have shown that

when we adjoin these constitutive equation with energy equation, there al-

ways exists a sequence of eigenvalues in the point spectrum such that its

real parts tend to infinity. This implies the ill-posedness of the problem in

1The content of this chapter is published in “Journal of Thermal Stresses”, 39(8), (2016), 1002-1016.
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the Hadamard sense. That is, we can not obtain continuous dependence

of the solution with respect to initial parameters (see Quintanilla (2011),

Leseduarte and Quintanilla (2013)). Subsequently, an attention has been

paid on different Taylor series approximations to these heat conduction

equations (see Quintanilla and Racke (2008) and the references therein) to

investigate the continuous dependence results and stability analysis. Quin-

tanilla (2011) has reformulated the three-phase-lag model in an alternative

way by defining τq = τT and τ = τq − τν > 0. He obtained the heat

conduction equation with a single delay term in the form

..
υ −K∗τ 2

2
∇ ..

υ= (K +K∗τ)∇T +K∗∇υ (i)

This is termed as exact heat conduction with a delay. Later on, Lesed-

uarte and Quintanilla (2013) investigated the stability and spatial behavior

of the solutions of this newly proposed model with single delay term. A

Phragmen-Lindelof type alternative is obtained and it has been shown that

the solutions either decay in an exponential way or blow-up at infinity in an

exponential way. The obtained results are extended to a thermoelasticity

theory by considering the Taylor series approximation of the equation of

heat conduction to the delay term and Phragmen-Lindelof type alternative

is obtained for the forward and backward in time equations. Kumari and

Mukhopadhyay (2017b) made an attempt to establish some important the-

orems in this context. A uniqueness theorem has been established for an

anisotropic body and a variational principle as well as a reciprocity prin-

ciple is established too. For the half space problem, a detailed analysis of
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analytical and numerical results under the current theory is provided by

Kant and Mukhopadhyay (2016).

In the present chapter, we consider this newly proposed model with a

single delay term (Quintanilla (2011), Leseduarte and Quintanilla (2013)).

This model considers all the microstructural effects in the heat transport

phenomenon like dual-phase-lag and three-phase-lag model. We make an

attempt to investigate a problem of thermoelastic interactions in the con-

text of this model. The state-space approach is employed to formulate the

problem and the formulation is then is applied to solve a boundary value

problem of an isotropic elastic half space with its plane boundary subjected

to sudden increase in temperature and zero stress. The Laplace transform

is applied to obtain the solution of the problem. The short-time approxi-

mated solution for the field variables is obtained analytically. A detailed

analysis of analytical results is provided. An attempt has also been made to

illustrate the problem and numerical values of field variables are obtained

for a particular material. Results are analyzed with different graphs and a

comparison of the results with others existing models of thermoelasticity

is made. To the best of the author’s knowledge, this thermoelastic model

has not yet received much attention of researchers. Hence, this problem is

considered to understand the basic features of this new model with respect

to other well established models of thermoelasticity.

5.2 Basic Governing Equations

We employ the thermoelasticity theory based on the exact heat conduction

model with a delay term as proposed by Leseduarte and Quintanilla (2013)
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to consider the thermoelastic interactions in a homogeneous and isotropic

solid in the absence of body forces and heat sources. The equation of mo-

tion, stress-strain-temperature relations and the unified heat conduction

equation in the contexts of the theory of extended thermoelasticity due

to Lord and Shulman (LS model), thermoelasticity without energy dissi-

pation due to GN-II model, thermoelasticity of type III (GN-III model)

and the new model with a delay parameter as proposed by Leseduarte and

Quintanilla (2013) can be considered in a unified way as follows:

Equation of motion:

µ∇2
u+ (λ+ µ)

−→∇divu− γ∇T = ρü (5.1)

Stress-strain-temperature relation:

~σ = λ(divu)~I + µ
(

~∇u+ ~∇u
T

)

− γT ~I (5.2)

Unified heat conduction equation:

(

δ1j + ξ0δ2j
∂

∂t

)

K∇2T + δ2jK
∗
[

∇2T + ξ1

(

τ1∇2
.

T +
τ 21
2
∇2

..

T

)]

= ρcE

[

δ1j
.

