
CHAPTER 3

AN IN-DEPTH INVESTIGATION ON PLANE HARMONIC

WAVES UNDER TWO-TEMPERATURE THERMOELASTIC-

ITY WITH TWO RELAXATION PARAMETERS1

3.1 Introduction

In previous chapter, we have investigated one problem in the context of

two-temperature thermoelasticity theory that includes two thermal relax-

ation parameters. We have highlighted some characteristic features of the

model based on thermoelastic interactions due to thermal shock applied

at the stress free boundary of a cylindrical cavity inside a thermoelastic

medium. In this chapter, we are going to discuss the harmonic plane wave

propagation in this two-temperature thermoelasticity theory.

It is worth to be mentioned that several researchers have tried to in-

terpret the propagation of harmonic plane waves in an elastic medium.

The propagation of plane waves in classical thermoelasticity was studied

by Chadwick and Sneddon (1958) and Chadwick (1960). The propagation

of plane waves in the generalized thermoelasticity which has one relax-

ation time is discussed by Nayfeh and Nemat-Nasser (1971) and afterward

by Puri (1973). Subsequently, Agarwal (1979) has given the details of
1The content of this chapter is published in “Mathematics and Mechanics of Solids”, 22 (2), (2017), 191-209.
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the propagation of plane waves in the generalized thermoelasticity which

has one relaxation time. Haddow and Wegner (1996) reviewed again the

wave propagation in Green-Lindsay model and Lord-Shulman model. The

order of magnitude of thermal relaxation time in Green-Lindsay model

was found by Suh and Burger (1998). Interpretation on plane waves in

the reference of thermoelasticity of Green-Naghdi of type-II is noted by

Chandrashekharaiah (1996). Puri and Jordan (2004) and Kothari and

Mukhopadhyay (2012) investigated the propagation of plane waves in type-

III thermoelastic medium.

The objective of the current chapter is to interpret the propagation of

plane harmonic waves in a homogeneous and isotropic unbounded medium

in the reference of the linear theory of two-temperature thermoelasticity

with two relaxation parameters (TGL). The propagation of plane waves

in a thermoelastic medium has been investigated earlier by Kumar and

Mukhopadhyay (2010b) for two-temperature thermoelasticity with one ther-

mal relaxation parameter (TLS). Being motivated by the results as found

out in (Kumar et al. (2016)), we have made an attempt to extend the work

of Puri and Jordan (2006) and Kumar and Mukhopadhyay (2010b) and in-

vestigate the effects of two thermal relaxation time parameters on plane

harmonic wave under two-temperature theory for the purpose of compar-

ing the results predicted by TGL model with the corresponding results of

TLS, LS and GL models. For this, we formulate the problem in the con-

text of four models of thermoelasticity, namely: thermoelasticity with one

relaxation parameter (LS model), thermoelasticity two thermal relaxation

parameters (GL model), two-temperature thermoelasticity with one relax-
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ation parameter (TLS) and the two-temperature thermoelasticity with two

relaxation parameters (TGL model) in a unified way. After mathematical

formulation of the present problem, we obtain the dispersion relation so-

lutions of longitudinal plane waves. We find the asymptotic expansions of

several qualitative characterizations of the wave field, such as, phase ve-

locity, specific loss and penetration depth for the high and low frequency

values for this model. In order to verify these analytical results predicting

the limiting behavior of the wave characteristics, numerical values of the

above mentioned quantities for intermediate values of frequency are also

computed directly by applying computational tool. Finally, we analyze the

results in a detailed way by comparing our analytical as well as numerical

results with the corresponding results of all four models as mentioned.

3.2 Basic Governing Equations

We consider an unbounded, isotropic and thermally conducting elastic

medium characterized by the density, ρ and the Lame’s elastic constants-

λ, µ. The dynamic displacement vector is measured from a steady state

position and the deformation is supposed to be very small. Therefore, the

constituent equations and basic governing equations for the thermoelastic

interactions inside the medium in absence of body forces and heat sources

in the contexts of four models: the LS, GL, TLS and TGL models in a

unified way can be written as follows:
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Stress-strain temperature relation:

It gives the relation between stress, strain and the inducing temperature

and is given by the relation

σij = λeδij + 2µeij − γ(θ + τ1
∂θ

∂t
)δij (3.1)

Strain-displacement relation:

eij =
1

2
(ui,j + uj,i) (3.2)

Heat conduction equation without heat source:

Kφ,ii = ρcE(
∂θ

∂t
+ τ0

∂2θ

∂t2
) + γθ0(

∂e

∂t
+ τ0ξ

∂2e

∂t2
) (3.3)

Equation of motion without body force:

Equation of motion as derived by Newton’s law of motion and without any

body force is given by the following equation:

σij,j = ρüi (3.4)

The thermodynamic temperature, θ is related to the conductive tempera-

ture, φ by the following relation (Chen and Gurtin, 1968):

φ− θ = αφ,ii (3.5)

where α ≥ 0 is the two-temperature parameter for two-temperature

thermoelasticity theory.

