
CHAPTER 2

AN INVESTIGATION ON THERMOELASTIC INTERACTIONS

UNDER TWO-TEMPERATURE THERMOELASTICITY WITH

TWO RELAXATION PARAMETERS1

2.1 Introduction

A thermoelasticity theory, called as two-temperature thermoelasticity the-

ory is proposed by Chen and Gurtin (1968), Chen and William (1968),

and Chen et al. (1969). This two-temperature thermoelasticity theory

proposes that the heat conduction on a deformable body depends on two

different temperatures- the conductive temperature, and the thermody-

namic temperature ( see Gurtin and Williams (1966), Chen and Gurtin

(1968), Chen and William (1968), and Chen et al. (1969)). Here, the

entropy contribution due to heat conduction is governed by thermody-

namic temperature and that of the heat supply by the conductive tem-

perature. The stress, energy, entropy, heat-flux and the thermodynamic

temperature at a given time depend on the histories up to that time of

the deformation gradient, the conductive temperature and the gradient

of this temperature. Further, the difference between these two tempera-

tures is proportional to the heat supply. In the case of the absence of a
1The content of this chapter is published in “Mathematics and Mechanics of Solids”, 21 (6) (2016),725-736.
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heat supply the two temperatures are equal for the time-independent sit-

uation. However, for time-dependent cases, the two temperatures are, in

general, different. Boley and Tolins (1962) discussed one transient cou-

pled thermo-plastic boundary value problem in half space by employing

this theory. Uniqueness and reciprocity theorems for the two-temperature

thermoelasticity theory in case of a homogeneous and isotropic solid have

been reported by Iesan (1970). Later on, wave propagation in the two-

temperature theory was investigated by Warren and Chen (1973). An

analytical study of a one-dimensional conductive temperature equation in

the uncoupled context in a half space with the Heaviside boundary condi-

tion was studied by Amos (1969). Recently, this two-temperature model

of thermoelasticity has drawn the serious attention of researchers. Puri

and Jordan (2006) reported a detailed investigation on a plane harmonic

wave under this theory. Youssef (2006b) extended this theory in the frame

of the generalized theory of heat conduction and formulated two versions

of two-temperature theory with relaxation parameters by providing the

uniqueness theorem. Subsequently, some investigations (Youssef (2006a),

Youssef and Al-Lehaibi (2007) and Youssef and Al-Harby (2007)) are car-

ried out on the basis of this two-temperature thermoelastic model with

one relaxation time. Recently, the same model has been investigated in a

detailed manner by considering two aspects by Mukhopadhyay and Kumar

(2009) and Kumar and Mukhopadhyay (2010a).

The present chapter aims at investigating the thermoelastic interactions

in an isotropic homogeneous elastic medium with a cylindrical cavity in

the context of the two-temperature theory of thermoelasticity with two re-
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laxation time parameters. Chandrasekharaiah and Keshavan (1992) have

studied axisymmetric thermoelastic interactions in an unbounded body

with a cylindrical cavity by using the classical coupled thermoelastic model,

the Lord–Shulman model and Green–Lindsay (GL) model in a unified way.

The results of the present work are compared with the corresponding re-

sults reported in Chandrasekharaiah and Keshavan (1992) and Mukhopad-

hyay and Kumar (2009). Some distinct predictions of the two-temperature

model as compared to the conventional one-temperature model are inves-

tigated through this study, which indicate some significant features of the

two-temperature thermoelastic models.

2.2 Problem Formulation: The basic governing equations

In the absence of body forces and heat sources, the basic governing equa-

tions for thermoelastic interactions in a homogeneous isotropic solid in the

contexts of the GL theory and the two-temperature Green–Lindsay (TGL)

theory can be written in a unified way as follows (Youssef (2006b)):

stress–strain temperature relation

σij = λeδij + 2µeij − γ

(

θ + τ1
∂θ

∂t

)

δij (2.1)

strain-displacement relation

eij =
1

2
(ui,j + uj,i) (2.2)

and heat conduction equation
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Kφ,ii = ρcE

(

∂θ

∂t
+ τ0

∂2θ

∂t2

)

+ γT0
∂e

∂t
(2.3)

where the dilatation e is given by

e = ekk (2.4)

The conductive temperature is related to thermodynamic temperature

as

φ− θ = αφ,ii (2.5)

where α > 0, the two-temperature parameter, is a scalar parameter and

called the temperature discrepancy (Chen et al. (1969)).

The corresponding equations in the cases of the GL model and the TGL

model correspond to the cases of α = 0 and α > 0 in equation (2.5)

respectively.