T + (δ1jτ0 + δ2j)
..

T
]

+ γT0

[

δ1jdivu+ (δ1jτ0 + δ2j) div
..
u
]

(5.3)

where τ0 is the thermal relaxation parameter due to Lord -Shulman

model, and τ1 is the delay time due to new model (Leseduarte and Quin-

tanilla (2013)).

Eqs. (5.1)-(5.3) reduce to the equations of different theories of thermoe-

lasticity as follows:

1. LS model : j =1 (i.e. δ2j = 0), τ0 > 0
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2. GN− II model : j = 2,(i.e. δ2j = 1), ξ0 = 0 = ξ1

3. GN− III model : j = 2, ξ0 = 1, ξ1 = 0

4. New model : j = 2, ξ0 = 1 = ξ1, τ1 > 0

5.3 Problem Formulation

We consider a thermoelastic medium in unbounded space, x ≥ 0, whose

state variables depend only on space variable x and time t. For simplicity

of equations (5.1)-(5.3), we use the following non-dimensional variables and

notations:

x′ = c1ηx, u
′ = c1ηu, t

′ = c21ηt, τ
′
0 = c21ητ0, τ

′
1 = c21ητ1, θ = T

T0
,

σ′xx =
σxx

λ+2µ , c
2
1 =

λ+2µ
ρ , K∗ = ρcE(λ+2µ)

4 and η = ρcE
K .

Therefore, in terms of the above non-dimensional variables, after drop-

ping the primes, equations (5.1)-(5.3) can be transformed to the non-

dimensional forms as follows:

∂2u

∂x2
− a1

∂θ

∂x
=

∂2u

∂t2
(5.4)

σxx =
∂u

∂x
− a1θ (5.5)

[

δ1j + δ2j

{

ξ0
∂

∂t
+

1

4
+

ξ1

4

(

τ1
∂

∂t
+

τ 21
2

∂2

∂t2

)}]

∂2θ

∂x2

=

[

δ1j
∂θ

∂t
+ (δ1jτ0 + δ2j)

∂2θ

∂t2

]

+ a2

[

δ1j
∂

∂t
+ (δ1jτ0 + δ2j)

∂2

∂t2

]

∂u

∂x
(5.6)
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where, we define the non-dimensional quantities a1 =
γT0

λ+2µ , and a2 =
γ
Kη .

5.4 Solution of the Problem

Applying Laplace transform on time under homogeneous initial conditions

to the equations (5.4)-(5.6), we get

∂2ū

∂x2
− a1

∂θ̄

∂x
= s2ū (5.7)

σ̄xx =
∂ū

∂x
− a1θ̄ (5.8)

[

δ1j + δ2j

{

ξ0s+
1

4
+

ξ1

4

(

τ1s+
τ 21 s

2

2

)}]

∂2θ

∂x2

=
[

δ1js+ (δ1jτ0 + δ2j) s
2
]

θ + a2
[

δ1js+ (δ1jτ0 + δ2j) s
2
] ∂u

∂x
(5.9)

where, s is the Laplace transform parameter

By using the equations (5.7)-(5.9), we find two coupled equations in state

variables, θ̄ and σxx as

∂2θ̄

∂x2
=

8
[

δ1j (1 + ǫ) s+ (δ1jτ0 + δ2j + δ1jτ0ǫ+ δ2jǫ) s
2
]

ξ1τ
2
1 s

2 + 2δ2j (ξ1τ1 + 4ξ0) s+ 2 (4δ1j + δ2j)
θ̄

+
8a2

[

δ1js+ (δ1jτ0 + δ2j) s
2
]

ξ1τ
2
1 s

2 + 2δ2j (ξ1τ1 + 4ξ0) s+ 2 (4δ1j + δ2j)
σ̄xx (5.10)
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∂2σ̄xx

∂x2
= a1s

2θ̄ + s2σ̄xx (5.11)

where ǫ = a1a2.