The above set of equations (3.1)-(3.5) reduce to the corresponding equa-
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tions under four different models as mentioned above with different values

of the parameters ξ, α and the thermal relaxation time parameters τ0 and

τ1as follows:

• TGL Model: ξ = 0, α 6= 0, τ0 6= 0, τ1 6= 0

• TLS Model: ξ = 1, α 6= 0, τ0 6= 0, τ1 = 0

• GL Model: ξ = 0, α = 0, τ0 6= 0, τ1 6= 0

• LS Model: ξ = 1, α = 0, τ0 6= 0, τ1 = 0

3.3 Problem Formulation

Since we considered an unbounded isotropic and homogeneous thermoe-

lastic medium, we assume, without any loss in generality, that the plane

wave is propagating in the medium in the x1 direction and suppose all field

variables depends on x1 (now denote as x ) and t only.

Hence, using equations (3.1), (3.2) and (3.5), the equation of motion

(3.4) can be written in the form

(λ+ 2µ)
∂2u

∂x2
− γ

∂

∂x
[(φ− α

∂2φ

∂x2
) + τ1

∂

∂t
(φ− α

∂2φ

∂x2
)] = ρ

∂2u

∂t2
(3.6)

Combining equations (3.3) and (3.5), we get

[K+αρc
E
(
∂

∂t
+τ0

∂2

∂t2
)]
∂2φ

∂x2
= ρcE(

∂

∂t
+τ0

∂2

∂t2
)φ+γθ0(

∂

∂t
+τ0ξ

∂2

∂t2
)e (3.7)

To make the equations (3.6) and (3.7) simpler, we use the following
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dimensionless transformations:

x′ = c0ηx, u
′ = c0ηu, τ

′
0 = c20ητ0, τ

′
1 = c20ητ1, t

′ = c20ηt, θ
′ = θ−θ0

θ0
,

η = ρcE
K , φ′ = φ−θ0

θ0
, e′ = e, c20 =

λ+2µ
ρ , β1 =

γθ
λ+2µ , β2 =

γ
Kη , α

′ = ac0η
2.

Now, after dropping the primes for convenience, equations (3.6) and (3.7)

reduce to the following forms:

∂2u

∂x2
− β1

∂

∂x
[(φ− α′

∂2φ

∂x2
) + τ1

∂

∂t
(φ− α′

∂2φ

∂x2
)] =

∂2u

∂t2
(3.8)

[1 + α′(
∂

∂t
+ τ0

∂2

∂t2
)]
∂2φ

∂x2
= (

∂

∂t
+ τ0

∂2

∂t2
)φ+ β2(

∂

∂t
+ τ0ξ

∂2

∂t2
)e (3.9)

3.4 Dispersion Equation

We find that the shear wave remains uncoupled with the thermal field,

whereas, in case of dilatation wave, the mechanical and thermal fields are

coupled together. So we will concentrate on the longitudinal wave only and

we consider the solution of Eqns. (3.8) and (3.9) for the longitudinal plane

wave in the forms

u = Aei(ωt−γx) (3.10)

φ = Bei(ωt−γx) (3.11)

where ω is a positive real number and γ is a complex constant. A and B

are complex amplitudes (simultaneously not both zero). Phase velocity of

wave is therefore given by ω
Real(γ) , that adapt to the longitudinal waves for
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which frequency and wavelength are ω
2π and

2π
Real(γ) , respectively. Real(γ) >

0 and Im(γ) ≤ 0 must hold obviously for the wave to be realistic.

Now, substituting (3.10) and (3.11) into equations (3.8) and (3.9), we

obtain







ω2
− γ2

−β1(τ1ωγ + τ1α
′ωγ3) + iβ1(γ + α′γ3)

β2(ωγ + iτ0ξω
2γ) (γ2

− τ0α
′ω2γ2

− τ0ω
2) + i(ω + α′ωγ2)













A

B






=







0

0






(3.12)

Obviously, for non-trivial solution of the system of equations (3.12), the

determinant of the above system must be zero. Therefore, we obtain

[(−1 + τ0α
′ω2 + hτ1α

′ω2 + hτ0α
′ξω2) + i(−ǫα′ω + hτ0τ1α

′ξω3)]γ4

+[(ω2 − τ0α
′ω4 + τ0ω

2 + hτ1ω
2 + hτ0ξω

2) + i(α′ω2 − ǫω + hτ0τ1ξω
3)]γ2

(3.13)

+(−τ0ω4 + iω3) = 0

where h = β1β2, and ǫ = 1 + h.