We consider an infinite isotropic elastic medium with a cylindrical cavity

of radius a. The center of the cavity is taken to be the origin of the

cylindrical polar coordinate system (r, ϕ, z). In the absence of body forces

and heat sources and considering the axisymmetric plane strain problem,

the displacement and temperature are taken to be functions of r and t only.

Therefore, the equation of motion is given by

∂σrr

∂r
+

σrr − σφφ

r
= ρ

∂2u

∂t2
(2.6)

The non-zero strain components are obtained from equation (2.2) as
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err =
∂u

∂r
, eϕϕ =

u

r
(2.7)

and from equation (2.4), we get

e =
∂u

∂r
+

u

r
(2.8)

Equations (2.1) and (2.7) then yield the non-zero stress components as

σrr = (λ+ 2µ)
∂u

∂r
+ λ

u

r
− γ

(

1 + τ1
∂

∂t

)

θ (2.9)

σϕϕ = (λ+ 2µ)
u

r
+ λ

∂u

∂r
− γ

(

1 + τ1
∂

∂t

)

θ (2.10)

From equations (2.3) and (2.5), we get

[

K + αρcE

(

∂

∂t
+ τ0

∂2

∂t2

)]

∇2φ = ρcE

(

∂φ

∂t
+ τ0

∂2φ

∂t2

)

+ γT0
∂e

∂t
(2.11)

where ∇2 = ∂2

∂r2
+ 1

r
∂
∂r

From equation (2.5),(2.6),(2.9) and (2.10) , we get

(λ+ 2µ)

(

∂2u

∂r2
+

1

r

∂u

∂r
− u

r2

)

−γ
(

1 + τ1
∂

∂t

)[

∂φ

∂r
− α

∂

∂r

(

∂2φ

∂r2
+

1

r

∂φ

∂r

)]

= ρ
∂2u

∂t2

(2.12)

Now, in what follows we will use the following dimensionless terms and

variables:

(r′.u′, ξ0) =
c0

κ
(r, u, a) , (t′.τ ′0, τ

′
1) =

c20
κ
(t, τ0, τ1) , (θ

′, φ′) =
1

T0
(θ, φ) , ω = αc20η

2,
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σ′rr =
σrr

(λ+ 2µ)
, σ′ϕϕ =

σϕϕ

(λ+ 2µ)
, e′ = e, c20 =

(λ+ 2µ)

ρ
, κ =

K

ρcE
, λ1 =

λ

(λ+ 2µ)

Equations (2.9)–(2.12) then transform to the dimensionless forms (after

dropping the primes for convenience) as

[

1 + ω

(

∂

∂t
+ τ0

∂2

∂t2

)]

∇2φ =

(

∂

∂t
+ τ0

∂2

∂t2

)

φ+ a2
∂e

∂t
(2.13)

(

∂2u

∂r2
+

1

r

∂u

∂r
− u

r2

)

−a1

(

1 + τ1
∂

∂t

)[

∂φ

∂r
− ω

∂

∂r

(

∂2φ

∂r2
+

1

r

∂φ

∂r

)]

=
∂2u

∂t2

(2.14)

σrr =
∂u

∂r
+ λ1

u

r
− a1

(

1 + τ1
∂

∂t

)

θ (2.15)

σϕϕ =
u

r
+ λ1

∂u

∂r
− a1

(

1 + τ1
∂

∂t

)

θ (2.16)

where we have used the notations

a1 =
γθ0

(λ+ 2µ)
, a2 =

γκ

K
, λ1 =

λ

(λ+ 2µ)

2.2.1 Boundary Conditions

To consider the thermoelastic interactions in the medium, we assume that

the surface of the cavity (r = ξ) is stress free and is subjected to a thermal

shock. The boundary conditions of the problem are therefore taken as
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σrr |r=ξ= 0 (2.17)

φ |r=ξ= φ0H (t) (2.18)

where φ0 is a constant temperature and H(t) is the Heaviside unit func-

tion.