Now, we write equations (5.10) and (5.11) in the matrix forms as

d2V̄ (x, s)

dx2
= P (s)V̄ (x, s) (5.12)

where,

V̄ (x, s) =





θ̄(x, s)

σ̄xx(x, s)



 (5.13)

P (s) =





L1 L2

M1 M2



 (5.14)

L1 =
8
[

δ1j (1 + ǫ) s+ (δ1jτ0 + δ2j + δ1jτ0ǫ+ δ2jǫ) s
2
]

ξ1τ
2
1 s

2 + 2δ2j (ξ1τ1 + 4ξ0) s+ 2 (4δ1j + δ2j)

L2 =
8a2

[

δ1js+ (δ1jτ0 + δ2j) s
2
]

ξ1τ
2
1 s

2 + 2δ2j (ξ1τ1 + 4ξ0) s+ 2 (4δ1j + δ2j)

M1 = a1s
2, M2 = s2

Solution of the equation (5.12) is given by

V̄ (x, s) = V̄ (0, s)e
−
[√

P (s)
]

x
(5.15)
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where,

V̄ (0, s) =





θ̄ (0, s)

σ̄xx(0, s)



 =





θ̄0

σ̄0



 , say.

In the above solutions, we have omitted the part of the exponential that

has a positive power to obtain bounded solutions for large x.

Now, using Cayley Hamilton’s theorem, e
−
[√

P (s)
]

x
can be expressed in

the form

e
−
[√

P (s)
]

x
= L(x, s) = b0I + b1Q(s) (5.16)

where, b0 and b1 are constants depending on s and x to be determined and

I is 2× 2 identity matrix. Q(s) is a 2× 2 matrix to be determined.

The characteristic equation of matrix P (s) is obtained as

k2 − (L1 +M2) k + (L1M2 − L2M1) = 0 (5.17)

where, two roots k1 and k2 of the equation (5.17) will satisfy

k1 + k2 = L1 +M2 (5.18)

k1k2 = L1M2 − L2M1 (5.19)

Further, the spectral decomposition of P (s) can be written as

P (s) = k1E1 + k2E2 (5.20)

where, E1 and E2 are projections of P (s) which follow the conditions
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E1+E2 = I, E1E2 = E2E1 = zero matrix, E2
1 = E1 and E2

2 = E2 (5.21)

By using equations (5.20) and (5.21), we have

√

P (s) =
√

k1E1 +
√

k2E2 (5.22)

where,

E1 =
1

k1 − k2





L1 − k1 L2

M1 M2 − k1



 (5.23)

and

E2 =
1

k1 − k2





k1 − L1 −L2

M1 k1 −M2



 (5.24)

Now the characteristic roots r1 and r2 of the matrix
√

P (s) are given by

r1 =
√

k1 and r2 =
√

k2 (5.25)

Since, equation (5.16) is Cayley-Hamilton form of the matrix
√

P (s),

hence r1 and r2 will also satisfy equation (5.16). Therefore, we get the

following system of linear equations:

e[−r1x] = b0 + b1r1 (5.26)

e[−r2x] = b0 + b1r2 (5.27)
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Solving the system of linear equations (5.26) and (5.27), we find

b0 =
1

r1 − r2

[

r1e
−r2x − r2e

−r1x] (5.28)

b1 =
1

r1 − r2

[

e−r1x − e−r2x
]

(5.29)

Substituting b0 and b1 in equation (5.16), we find the elements Lij

(i,j=1,2) of matrix L(x, s) in the following forms:

L11 =
1

k1−k2

[

(k1 − L1) e
−
√
k2x − (k2 − L1) e

−
√
k1x

]

L12 =
L2

k1−k2

[

e−
√
k1x − e−

√
k2x

]

L21 =
M1

k1−k2

[

e−
√
k1x − e−

√
k2x

]

L22 =
1

k1−k2

[

(k1 −M2) e
−
√
k2x − (k2 −M2) e

−
√
k1x

]

Therefore, the solution of equation (5.12) can be written as

V̄ (x, s) = L(x, s)V̄ (0, s) (5.30)

Hence, component-wise solutions for θ̄ and σxx can be written as

θ̄ =
1

k1 − k2

[

(

k1θ̄0 − L1θ̄0 − L2σ̄0

)

e
−

√

k2x
−

(

k2θ̄0 − L1θ̄0 − L2σ̄0

)

e
−

√

k1x

]