Equation (3.13) represents a unified dispersion relation for the above

system in the contexts of four models. Now, we are interested in the case

in which ξ = 0, α 6= 0, τ0 6= 0, τ1 6= 0. This case corresponds to the TGL

case. Thus putting ξ = 0, equation (3.13) changes to the following form:

[(−1 + τ0α
′ω2 + hτ1α

′ω2)− iǫα′ω]γ4 + [(ω2 − τ0α
′ω4 + τ0ω

2 + hτ1ω
2)

+i(α′ω2 − ǫω)]γ2 + (−τ0ω4 + iω3) = 0 (3.14)

Finally taking γ = Z
√
ω and making coefficient of Z4 real, we get
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A(ω)Z4 + (P − iQ)Z2 + (U + iV ) = 0 (3.15)

where

A(ω) = a1ω
4+a2ω

2+1, P = −p1ω5−p2ω3−p3ω, Q = −q1ω4−q2ω2−ǫ,U =

−u1ω4 − u2ω
2,V = v1ω

3 − ω,

and

a1 = τ 20α
′2 + τ 21α

′2h2 + 2τ0τ1α
′2h, a2 = ǫ2α′2 − 2τ0α

′ − 2τ1α
′h, p1 =

τ 20α
′2 + τ0τ1α

′2h, p2 = −(2τ0α′ + τ 20α
′ + 2τ0τ1α

′h+ τ1αh+ τ 21α
′h2− α′2ǫ),

p3 = 1 + τ0 + τ1h− αǫ2,

q1 = α′2h(τ1 − τ0), q2 = α′h, u1 = (τ 20α
′ + 2τ0τ1α

′h), u2 = −τ0 + α′ǫ,

v1 = τ0α
′ + τ1αh− τ0α

′ǫ.

Equation (3.14) is therefore the dispersion relation for the TGL model

and it clearly incorporate the effects of the two thermal relaxation param-

eters and the two-temperature parameter on the longitudinal plane wave.

This dispersion relation reduces to the dispersion relation under GL model

when α = 0. The dispersion relations for the TLS model and the LS model

can be obtained as special cases from equation (3.13) by assuming corre-

sponding values of ξ, α, τ0, τ1as mentioned in section 2.

3.5 Solution of Dispersion Relation under TGL Model

If roots of the equation (3.15) are ±Z1, and ±Z2, then we can write

Z2
1,2 =

−(P − iQ)±
√

D(ω)

2A(ω)
(3.16)

where,
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Real(D(ω)) = p21ω
10 +N1ω

8 +N2ω
6 +N3ω

4 +N4ω
2 − ǫ2.

Im(D(ω)) = 2p1q1ω
9 −M1ω

7 −M2ω
5 +M3ω

3 +M4ω.

with,

N1 = 2p1p2 − q21 + 4a1u1, N2 = p22 + 2p3p1 − 2q1q2 + 4a1u2 + 4a2u1,

N3 = 2p2p3 − q22 − 2ǫq1 + 4a2u2 + 4u1, N4 = p23 − 2ǫq2 + 4u2,

M1 = 2p1q2 + 2p2q1 + 4a1v1, M2 = 2p3q1 + 2ǫp1 + 2p2q2 − 4a1 + 4a2v1,

M3 = −(2p3q2 + 2ǫp2 − 4a2 + 4v1), M4 = −2ǫp3 + 4.

Equation (3.16) can be solved by applying the following theorem of com-

plex numbers:

Theorem: (Ponnusamy (2005)) : For a given z = x+ iy ǫ C, the solutions

of w2 = z are given by

w =

[
√

|z|+ x

2
+ i sgn(y)

√

|z| − x

2

]

, where, sgn(y) =















+1 if y ≥ 0

−1 if y < 0

Using above theorem in Eqn. (3.16), we can find two values of Z and

therefore γ, whose imaginary parts are negative. These two values of γ

correspond to two types of the dilatation waves in which first one is pre-

dominantly elastic wave and second one is thermal wave in nature. We

denote γ related with the first one by γ1 and the second one by γ2.
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3.6 Analytical Results

Since the general analysis of waves on the basis of the roots given by (3.16)

is highly complicated, we therefore concentrate on the analysis of wave

and the effects on thermal relaxation parameter and the two-temperature

parameter under two special cases which correspond to the waves of very

high and very low frequency. Hence, we first obtain the expressions for Z1

and Z2 from equation (3.16) by applying above theorem under these two

special cases by assuming ω to be very large and very small, respectively.

