
CHAPTER 4

INFINITE SPEED BEHAVIOR OF TWO-TEMPERATURE GREEN

LINDSAY THERMOELASTICITY THEORY UNDER TEM-

PERATURE DEPENDENT THERMAL CONDUCTIVITY1

4.1 Introduction

It has been realized that the thermoelastic parameters are assumed to be

constant in general but at very high temperature these parameters remain

no longer constants for thermoelastic materials. It has been reported by

Noda (1986) with practical results that thermal conductivity of the mate-

rials decrease linearly with temperature. Thermoelastic materials at high

temperature provides much different practical and theoretical results from

the expectations. Therefore, it is quite necessary to consider the depen-

dency of these parameters on temperature in the analysis of the behavior

of materials in particular, when it is kept at very high temperature. In

recent years, some work have been carried out with generalized theory of

thermoelasticity by taking into account the dependency of thermoelastic

parameters on temperature. Suhara (1918) solved a thermoelastic model

by considering the shear modulus depending on temperature and discussed

the effect in details. Youssef and Abbas (2007) discussed the results by

1The content of this chapter is communicated to an International Journal , 2018.



CHAPTER 4. INFINITE SPEED BEHAVIOR OF TWO-TEMPERATURE GREEN-LINDSAY...

solving a thermoelastic problem for an unbounded medium with a spheri-

cal cavity by assuming that thermal conductivity and modulus of elasticity

depend on temperature. A characteristic feature has been discussed for a

two-dimensional thermoelastic problem with temperature dependent elastic

moduli by Othman (2002; 2003; 2013; 2015). Zenkour and Abbas (2014)

discussed the effects of temperature dependent properties of the materi-

als assuming the density and other thermoelastic properties depending on

temperature.

The present chapter of the thesis is concerned with the analysis of the

effects of temperature dependent thermal conductivity on thermoelastic in-

teractions inside a medium with a spherical cavity under two-temperature

generalized thermoelastic theory that involves two thermal relaxation pa-

rameters. The thermal conductivity of the material is assumed to vary

with temperature linearly. Initially, the temperature at the boundary of

the spherical cavity is assumed to be subjected to a thermal shock and it

is assumed that there is no stress on the surface of the cavity. We solve

the problem by using Kirchhoff transformation along with Laplace trans-

form technique. Various graphs are plotted to display the distributions of

different field variables like, conductive temperature, thermodynamic tem-

perature, displacement and two non-zero components of stress. An attempt

is also made to compare the results in the present context with the corre-

sponding results predicted by other thermoelasticity theories. A detailed

analysis of our results due to temperature dependent material properties

and the effects of employing two-temperature model is presented. We high-

light some important features of the present two-temperature model in the
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context of temperature dependent thermal conductivity.

4.2 Problem Formulation

We consider an isotropic elastic medium with temperature dependent ma-

terial properties. We write the basic governing equations under four mod-

els namely Lord-Shulman (LS) model (1967), Green-Lindsay (GL)(1972)

model, two-temperature LS model (TLS model: Youssef (2006b) ) and two-

temperature GL model (TGL model: Youssef (2006b)) in unified way as

follows:

The equation of motion:

σij,j = ρ
..
ui (4.1)

The equation of heat conduction:

(Kφ,i),i =

(

1 + ξτ0
∂

∂t

)[

ρcE
∂θ

∂t
+ T0γ

∂e

∂t

]

(4.2)

where

φ− θ = αφ,ii (4.3)

The equation of stress-strain-temperature relation:

σij = 2µeij + λekkδij − γ

(

θ + τ1
∂θ

∂t

)

δij (4.4)

Strain-displacement relation:

eij =
1

2
(ui,j + uj,i) (4.5)

Using equations (4.1) and (4.4), we find
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µui,jj + (λ+ µ) uj,ji − γ

(

θ + τ1
∂θ

∂t

)

i

= ρ
..
ui (4.6)

Here, α is the two-temperature parameter which is the characteristic of

the present model.