(5.31)

σ̄xx =
1

k1 − k2

[

(

k1σ̄0 −M2σ̄0 −M1θ̄0

)

e
−

√

k2x
−

(

k2σ̄0 −M2σ̄0 −M1θ̄0

)

e
−

√

k1x

]

(5.32)

From equations (5.7) and (5.8), we get

ū =
1

s2
∂σ

∂x
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i.e. ū =
1

s2 (k1 − k2)

[

(

M1θ̄0 +M2σ̄0 − k1σ̄0
)

√

k2e
−
√
k2x

−
(

M1θ̄0 +M2σ̄0 − k2σ̄0
)

√

k1e
−
√
k1x

]

(5.33)

5.4.1 Boundary Conditions

We consider a half space x ≥ 0 occupied by a homogeneous and isotropic

thermoelastic solid with homogeneous initial conditions. Suppose that the

boundary x = 0 of the half space is stress free and is subjected to a unit-

step increase in temperature. Therefore, boundary conditions can be taken

as follows:

σxx(0, t) = σ0 = 0 (5.34)

θ(0, t) = θ0 = θ∗H(t) (5.35)

where, θ∗ is a constant temperature and H(t) is Heaviside unit-step

function.

Now, after taking the Laplace transform of equation (5.34) and (5.35),

we get

σ̄xx(0, s) = σ̄0 = 0 (5.36)

θ̄(0, s) = θ̄0 =
θ

s

∗
(5.37)
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Using the boundary conditions (5.36) and (5.37) into the equations

(5.31)-(5.33), we obtain the solutions for the field variables in the Laplace

transform domain as

θ̄ =
θ∗

s (k1 − k2)

[

(k1 − L1) e
−
√
k2x − (k2 − L1) e

−
√
k1x

]

(5.38)

σ̄xx =
θ∗M1

s (k1 − k2)

[

e−
√
k1x − e−

√
k2x

]

(5.39)

ū =
θ∗M1

s3 (k1 − k2)

[

√

k2e
−
√
k2x −

√

k1e
−
√
k1x

]

(5.40)

5.5 Short-time Approximated Solutions

In the previous section, we found the solutions of the field variables in the

Laplace transform domain. The distributions of stress, temperature and

displacement fields in the physical domain (x,t) will be determined by tak-

ing Laplace inversions of σ̄xx, θ̄ and ū given by (5.38)-(5.40). However, to

the solution of (5.17) to find k1 and k2 exactly for all value of s is unman-

ageable and hence closed form solutions (transform-inversion) for all field

variables for all values of s is also practically impossible to construct. There-

fore, we will make attempt to find small-time approximated solutions of the

the field variables for which we assume that Laplace transform parameter

s is very large (see, Dhaliwal and Rokne(1988; 1989), Chandrasekhara-

iah and Srinath(1996), Mukhopadhyay and Kumar(2010b)). For this, we

concentrate our attention for the new model only by substituting j =2,

ξ0 = 1 = ξ1, τ1 > 0 in equation (5.10) and all the subsequent equations.
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In view of this, the square root of roots k1 and k2 of equation (5.17) can

be found by using Maclaurin’s series expansion and neglecting the higher

powers of small terms as follows:

√

k1 = s+
m1

s
− m2

s2
(5.41)

√

k2 = n1 −
n2

s
+

n3

s2
(5.42)

where, m1 = 4ǫ
τ21
, m2 = 8ǫ(τ1+4)

τ41
, n1 = 2

√
2

τ1
, n2 = 2

√
2(τ1+4)
τ31

, n3 =
√
2(48+24τ1+τ21−8ǫτ21)

τ51
.

Substituting the values of k1 and k2 in equations (5.38)-(5.40) and af-

ter simplification, we get the short-time approximated solutions for the

variables in Laplace transform domain as

θ (t, x) ≃
2

∑

i=1

[

Ai
e−(s+

m1
s )x

s2i
− Bi

e−(n1−n2
s )x

si+3

]

(5.43)

σxx (t, x) ≃ a1

2
∑

i=1

Ci

[

e−(s+
m1
s )x

s2i−1
− e−(n1−n2

s )x

s2i−1

]

(5.44)

u (t, x) ≃ a1

2
∑

i=1

[

−Di
e−(s+

m1
s )x

s2i
+ ni

e−(n1−n2
s )x

si+2

]

(5.45)

where, we used the following notations:

A1 = C1 = D1 = 1, A2 = − 8ǫ
τ21
, B1 =

8(1−a2)
τ21

, B2 =
−16(τ1+4)(1−a2)

τ41
, C2 =

8(1−ǫ)
τ21

, D2 = m1 + C2.