Therefore, we proceed as follows:

3.6.1 Case-I: High frequency asymptotic expansions

In this case, we assume that ω to be very large, i.e., ω ≫ 1. Hence,

expanding equation (3.16) for large ω and neglecting higher powers of 1
ω

we write equation (3.16) as

Z2
1,2 =

−(P − iQ)± (S − iT )

2A(ω)

where

S = p1ω
5 +

K1

2p1
ω3 +

(

K2

2p1
− K2

1

8p31

)

ω +

(

K3

2p1
− K1K2

4p31

)

1

ω
+ o(

1

ω2
.)

and

T =
√

L1ω
4 +

L2

2
√
L1

ω2 +

(

L3

2
√
L1

− L2
2

8L
3/2
1

)

+ o(
1

ω2
.)
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where

K1 = N1

2 + m1

4p2
1

, K2 = N2

2 + m2

4p2
1

− m2

1

16p6
1

, L1 = m1

4p2
1

− N1

2 = q21, L2 =

−N2

2 + m2

4p2
1

− m2

1

16p6
1

, m1 = 2N1p
2
1 + 4p21q

2
1, m2 = 2N2p

2
1 +N 2

1 + 4p1q1M1,

3.6.2 Analytical results for γ1,2

By expanding above equation for Z2
1,2 for large ω and neglecting higher

powers of 1
ω we carry out detailed manipulations and obtain

Z2
1,2 = X1,2 + iY1,2,

where

X1 = −
A1

ω
− A2

ω3
+ o(

1

ω5
)

Y1 = −
B1

ω2
+

B2

ω4
+ o(

1

ω6
)

X2 = C1ω +
C2

ω
+ o(

1

ω3
)

Y2 = −D1 −
D2

ω2
+ o(

1

ω4
)

with

A1 =
1
2a1

(

K1

2p1
− p2

)

, A2 =
1
2a1

(

K2

2p1
− K2

1

8p3
1

− p3 − a2K1

2a1p1
+ a2p2

a1

)

,

B1 =
1
2a1

(q2 − L2

2
√
L1

), B2 = − 1
2a1

( L3

2
√
L1

− L2

2

8L
3/2
1

− ǫ+ a2q2
a1
− a2L2

2a1
√
L1

),

C1 =
p1
a1

C2 =
1
2a1

(K1

2p1
+ p2 − a2p1

a1
),

D1 =
q1
a1
, D2 =

1
2a1

(q2 +
L2

2q1
+ 2a2q1

a1
),
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Again by using the theorem of complex analysis as stated in section 3.5,

we finally find the asymptotic expansion of the roots of equation (3.14) as

γ1 ∼
B1

2
√
A1

1

ω

[

1 +
1

2B2

1

{

A
2

2 − 2B1B2 −

(

2A1A2 +B2

1

)2

4A2

1

}

1

ω2
+ o

(

1

ω4

)

]

+ i
√
A1

[

1 +
4A1A2 +B2

1

8A2

1

1

ω2
+ o

(

1

ω4

)]

(3.17)

γ2 ∽ ω

[

√
C1 +

4C1C2 +D2

1

8C
3/2
1

1

ω2
+ o

(

1

ω4

)

]

+ i
D1

2
√
C1

[

[

1 +
1

2D2

1

{

C
2

2 + 2D1D2 −
(2C1C2 +D2

1)
2

4C2

1

}

1

ω2
+ o

(

1

ω4

)]

(3.18)

3.6.3 Asymptotic results for different wave fields

In order to study the longitudinal plane waves in two modes in detail, we

will now derive the expressions of the important wave components, like

phase velocity, specific loss, penetration depth etc. of both the waves and

examine these wave fields under the high frequency values.

(a). Phase Velocity

The phase velocity of wave is given by the formula

VE,T = V1,2 =
ω

Real(γ1,2)
(3.19)

Where VE and VT denote the phase-velocities of elastic and thermal

mode waves, respectively.

With the help of equations (3.17) and (3.18), and using the formula

(3.19), we find the high frequency asymptotic expressions for VE and VT

as follows:

VE ∼
1
√
C1

{

1−
4C1C2 +D2

1

8C2

1

1

ω2
+ o

(

1

ω4

)}

(3.20)
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VT ∽
2
√
A1

B1

ω2

[

1−
1

2B2

1

{

A2

2 − 2B1B2 −

(

2A1A2 +B2

1

)

2

4A2

1

}

1

ω2
+ o

(

1

ω4

)

]

(3.21)

(b). Specific Loss

The ratio of energy dissipated per stress cycle to the total vibration energy

is known as the specific loss, which is given as

SPE,T =
1

4π

(△W

W

)

1,2

=
| Im(γ1,2) |
| Real(γ1,2) |

(3.22)

where
(

△W
W

)

E
and

(

△W
W

)

T
are the specific losses of elastic and thermal

mode waves, respectively.