The above set of equations (4.1)-(4.6) can be reduced to the correspond-

ing equations of TGL, GL, TLS and LS models by providing the particular

values to the parameters α, τ0, τ1 and ξ as follows:

• TGL model: α 6= 0, τ0 6= 0, τ1 6= 0 and ξ = 0

• GL model: α = 0, τ0 6= 0, τ1 6= 0 and ξ = 0

• TLS model: α 6= 0, τ0 6= 0, τ1 = 0 and ξ = 1

• LS model: α = 0, τ0 6= 0, τ1 = 0 and ξ = 1

We suppose that the thermal conductivity, K varies with temperature and

assume that it is varying as

K(φ) = K0(1 +K1φ) (4.7)

where K0 is the thermal conductivity at reference temperature T0. K1

is a constant, which is zero at reference temperature, T0.

We consider an unbounded thermoelastic medium with a spherical cav-

ity of radius a, initially at uniform temperature T0. In the case when we

consider the center of the cavity at the origin and spherical symmetry by

introducing spherical polar coordinates (r, ϑ, ϕ), equations (4.2)-(4.4) and

(4.6) reduce to the following forms:
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(λ+ 2µ)
∂e

∂r
− γ

(

1 + τ1
∂

∂t

)

∂θ

∂r
= ρ

∂2u

∂t2
(4.8)

[

K∇2φ+
∂K

∂φ

(

∂φ

∂r

)2
]

=

(

1 + ξτ0
∂

∂t

)(

ρcE
∂θ

∂t
+ γT0

∂e

∂t

)

(4.9)

σrr = 2µ
∂u

∂r
+ λe− γ

(

θ + τ1
∂θ

∂t

)

(4.10)

σϕϕ = σϑϑ = 2µ
u

r
+ λe− γ

(

θ + τ1
∂θ

∂t

)

(4.11)

φ− θ = α∇2φ (4.12)

where u is the single non-zero component of displacement. σrr, σϕϕ and

σϑϑ are non-zero stress components, e = ∂u
∂r +

2
ru and ∇2 = ∂2

∂r2 +
2
r
∂
∂r .

In view of equations (4.7,4.12), we find that equation (4.9) is non-linear,

and therefore to tackle the non-linearity we consider a new function Φ

expressing the temperature with Kirchhoff transformation as

Φ =
1

K0

ˆ φ

0
K(p)dp = φ+

1

2
K1φ

2 (4.13)

Hence, by using equations (4.7) and (4.13), we have

K0
∂Φ

∂r
= K

∂φ

∂r
and K0

∂2Φ

∂r2
= K

∂2φ

∂r2
+

∂K

∂φ

(

∂φ

∂r

)2

Therefore, we get
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[

K∇2φ+
∂K

∂φ

(

∂φ

∂r

)2
]

= K0∇2Φ (4.14)

Employing equation (4.14) into equation (4.9), we have

K0∇2Φ =

(

1 + ξτ0
∂

∂t

)(

ρcE
∂θ

∂t
+ γT0

∂e

∂t

)

(4.15)

Now, for convenience we use the following symbols and notations in order

to make equations (4.8), (4.10)-(4.12) and (4.15) dimensionless:

(r′, u′) = c0η (r, u),
(

t′, τ
′

0, τ
′

1

)

= c20η (t, τ0, τ1),
(

θ
′

, φ
′

,Φ′
)

= 1
T0

(θ − T0, φ− T0,Φ− T0),

e′ = e, σ′ij =
σij

(λ0+2µ0)
, c20 = (λ+2µ)

ρ , a1 = γT0

(λ+2µ) , a2 = γ
K0η

, a3 = αc20η
2,

λ1 =
λ

(λ+2µ) .

where η = ρcE
K0

.

Therefore, equations (4.8), (4.10)-(4.12) and (4.15) change to their di-

mensionless forms, after dropping the primes for clarity, as follows:

∂e

∂r
− a1

(

1 + τ1
∂

∂t

)

∂θ

∂r
=

∂2u

∂t2
(4.16)

∇2
.