Now, taking inverse Laplace transforms of equations (5.43)-(5.45), we get

the approximated analytical solution for the distributions of displacement,

113



CHAPTER 5. AN INVESTIGATION ON THERMOELASTIC INTERACTIONS UNDER AN...

temperature and stress in space -time (x,t) domain as

θ (x, t) =
2

∑

i=1

Ai

(

t− x

m1x

)2i−1/2

J2i−1

(

2
√

m1x (t− x)

)

H(t− x)

−
2

∑

i=1

Bie
−n1x

(

t

n2x

)i+2/2

Ii+2

(

2
√
n2xt

)

(5.46)

σxx (t, x) = a1

2
∑

i=1

Ci

(

t− x

m1x

)i−1
J2i−2

(

2
√

m1x (t− x)

)

H(t− x)

− a1

2
∑

i=1

Cie
−n1x

(

t

n2x

)i−1
I2i−2

(

2
√
n2xt

)

(5.47)

u (t, x) = −a1
2

∑

i=1

Di

(

t− x

m1x

)2i−1/2

J2i−1

(

2
√

m1x (t− x)

)

H(t− x)

+ a1

2
∑

i=1

nie
−n1x

(

t

n2x

)i+1/2

Ii+1

(

2
√
n2xt

)

(5.48)

5.6 Analysis of Analytical Results

From the solutions obtained in equations (5.46)-(5.48), we observe that each

of the distributions of temperature, displacement and stresses consists of

two main parts. In the first part, the term involving H(t− x) corresponds

to a wave propagating with finite speed (unity) which can be identified as

predominantly elastic wave. The expressions given by Eqns. (5.46)-(5.48)

reveal that under this new theory of thermoelasticity, the modified elas-

tic wave propagates without any attenuation. This is a distinct feature
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predicted by the theory and it has a similarity with the thermoelasticity

without energy dissipation (GN-II) model. The second part of the solutions

of the field variables does not indicate to be a contribution of a wave, in-

stead it is diffusive in nature indicating an exponential decay with distance

with an attenuating coefficient n1. This represents that under this present

model, the thermal wave do not propagate with finite wave speed like, other

generalized thermoelasticity theories: LS model, GL model, GN-II model,

dual-phase-lag model or three-phase-lag model. However, a similar nature

is observed under GN-III model (see Mukhopadhyay and Kumar(2010b)).

Furthermore, we note that the solutions for temperature and displacement

(see equations (5.46) and (5.48)) are continuous in nature. However the

analytical results given by equation (5.47) shows that stress distribution

has discontinuity with finite jumps at the elastic wave front. The finite

jump is obtained as follows:

σxx|x=t = σxx|x=t+ − σxx|x=t−

= a1C1

It must be mentioned here that this behavior of solutions in the context

of the present new model has similarity with the corresponding results

under GN-III model (see Mukhopadhyay and Kumar (2010b)).

5.7 Numerical Results and Discussion

In this section, we illustrate the problem with numerical values of the

field variables like displacement, temperature and stress for a material in
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space-time domain. For the inversion of Laplace transforms, we employ a

numerical method as described by Bellman et al. (1966). With the help of

MATLAB software, we compute values of the variables by using solutions

obtained in (5.43)-(5.45) and employing the numerical method. We choose

the copper material for this purpose and physical data for it are given as

follows (2005):

λ = 7.76× 1010 Nm−2, µ = 3.86× 1010 Nm−2, αt = 1.78× 10−5 K−1,

K = 8886.73 sm−2, cE = 383.1 JKg−1K−1, ρ = 8954 Kg m−3.

We assume

θ∗ = 1, τ1 = 0.1, τ0 = 0.1.