With the help of equations (3.17) and (3.18), and using this formula,

we find the high frequency asymptotic expressions for SPE and SPT as

follows:

SPE ∼
D1

2C1

1

ω

[

1− 1

2D2
1

{

2D1D2 −
D2

1 + 4C1C2D
2
1

2C2
1

}

1

ω2
+ o(

1

ω4
)

]

(3.23)

SPT ∼
A1

2B1

ω

[

1 +
1

2

{

4A1A2 +B2

1

4A2

1

−
A2

2 − 2B1B2

B2

1

+

(

2A1A2 +B2

1

)2

4B2

1
A2

1

}

1

ω2
+ o

(

1

ω4

)]

(3.24)

(c). Penetration Depth

It is defined by the following relation

δE,T = δ1,2 =
1

| Im(γ1,2)|
(3.25)
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where δE and δT are the penetration depths of elastic and thermal mode

waves, respectively.

With the help of equations (3.17) and (3.18), we find the high frequency

asymptotic expressions for δE and δT from the above formula as

δE ∼
2
√
C1

D1

[

1− 1

2D2
1

{

2D1D2 −
D2

1

(

D2
1 + 4C1C2

)

4C2
1

}

1

ω2
+ o

(

1

ω4

)

]

(3.26)

δT ∼
1√
A1

{

1− 4A1A2 +B2
1

8A2
1

1

ω2
+ o(

1

ω4
)

}

(3.27)

3.6.4 Case-II: Low frequency asymptotic expansions

For the low frequency asymptotic expressions of different wave fields, we

use the similar approach as above and find the required roots of equation

(3.14) by considering ω to be very very small, i.e., ω ≪ 1 and obtain the

results as follows:

γ1 ∼
√

E1ω

[{

1 +
F 2
1 − 4E1E2

8E2
1

ω2 + o(ω4)

}

+ i

{

F1

2E1
ω − 8E2

1F2 + F 3
1 − 4E1E2F1

16E3
1

ω3 + o(ω5)

}]

(3.28)

γ2 ∼
√

ǫ

2

√
ω

[{

1 +
G1

2ǫ
ω + o(ω2)

}

+ i

{

1− G1

2ǫ
ω + o(ω2)

}]

(3.29)

where

E1 =
(−
√
n1+p3)
2 , E2 =

2a2n1−n2+2p2
√
n1−2a2p3

√
n1

4
√
n1

, F1 =
1
2

(

m1

2ǫ + q2
)

,

F2 =
1
2

{(

−m2

1
+4ǫ2m2

8ǫ3 + q1

)

− a2
(

m1

2ǫ + q2
)

}

, G1 =
1
2

(√
n1 + p3

)

,
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and n1 =
1
2

(

N4 +
M2

4
−2ǫ2N4

2ǫ2

)

, n2 =
1
2

(

N3 − M2

4
+8ǫ6N3−4ǫ2M2

4
N4−8ǫ4M3M4

8ǫ6

)

,

m1 =
1
2

(

−N4 +
M2

4
−2ǫ2N4

2ǫ2

)

,m2 = −1
2

(

N3 +
M2

4
+8ǫ6N3−4ǫ2M2

4
N4−8ǫ4M3M4

8ǫ6

)

.

(a). Phase Velocity

In the similar way as followed in the previous case, we use formula (3.19)

and equations (3.28) and (3.29) and find the low frequency asymptotic

expressions for VE and VT as

VE ∼
ω

Real(γ1)
=

1√
E1

(

1− F 2
1 − 4E1E2

8E2
1

ω2 + o(ω4)

)

(3.30)

VT ∼
√

2

ǫ

√
ω

(

1− G1

2ǫ
ω + o(ω2)

)

(3.31)

(b). Specific Loss

With the help of equations (3.22), (3.28) and (3.29), we find the low fre-

quency asymptotic expressions for SPE and SPT as

SPE ∼
F1

4E2
1

ω

{

1− 3F 3
1 + 16E2

1F2 − 16E1E2F1

8E2
1F1

ω2 + o(ω4)

}

(3.32)

SPT ∼ 1− G1

ǫ
ω +

G2
1

2ǫ2
ω2 + o(ω3) (3.33)

(c). Penetration Depth

Similarly, equations (3.25), (3.28) and (3.29) yield the low frequency asymp-

totic expressions for δE and δT in the forms
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δE ∼
2
√
E1

F1

1

ω2

{

1− 4E1E2F1 − 8E2
1F2 − F 3

1

8E2
1F1

ω2 + o(ω4)

}

(3.34)