2.3 Solution of the Problem

For the solution of the problem, we apply Laplace transform defined by

f̄(p) =

∞̂

0

f(t)e−ptdt (2.19)

Therefore, by considering homogeneous initial conditions and applying

Laplace transform on equations (2.13)–(2.18), we obtain

[

1 + ω
(

p+ τ0p
2
)]

[

∂2φ̄

∂r2
+

1

r

∂φ̄

∂r

]

=
(

p+ τ0p
2
)

φ̄+ a2pē (2.20)

(

∂2ū

∂r2
+

1

r

∂ū

∂r
− ū

r2

)

− a1 (1 + τ1p)

[

∂φ̄

∂r
− ω

∂

∂r

(

∂2φ̄

∂r2
+

1

r

∂φ̄

∂r

)]

= p2ū

(2.21)

σ̄rr =
∂ū

∂r
+ λ1

ū

r
− a1 (1 + τ1p) θ̄ (2.22)

σ̄ϕϕ =
ū

r
+ λ1

∂ū

∂r
− a1 (1 + τ1p) θ̄ (2.23)
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φ̄− θ̄ = ω∇2φ̄ (2.24)

σ̄rr |r=ξ= 0 (2.25)

φ̄ |r=ξ=
φ0

p
(2.26)

ē =
∂ū

∂r
+

ū

r

Then, by decoupling equations (2.20) and (2.21), we obtain

(

∂2

∂r2
+

1

r

∂

∂r
−m2

1

)(

∂2

∂r2
+

1

r

∂

∂r
−m2

2

)

φ̄ = 0 (2.27)

(

∂2

∂r2
+

1

r

∂

∂r
− 1

r2
−m2

1

)(

∂2

∂r2
+

1

r

∂

∂r
− 1

r2
−m2

2

)

ū = 0 (2.28)

where mi, (i = 1, 2) are the roots of the equation

[

1 + ωǫp+ ωβp2
]

m4−
[

pǫ+ (β + 1) p2 + ωp3 + ωτ0p
4
]

m2+(p3+τ0p
4) = 0

(2.29)

In equation (2.29), ε = (1 + ε0), β = τ0 + ε0τ1 where ε0 = a1a2 =
γ2T0

ρ2cEc
2
0

is the thermoelastic coupling constant.

Now, the solutions of equations (2.27) and (2.28) bounded at infinity are

given by

42



φ̄ =
2

∑

i=1

AiK0(mir) (2.30)

ū =
2

∑

i=1

BiK1(mir) (2.31)

where K0(mir) and K1(mir) are the modified Bessel functions of the

second kind of order zero and one, respectively and Ai and Bi are the

arbitrary constants.

The solution for θ̄ is now obtained from equations (2.24) and (2.30) as

θ̄ =
2

∑

i=1

Ai(1− ωm2
i )K0(mir) (2.32)

Using equations (2.20), (2.30) and (2.31), we obtain the relations be-

tween the constants Ai and Bi as follows:

Bi = FiAi, where Fi =

(

p+ τ0p
2
)

−m2
i

[

1 + ω
(

p+ τ0p
2
)]

a2p
(2.33)

Now, using equations (2.22) and (2.23) and the recurrence relations

xK
′

n(x) = Kn(x)− xKn+1(x)

xK
′

n(x) = −nKn(x)− xKn−1(x)

we obtain the solutions for the radial and circumferential stresses as
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σ̄rr =
2

∑

i=1

AiS
r
i (2.34)

σ̄ϕϕ =
2

∑

i=1

BiK1S
φ
i (2.35)

where

Sr
i = Fi

{

−miK0(mir) +
(λ1 − 1)

r
K1(mir)

}

−a1 (1 + τ1p) (1−ωm2
i )K0(mir), i = 1, 2

S
φ
i = Fi

{

−miK0(mir) +
(1− λ1)

r
K1(mir)

}

−a1 (1 + τ1p) (1−ωm2
i )K0(mir), i = 1, 2

The boundary conditions in equations (2.25) and (2.26) yield the con-

stants A1 and A2 as

A1 = −
S
ξ
2φ0

p
[

S
ξ
1K0(m2ξ)− S

ξ
2K0(m1ξ)

]

A1 =
S
ξ
1φ0

p
[

S
ξ
1K0(m2ξ)− S

ξ
2K0(m1ξ)

]

where

S
ξ
i = Fi

{

−miK0(miξ) +
(λ1 − 1)

ξ
K1(miξ)

}

− a1 (1 + τ1p) (1− ωm2
i )K0(miξ), i = 1, 2

Equations (2.30)–(2.32), (2.34) and (2.35) constitute the solution of the
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problem in the transformed domain (r, p).

2.4 Small-time Approximated Solutions

The solutions in the physical domain are determined by inverting the

Laplace transforms involved in the expressions of equation (2.30)–(2.35).

But because of the dependency of m1 and m2 on the Laplace transform pa-

rameter p, it is impossible to carry out this operation exactly for all values

of p. However, the present study is concerned with the thermoelasticity

theory with relaxation parameters which is more relevant for the problems

involving a short duration of time. Therefore, in this section, we will now

confine our attention on obtaining the short-time approximated solutions

of the field variables for which we assume p is very large.