Φ =

(

1 + ξτ0
∂

∂t

)(

∂θ

∂t
+ a2

∂e

∂t

)

(4.17)

σrr = (1− λ1)
∂u

∂r
+ λ1e− a1

(

θ + τ1
∂θ

∂r

)

(4.18)

σϕϕ = σϑϑ = (1− λ1)
u

r
+ λ1e− a1

(

θ + τ1
∂θ

∂r

)

(4.19)
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φ− θ = a3∇2φ (4.20)

4.3 Solution of the Problem

We apply Laplace transform to the equations (4.16)-(4.20) with homoge-

neous initial conditions and we obtain

∂ē

∂r
− b0(s)

∂θ̄

∂r
= s2ū (4.21)

∇2Φ̄ = b1(s)
(

θ̄ + a2ē
)

(4.22)

σ̄rr = (1− λ1)
∂ū

∂r
+ λ1ē− b0(s)θ̄ (4.23)

σ̄ϕϕ = σ̄νν = (1− λ1)
ū

r
+ λ1ē− b0(s)θ̄ (4.24)

φ̄− θ̄ = a3∇2φ̄ (4.25)

where b0(s) = a1 (1 + τ1s) and b1(s) = s (1 + ξτ0s).

Now taking divergence of equation (4.21), we get

∇2ē− b0(s)∇2θ̄ = s2ē (4.26)

From equations (4.22) and (4.25)

(

using the fact

∣

∣

∣

∣

φ
T0

∣

∣

∣

∣

<< 1

)

, we find
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b2(s)∇2Φ̄ = b1(s)Φ̄ + a2b1(s)ē (4.27)

where b2(s) = 1 + a3b1(s).

Similarly, by using equation (4.25) into equation (4.26), we get the fol-

lowing equation:

a3b0(s)∇4Φ̄− b0(s)∇2Φ̄ +∇2ē = s2ē (4.28)

Applying equation (4.27) into (4.28), we find

m0(s)∇4Φ̄−m1(s)∇2Φ̄ +m2(s)Φ̄ = 0 (4.29)

where m0(s) = a2a3b0(s)b1(s) + b2(s), m1(s) = a2b0(s)b1(s) + b1(s) +

s2b2(s), m2(s) = s2b1(s).

Further, using equation (4.27) into (4.28) repeatedly, we find

p0(s)Φ̄ + p1(s)∇2ē+ p2(s)ē = 0 (4.30)

where p0(s) = b0(s)b1(s) [a3b1(s)− b2(s)], p1(s) = b2(s) [a2a3b0(s)b1(s) + b2(s)],

p2(s) = a2a3b0(s)b
2
1(s)− a2b0(s)b1(s)b2(s)− sb22(s).

Applying equation (4.30) into equation (4.27), we have

n0(s)∇4ē− n1(s)∇2ē+ n2(s)ē = 0 (4.31)

where n0(s) = b2(s)p1(s), n1(s) = p1(s)b1(s)− p2(s)b2(s), n2(s) = b1(s) [a2p0(s)− p2(s)].

The equations (4.29) and (4.31) are in the form of modified spherical
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Bessel differential equations, hence its bounded solution can be obtained

in the forms

Φ̄(r, s) =
1√
r

2
∑

j=1

AjK1/2(cjr) (4.32)

ē(r, s) =
1√
r

2
∑

j=1

BjK1/2(djr) (4.33)

where, Aj and Bj are arbitrary constants, Kα(r) is the representation

of modified Bessel functions of order α of second kinds, respectively and

±cj and ±dj (j = 1, 2) are roots of the equations

m0(s)x
4 − m1(s)x

2 + m2(s) = 0 and n0(s)x
4 − n1(s)x

2 + n2(s) = 0,

respectively.