δT ∼
√

2

ǫ

1√
ω

{

1 +
G1

2ǫ
ω + o(ω2)

}

(3.35)

3.6.5 Amplitude coefficient factor and phase shift of thermodynamic tem-

perature

From equations (3.5) and (3.11), θ(x, t) can be written as follows:

θ(x, t) = BMexp[iΨ]φ(x, t), (3.36)

where M, and Ψ are the amplitude coefficient factor and phase shift as

compared to the conductive temperature, respectively and are given by

M = |1 + αγ2| and Ψ = Arg(1 + αγ2) (3.37)

Now, by expanding the expressions for M and Ψ from equation (3.37)

and using equations (3.17), (3.18), (3.28) and (3.29), the asymptotic ex-

pressions for amplitude coefficient factor and phase-shift of the thermal

mode waves for both high and low frequency values are derived as follows:

High frequency asymptotes:

MT ≈ 1− αA1 as ω →∞ (3.38)
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ΨT ≈ −π +
αB1

ω(1− αA1)
as ω →∞ (3.39)

Low frequency asymptotes:

MT ≈ 1 +
α

2
(2G1 + αǫ2)ω2 as ω → 0 (3.40)

ΨT ≈ αǫω as ω → 0 (3.41)

In the above expressions, the subscript T for M, and Ψ is used for

thermal mode waves and we ignored the elastic wave component for this

field as they lack physical meaning.

3.7 Numerical Results

In order to interpret the asymptotic results obtained in the previous sec-

tion and to look into the nature of various wave components in details, we

have made an attempt to find the numerical values of different wave char-

acterizations for both the thermal and elastic mode longitudinal waves. To

do this, we have assumed h = 0.0168, ǫ = 1.0168, α = 0.071301, τ0 =

0.01 and τ1 = 0.02. Using the software MATLAB, we have generated

codes to compute the numerical values of different components directly

from equation (3.13) and by using the formulas (3.19)-(3.21). The com-

putation for the values of phase velocity, specific loss, penetration depth

under all four cases TGL, TLS, GL and LS for different values of frequency,

ω are carried out and the results are displayed in different Figures. In all
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the Figures, we observe the variation of different wave characteristics with

frequency in the contexts of four models. In Figs. (3.1)-(3.6), dashed lines

colored with blue, red, magenta and cyan, are used to represent the profiles

predicted by the two-temperature thermoelasticity models TGL and TLS

and the generalized thermoelasticity models, GL and LS, respectively. In

the next section, we will analyze our results and compare the numerical

results with the analytical results.

3.8 Analysis of Analytical and Numerical Results

3.8.1 Phase velocity

The phase velocity of elastic and thermal mode longitudinal waves are

displayed in Figs. 3.1(a,b) and 3.2(a,b), respectively. We observe from

Figs. 3.1(a,b) that the two-temperature models (TLS and TGL models

represented by red and blue colored dashed lines, respectively) predict sig-

nificantly different results for the phase velocity of elastic mode wave as

compared to the generalized theories (LS and GL models represented by

cyan and magenta colored dashed lines, respectively). Furthermore, there

is a significant difference between the results predicted by TLS and TGL

models, but LS and GL do not show any prominent difference for this wave

field. Our theoretical results indicate that VE→ constant limiting value as

ω → 0 under TGL model and this is also in agreement with the numerical

results (see Fig. 3.1(a)). Similar is the case with the other three models.

However, this constant limiting value is dependent on the two temperature

parameter as well as the two thermal relaxation parameters and are differ-
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(a) (b)

Figure 3.1: (a,b). Variation of the phase velocity, VE of the elastic mode wave with frequency, ω

ent for TGL and TLS models, whereas they are the same for LS and GL

models. Equation (3.20) as well as Fig. 3.1(b) suggest that VE→ constant

value as ω →∞ under TGL model. Similar behavior is observed for other

models. However, the limiting values are significantly different under TLS,

TGL models, although it is the same for LS and GL model. We further

observe another important point : before reaching to the constant limiting

value, the phase velocity of elastic mode wave shows a local minimum and

a local maximum value under TLS model. The TGL model shows only one

local minimum value and then slowly reaches to the constant limiting value

as ω increases. LS model or GL model do not show any local minimum or

maximum value.