For the purpose of comparing our results in the present context, we also

carry out calculations for field variables under new mode and other three

models like, GN-II, GN-III and LS models as described in the section of

basic equations. Variations of field variables for different values of non-

dimensional space co-ordinate, x (x≥ 0) and for non-dimensional time t

are computed and values are plotted in different figures.

Figs. 5.1(a,b,c) show the variation of displacement with respect to dis-

tance, x under four models (new model, GN-II, GN-III and LS model) at

three different times t = 0.1, 0.7, 1.2 and indicate that when the bound-

ary of the half space is subjected to a thermal shock and zero stress, the

displacement shows an oscillatory nature near the boundary. It attains a

stationary maximum value (+ve) after some distance from the boundary

and finally it decreases to zero value. At larger time, it covers little more
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(a) (b)

(c)

Figure 5.1: (a).Variation of displacement u vs. x at t = 0.1, (b). Variation of displacement u vs. x
at t = 0.7 and (c). Variation of displacement u vs. x at t = 1.2
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distance to get zero value, i.e. the effective region of displacement increases

with time. However, we notice that the stationary point at which displace-

ment attains a maximum value shifts to the right in the x -axis as time is

increased. A significant difference is noted for the displacement field pre-

dicted by different models. However, it is observed that the new model

predicts very much similar result like GN-III model. After traveling a dis-

tance, the displacement distribution under GN-III and new model almost

merged to each other. At all time, near the boundary of the half space and

till the middle of the region of effect, this filed shows significantly differ-

ent values in the contexts of GN-II and LS models as compared to GN-III

model and present model although after some distance the difference de-

creases between LS model and GN-III model or new model. The difference

between GN-II model and other three models is very much prominent. The

region of influence is much larger in cases of GN-III model and new model

as compared to other models.

Variation of temperature is depicted in Figs. 5.2(a,b,c) which indicate

that temperature field has maximum value unity at the boundary of the

half space (which agrees with the boundary condition of our problem),

then it decreases to zero value after some distance from the boundary. A

prominent difference is observed for the values of temperature under differ-

ent models although the profiles under new model shows very close nature

with GN-III model and other two models (LS and GN-II) predict signif-

icantly different values as compared to these two models. The difference

is more prominent near the boundary and at higher time. A very signifi-

cant nature of temperature distribution is observed under different models:
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(a) (b)

(c)

Figure 5.2: (a).Variation of temperature θ vs. x at t = 0.1, (b). Variation of temperature θ vs. x at
t = 0.7 and (c). Variation of temperature θ vs. x at t = 1.2
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temperature field shows negative value (i.e., temperature goes less than the

reference temperature) for a region after some distance from the boundary

in the context of GN-II model. However, this behavior is not observed

under LS model, GN-III model or new model. At higher time, the effective

region of temperature field is much more larger in the contexts of GN-III

model and new model as compared to LS and GN-II models.

Figs. 5.3(a,b,c) show the variations of stress field under four different

thermoelastic models with respect to distance x and for three different

times t. It shows that the stress is zero at x = 0 which satisfies the boundary

condition of the problem. It is evident from Figs. 5.3(a)-(c) that the stress

field shows oscillatory behavior near the boundary of the half space. The

stress field becomes compressive for a part of the effective region just after

some distance from the boundary and it attains an absolute maximum value

in this region under all models. This absolute maximum value increases

with time. The maximum value is attained at the earliest under GN-II

model. At higher time, this value is maximum in the context of LS model.

With the increase of time, the location of the stationary points at which

the absolute maximum values is attained shifts towards the right in x -axis

(see Figs. 5.3(a,b,c)). Finally the stress field ends to zero value, though

the region of influence is much larger in cases of GN-III model and new

model as compared to other two models.

All the Figures indicate that the new thermoelastic model based on

the exact heat conduction model with a delay as proposed by Leseduarte

and Quintanilla(2013) predicts almost similar results like GN-III model as

compared to GN-II and LS models.

120



(a) (b)

(c)

Figure 5.3: (a).Variation of stress σxx vs. x at t = 0.1, (b). Variation of stress σxx vs. x at t = 0.7
and (c). Variation of stress σxx vs. x at t = 1.2
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