Applying equations (4.32) and (4.33) into (4.27), we have

K1/2(djr)Bj = b
(j)
3 (s)K1/2(cjr)Aj, j = 1, 2 (4.34)

where b
(j)
3 (s) =

b2(s)c
2

j−b1(s)
a2b1(s)

,

Using equations (4.25), (4.32) and (4.33) into (4.21), we have

ū(r, s) =
1√
r



−
2

∑

j=1

dj

s2
K3/2(djr)Bj+

2
∑

j=1

b
(j)
4 (s)K3/2(cjr)Aj



 (4.35)

where b
(j)
4 (s) =

b0(s)cj[1−a3c2j ]
s2

From equations (4.23) and (4.25), we get
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σ̄rr =
1√
r

2
∑

j=1

[

(1− λ1) d
2
j

s2
+ λ1

]

K1/2(djr)Bj +
1

r3/2

2
∑

j=1

2dj (1− λ1)

s2
K3/2(djr)Bj

− 1√
r

2
∑

j=1

[

(1− λ1) cjb
(j)
4 (s) + λ1b0(s) + a3c

2
jb0(s)

]

K1/2(cjr)Aj

(4.36)

− 1

r3/2

2
∑

j=1

2 (1− λ1) b
(j)
4 (s)K3/2(cjr)Aj

Similarly, we find the solutions for the stress components from equations

(4.24) and (4.25) as

σ̄ϕϕ = σ̄ϑϑ =
1√
r

2
∑

j=1

λ1K1/2(djr)Bj −
1

r3/2

2
∑

j=1

dj (1− λ1)

s2
K3/2(djr)Bj

− 1√
r

2
∑

j=1

b0(s)
(

1− a3c
2
j

)

K1/2(cjr)Aj +
1

r3/2

2
∑

j=1

(1− λ1) b
(j)
4 (s)K3/2(cjr)Aj

(4.37)

4.3.1 Boundary Conditions

We consider the boundary r = a of the spherical cavity is traction free

and is subjected to a unit step increase in temperature. Therefore, the

boundary conditions in the dimension-less forms can be written as:

φ(r, t) = φ∗0H(t) and σrr(r, t) = 0 at r = a (4.38)

where φ∗0 is a constant temperature and H(t) is the Heaviside unit-step

function.
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Therefore, using equations (4.13) and applying Laplace transform to the

boundary conditions given by(4.38), we find that

Φ̄(a, s) =
φ∗0
s

(

1 +
1

2
K1φ

∗
0

)

, σ̄rr(a, s) = 0. (4.39)

From equations (4.32), (4.34) and (4.39), we obtain a linear system of

two equations as given by

X1A1 +X2A2 =
φ∗0
s

(

1 +
1

2
K1φ

∗
0

)

(4.40)

Y1A1 + Y2A2 = 0 (4.41)

where

Xj =
1√
a
K1/2(cja), j = 1, 2.

Yj =
1√
a

[

(1− λ1) d
2
j

s2
+ λ1

]

b
(j)
3 K1/2(cja) +

2dj (1− λ1) b
(j)
3

s2a3/2
K1/2(cja)K3/2(dja)

K1/2(dja)

− 1√
a

[

(1− λ1) cjb
(j)
4 (s) + λ1b0(s) + a3c

2
jb0(s)

]

K1/2(cja)

− 2 (1− λ1) b
(j)
4 (s)

a3/2
K3/2(cja)

here, j=1,2.

After solving the equations (4.40)-(4.41), we can find the unknowns Aj

(j = 1, 2) and hence the constants Bj, j = 1, 2, from equation (4.34). This

completes the solution of the present problem in Laplace transform domain

as displacement, radial stress and shear stress can be obtained with the help
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of equations (4.35)-(4.37), respectively and conductive temperature, φ̄ can

be obtained by combining equation (4.32) with (4.13) . We can obtain

the solution for thermodynamic temperature, θ in the Laplace transform

domain by using equations (4.22).