Figs. 3.2(a,b) reveal that, as in the previous case, for the phase velocity

of the thermal mode wave, the two-temperature models (TLS and TGL

models represented by red and blue colored dashed lines, respectively) pre-
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(a) (b)

Figure 3.2: (a,b). Variation of the phase velocity, VT of the thermal mode wave with frequency, ω

dict significantly different results as compared to the generalized theories

(LS and GL models represented by cyan and magenta colored dashed lines,

respectively). However, there is no prominent difference between the TLS

and TGL models or between LS and GL models. VT→ 0 as ω → 0 under

all models. However, VT→∞ as ω →∞ under TGL as well as under TLS

models. However, the LS model and GL model predict constant limiting

value as ω → ∞ . This fact verifies the fact that the generalized theories

predict finite speed for thermal mode wave, but the two-temperature mod-

els do not predict the same and they also suffer from the physical drawback

like classical Biot’s model. This is indeed an important observation in the

present study.
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Figure 3.3: (a,b). Variation of the specific loss, SPE of the elastic mode wave with frequency, ω

Figure 3.4: (a,b). Variation of the specific loss, SPT of the thermal mode wave with frequency, ω.
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3.8.2 Specific loss

Figs. 3.3(a,b) and 3.4(a,b) show the nature of variations of specific loss

of elastic and thermal mode longitudinal waves, respectively. We see from

Figs. 3.3(a,b) that there is no adequate difference in specific loss of general-

ized theories (LS and GL models represented by cyan and magenta colored

dashed lines, respectively), but the two-temperature theories (TGL and

TLS models represented by red and blue colored dashed lines, respectively)

predict significantly different behavior as compared to generalized theories.
(

△W
W

)

E
→ 0 as ω → 0 (see Fig. 3.3(a)) under all four cases which is in

agreement with analytical result (see Equation (3.32) ). Like phase veloc-

ity profiles, the specific loss behaves differently for generalized theories as

compared to the two-temperature theories. This wave component achieves

two local maximum values and one minimum value in the contexts of TLS

and TGL models, but it shows only one local maximum in cases of LS

and GL models. Further, we observe that under all four cases, specific loss

finally tends to zero as ω → ∞ (see Fig 3.3(a) ). However, it reaches to

the limiting value zero much earlier in cases of LS and GL models and it

reaches to zero under TGL model very slowly as compared to LS, GL and

TLS models.

Specific loss of thermal mode longitudinal wave is displayed in Figs.

3.4(a,b). We observe from from Fig. 3.4(a) that SPT → 1 value as ω → 0

under all four cases which agree with the theoretical result (Eqn. (3.33) for

TGL case). Specific loss of thermal wave also shows significantly different

results under the generalized theories and the two-temperature theories.
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(a) (b)

Figure 3.5: (a,b). Variation of the penetration depth, δE of the elastic mode wave with frequency, ω

(a) (b)

Figure 3.6: (a,b). Variation of the penetration depth, δT of the thermal mode wave with frequency, ω
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However, specific loss does not predict prominently different results in the

contexts of TGL and TLS models, or between GL and LS models. Equation

(3.24) indicates that
(

△W
W

)

T
→ ∞ as ω → ∞ for TGL model and this

is in agreement with the numerical results (see Fig. 3.4(b) for TGL and

TLS) which reveal that this field is an increasing function of frequency.

This is also a significant difference predicted by the generalized and the

two two-temperature theories. Our results in TLS model matches exactly

with the corresponding results predicted by (Kumar and Mukhopadhyay,

2010b).

3.8.3 Penetration depth

Penetration depth of elastic and thermal mode longitudinal wave are de-

picted in Figs 3.5(a,b) and 3.6(a,b) respectively. From Figs. 3.5(a,b), we

see that δE shows a prominent difference between generalized theories and

two-temperature theories. Moreover, δE gives almost the similar results

in the contexts of LS and GL models, but it shows significantly different

values under the TLS and TGL models. We observe from Fig. 3.5(a) that

δE → ∞ as ω → 0 in all four cases which is in agreement with theoreti-

cal result given by equation (3.34) (for TGL case). Theoretical result (see

equation (3.26) for TGL model) as well as numerical results ( Fig. 3.5(b)

) reveal that δE → constant limiting value as ω → ∞ under LS, GL and

TGL models, but this limiting value depends on the two-temperature pa-

rameter significantly and are different for TGL and LS and GL models.

This limiting value is nearer to 120 in cases of LS and GL models, but

it is nearly 1 in case of TGL model. However, unlike these three models,
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Figure 3.7: (a,b).Variation of the amplitude coefficient factor of the thermodynamic temperature,MT

for the thermal mode wave with frequency, ω

δE →∞ as ω →∞ in case of TLS model. This is an unrealistic feature of

TLS model. This result is in complete agreement with the theoretical as

well as numerical results predicted by Kumar and Mukhopadhyay (2010b).

The penetration depth for thermal mode wave is displayed in Figs.

3.6(a,b), from which it is clear that δE behaves differently in a significant

manner under the generalized theories and the two-temperature theories.