4.4 Numerical Results and Discussion

The solution in the physical space-time domain can be obtained by taking

the inverse Laplace transform of the obtained results. But as the expres-

sions of θ̄, ū, σ̄rr and σ̄ϕϕ involve complicated expressions of Laplace trans-

form parameter s, therefore it is a formidable task to find the solution in

space-time domain analytically. However, we obtain the Laplace inversion

for physical variables like, conductive temperature φ , the thermodynamic

temperature θ̄, displacement ū, radial stress σ̄rr and shear stress σ̄ϕϕ tak-

ing the help of MATLAB software and by employing Stehfest (1970) (see

Appendix. A-1) numerical method of Laplace inversion. According to this

method, if f(s) is the Laplace inverse of the function f(t), then

f(t) =
ln(2)

2

N
∑

k=1

Vkf

(

k
ln(2)

t

)

(4.42)

where N is the suitable positive integer and Vk is given by

Vk = (−1)(k+N/2)

min(k,N/2)
∑

j=[(k+1)/2]

j
N
2 (2j)!

(

N
2 − j

)

! j! (j − 1)! (k − j)! (2j − k)!
(4.43)

We consider copper material and the physical data as follows (Sherief

and Salah (2005)):
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λ = 7.76 × 1010Nm−2, µ = 3.86 × 1010Nm−2, αt = 1.78 × 10−5K−1,

η = 8886.73sm−2, cE = 383.1JKg−1K−1, ρ = 8954Kg m−3, T0 = 293K.

We assume the following dimension-less values of the constants:

α = 0.071301, τ0 = 0.01, τ1 = 0.02, φ∗1 = 1.

We make an attempt to discuss the results under all four models and

hence we obtain the numerical results of physical variables, u, φ, σrr,

σϕϕ and θ at different times. We show the results by different graphs.

Figs.4.1(a), 4.2(a), 4.3(a), 4.4(a) and 4.5(a) show the variations of dis-

placement, conductive and thermodynamic temperatures, radial stress and

hoop stress, respectively under two-temperature Green-Lindsay thermoe-

lasticity theory for different values of parameter, K1 and at different non-

dimensional times, t = 0.30, t = 0.35, t = 0.40. Figs.4.1(b), 4.2(b), 4.3(b),

4.4(b) and 4.5(b) depict the variations of all the field variables for TGL.,GL,

TLS and LS thermoelasticity models for K1 = −0.5 and at time t = 0.3.

We find the following observations for different physical fields:

4.4.1 Displacement, u

Fig. 4.1(a) shows the effects of parameter K1 on displacement for TGL

model and we note that the influence region is dominant near the boundary

of the spherical cavity and it is insignificant when we move away from

boundary of the cavity. The effect of the temperature dependent effect

parameter, K1and time, t on displacement, is significant. It is observed

that at any time the displacement increases as the value of K1 goes to

higher negative values. It is further observed that displacement is inversely

proportional to the time, t for a fixed value of K1, i.e. u decreases with
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(a) (b)

Figure 4.1: (a).Variation of u vs. r under TGL model for different values of t and K1, (b).Variation
of u vs. r for K1 = −0.5 and t = 0.3 under different models

increase in time, t.

Fig. 4.1(b) shows that there is no prominent difference in displacement

for GL and LS or TGL and TLS thermoelasticity theories. However, the

difference is notable under a two-temperature thermoelasticity theory and

without a two-temperature thermoelasticity theory. Displacement is zero

at the boundary of the cavity for GL and LS theories while it is not same for

two-temperature theories. It is also clear from the figure that displacement

is positive for GL and LS theories while it is negative under TGL and TLS

theories.

4.4.2 Conductive temperature, φ

Figs. 4.2(a) and 4.2(b) display the variation of conductive temperature, φ.

It is indicated from Fig. 4.2(a) that the distribution of φ is in agreement

with the given boundary condition. It further shows that for TGL thermoe-
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(a)
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(b)

Figure 4.2: (a).Variation of φ vs. r under TGL model for different values of t and K1, (b).Variation
of φ vs. r for K1 = −0.5 and t = 0.3 under different modes

lasticity theory, the effect of temperature dependent material parameter,

K1 is much prominent at any time.

Similar to displacement, Fig.4.2(b) shows that the variation in φ is not

prominent between TGL and TLS or between GL and LS theories while

the variation becomes prominent between a two-temperature theory and

without a two-temperature theory. Further, it is observed that φ tends

to 0 as r → ∞ but convergence speed is much slow for two-temperature

theories. Region of influence is much larger in case of two-temperature

theory as compared to generalized thermoelasticity theory.

4.4.3 Thermodynamic temperature, θ

We can see the variation of thermodynamic temperature, θ for TGL model

for different values of parameter K1 and time, t from Fig. 4.3(a). It is

observed that θ is largely affected by temperature dependent parameter

97



CHAPTER 4. INFINITE SPEED BEHAVIOR OF TWO-TEMPERATURE GREEN-LINDSAY...

C:/Users/Om/Desktop/ANIL THESIS TEST/Final Thesis_17_July_2018/Thesis Figures/Figures Chapter-4/PPT Figures/Fig.9.tif

(a)
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(b)

Figure 4.3: (a).Variation of θ vs. r under TGL model for different values of t and K1, (b).Variation
of θ vs. r for K1 = −0.5 and t = 0.3 under different models

K1 and time.

However, a similar variation in thermodynamic temperature, θ is ob-

served for a particular value of K1 . The thermodynamic temperature, θ

decreases for higher negative values of parameter, K1. However, θ is af-

fected negligibly with the increase of time for a fixed value of parameter,

K1 under TGL model.

Fig. 4.3(b) shows the variation of thermodynamic temperature, θ under

four different models for a fixed value of parameter, K1 at a fixed time.

Here, it is depicted that, like the case of conductive temperature, there

is no prominent difference in variation of θ for TGL and TLS models or

between GL and LS models, but the difference in variation of θ is significant

for a two-temperature model and without a two-temperature model. The

thermodynamic temperature, θ converges to zero for LS and GL models

very fast. However, we note that under TLS oand TGL models, it tends
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(a) (b)

Figure 4.4: (a).Variation of σrr vs. r under TGL model for different values of t and K1, (b).Variation
of σrr vs. r for K1 = −0.5 and t = 0.3 under different models

to zero as radial distance, r →∞ implying that the region of influence for

TGL and TLS models is very large as compared to the cases of LS and GL

models.

4.4.4 Stresses, σrr and σϕϕ

The variation of radial stress, σrr is displayed in Figs. 4.4(a) and 4.4(b).

Both of these figures reveal that the radial stress is in agreement with

provided boundary condition. It is compressive in nature and has two clear

minima points. It is evident from Fig. 4.4(a) that with respect to TGL

model, the variation in radial stress is prominent corresponding to both

time, t and temperature dependent effect parameter, K1. Furthermore σrr

increases if t increases or the parameter, K1 gets higher negative values.

Fig. 4.4(b) shows that the variation in σrr is prominent only with respect

to a two-temperature theory and without a two-temperature theory as in
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(a) (b)

Figure 4.5: (a).Variation of σϕϕ vs. r under TGL model for different values of t and K1, (b).Variation
of σϕϕ vs. r for K1 = −0.5 and t = 0.3 under different models

case of displacement distribution. However, difference between TGL model

and TLS model or between GL model and LS model is not very prominent.

The variation of hoop stress, σϕϕ is shown in Figs. 4.5(a) and 4.5(b).

Fig. 4.5(a) shows that the hoop stress is compressive in nature and the

variation in σϕϕ is much prominent with respect to both time, t and tem-

perature dependent material parameter, K1. Further, it is observed that

σϕϕ decreases with increase in time, t or with higher negative value of pa-

rameter, K1. Here, we note that like the cases of other field variables, the

difference in the nature of circumferential stress distribution under TGL

and GL model is very much significant.
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