However, there is no prominent difference in the results shown by LS and

GL models as well as under TGL and TLS models. From theoretical result

(see equation (3.27)), δT → constant as ω →∞ for TLS and TGL models

and δT → 0 as ω → ∞ in case of generalized theories (LS and GL mod-

els) which is in agreement with numerical results (see Fig. 3.6(b) ). This

indicates that the prediction of the two-temperature theories do not agree

with the predictions of the generalized theories, although they all include

thermal relaxation parameters.
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(a) (b)

Figure 3.8: (a,b). Variation of the phase shift, ΨT of the thermodynamic temperature for the thermal
mode wave with frequency, ω

3.8.4 Amplitude coefficient factor and phase shift of thermodynamic tem-

perature

The limiting behavior of the amplitude coefficient factor and the phase-shift

of the thermodynamic temperature under TGL model can be observed from

equations (3.37)-(3.40). The variations of these components with frequency

are displayed in Figs. 3.7(a,b) and 3.8(a,b). From equations (3.38, 3.40),

we note that the amplitude coefficient factor decreases with the increase of

frequency and |MTB| ≤ |B| i.e. the thermodynamic temperature exhibits a
lesser magnitude as compared to the conductive temperature. This is also

evident very clearly from Figs. 3.7(a,b). Furthermore, equations (3.39)

and (3.41) indicate that as compared to the conductive temperature, the

thermodynamic temperature experiences a phase shift ΨT ≤ 0, where ΨT →
0 asω → 0 and ΨT → constant asω → ∞ (see Figs. 3.8(a,b) and also
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Eqns. (3.39) and (3.41)). However, from Figs. 3.7(a,b) and 3.8(a,b), we

note that TGL and TLS models predict similar results for both the fields.

3.9 Conclusions

In the present chapter, we investigate plane wave propagating in an un-

bounded thermoelastic medium. The dispersion relation solutions for the

plane wave is derived by employing four different theories of thermoelas-

ticity in order to investigate the effects of two thermal relaxation time

parameters on plane harmonic wave under two-temperature theory. The

asymptotic expressions for the important wave components like, phase ve-

locity, specific loss, penetration depth etc. are derived for TGL model and

we compare the results predicted by the corresponding results of TLS, LS

and GL models. Variations of these wave components with frequency are

investigated. Both the analytical and numerical results are found out and a

detailed analysis is presented. Several important points regarding the pre-

dictions of various theories for the harmonic plane waves are highlighted.

While doing our analysis of analytical and numerical results, we have found

following remarkable results:

1. Although the transverse wave is unaffected due to the thermal field,

but the longitudinal wave is coupled with the thermal field and there are

two different modes of the longitudinal waves: one is pre-dominantly elastic

and the other is pre-dominantly thermal in nature.

2. The predictions by the TGL and TLS models (two-temperature theo-

ries) are significantly different with the predictions by LS and GL models.

3. Under both the LS and GL models, the phase velocity of thermal mode
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wave tends to a constant limiting value as the frequency increases, where

as under the two-temperature theories the phase velocity of thermal wave

increases with the increase of frequency and tends to infinity as frequency

→ ∞. This is an unrealistic prediction by two-temperature theories like

the classical coupled theory.

4. As a significant difference, the specific loss of thermal wave tends

to infinity as ω → ∞ for TLS model, but this field tends to zero under

TGL model. However,
(

△W
W

)

T
→ 0 as ω → ∞ for GL and LS models.

This is also a significant difference predicted by the generalized and the

two-temperature theories including thermal relaxation parameters.

5. The penetration depth profile also shows a significant difference be-

tween the generalized theories and the two models of two-temperature the-

ories. δT → constant as ω →∞ for TLS and TGL models but δT → 0 as

ω → ∞ in case of generalized theories (LS and GL models). This is also

an unrealistic feature predicted by the two-temperature models. Further-

more, there is a prominent difference between the results predicted by LS

and GL, TLS and TGL models for the penetration depth for elastic wave.

The trend is same for LS and GL models. δE → constant as ω → ∞in

both the cases. A similar nature is also observed in the context of TGL

model, although the constant limiting value is nearer to 120 in cases of LS

and GL models, and it is unity in case of TGL model. However, δE →∞ as

ω →∞, which is an unrealistic prediction by TLS model and this feature

is not observed in case of TGL model.

6. The models of two-temperature theories proposed by Youssef (2006b)

includes thermal relaxation time parameters like the generalized theories
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of thermoelasticity. However, they suffer the similar drawbacks like the

classical theory. Furthermore, all the wave characteristics for both the

waves show almost similar results in the contexts of LS and GL theories.

However, the nature of wave components predicted by TGL and TLS mod-

els are significantly different and it is more prominent for the the wave

characterizations of the elastic mode wave.
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