Therefore, with the help of Maclaurin’s series expansions and neglecting

the higher powers of the small terms, we get the roots of equation (2.29)

for large values of p as follows:

mi ≈ bi0p+ bi1 + bi2
1

p
, i = 1, 2 (for theGLmodel) (2.36)

m1 ≈

√

τ0
β
p+ 1

2
β−ετ0
β
√
τ0β

− C 1
p

m2 ≈
1√
ω
− 1

2τ0ω
√
ω

1
p2

}

(for theTGLmodel) (2.37)

where

ai0 =
β + (−1)i+1

√

β2 − 4τ0
2

, ai1 =
1

2

(

ε+ (−1)i+1 εβ − 2
√

β2 − 4τ0

)
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ai2 = (−1)i+1 1

4
√

β2 − 4τ0

(

ε2 − (β − ετ0)
2

β2 − 4τ0

)

C =
2βτ0 (2τ0 + εω)− β (4τ0 − ω)− 3ε2τ 20ω

8β2τ0ω
√
βτ0

with bi0 =
√
ai0, bi1 =

1
2

ai1
√
ai0

, bi2 =
4ai2a10−(ai1)

2

8(ai0)3/2

Now, we substitute m1 and m2 from equations (2.36) and (2.37) into

equations (2.30)–(2.35) and use the following approximation formula for

the modified Bessel function of order ν

Kν(z) ≈

√

π

2z

[

1 +
4ν2 − 1

8z
+

(

4ν2 − 1
) (

4ν2 − 9
)

2! (8z)2
+ ...

]

Therefore, after detailed calculations, we obtain the expressions for the

short-time approximated solutions of displacement, thermodynamic tem-

perature, conductive temperature and radial stress in the Laplace transform

domain (r, p) for two different models as follows:

For the TGL model:

ū =

√

ξ

r
φ0





2
∑

j=1

e−m1(r−ξ)
[

u1j

pj+2

]

+
2

∑

j=1

e−m2(r−ξ)
[

u2j

pj+3

]



 (2.38)

φ̄ =

√

ξ

r
φ0





2
∑

j=1

−e−m1(r−ξ)
[

φ1j

pj+5

]

+
2

∑

j=1

e−m2(r−ξ)
[

φ2j

pj

]



 (2.39)
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θ̄ =

√

ξ

r
φ0





2
∑

j=1

e−m1(r−ξ)
[

θ1j

pj+3

]

+
2

∑

j=1

e−m2(r−ξ)
[

θ2j

pj+2

]



 (2.40)

σ̄rr =
φ0

a2D

√

ξ

r

2
∑

i=1

2
∑

j=1

e−mi(r−ξ)(−1)i
[

σr
ij

pj+1

]

(2.41)

where we have used the following notations

u11 =
−a1τ1

√

β

ωτ0
√
τ0

, φ11 =
a1a2τ1β

√

β

ω2τ30
√
τ0

, θ11 = −a1a2τ1
√

β

ωτ20
√
τ0

, σr
21 = −

a1τ1ξ
2(128r2−16r

√

ω+9ω)
r2τ0(16ξ−9

√

ω)ω
√

ω
,

u12 =
a1[8a1a2rτ21β

√

βξ−3τ1βξτ0
√

β+r{−8βξτ0√β+τ1(12βξ
√
τ0+β

√

β(7−8λ1)τ0−4εξτ0
√
τ0)}]

8rωξτ30
√

β
.

u21 =
ξ2(128r2+48r

√

ω−15ω)(−3τ0+4ω)

4a2r2τ20 (16ξ−9
√

ω)ω2
√

ω
,

u22 =
ξ2(128r2+48r

√

ω−15ω)[−27τ0ω+ξ{−48τ0(√βτ0−
√

ω)+64ω
√

βτ0}]
4a2r2τ30 (16ξ−9

√

ω)ω3
,

φ12 =
a1a2

√

β[8a1a2rτ21β
√

βξ+τ1βξτ0
√

β+r{−8βξτ0√β+τ1(28βξ
√
τ0+β

√

β(7−8λ1)τ0−12εξτ0
√
τ0)}]

8rω2ξτ50
,

φ21 = −
ξ2(128r2−16r

√

ω+9ω)
r2(16ξ

√

ω−9ω)
, φ22 =

16βε2(128r2−16r
√

ω+9ω)
r2
√

βτ0(16ξ−9
√

ω)ω
,

θ12 =
a1a2[8a1a2rτ21β

√

βξ+τ1βξτ0
√

β+r{−8βξτ0√τ0+τ1(20βξ
√
τ0+β

√

β(7−8λ1)τ0−4εξτ0
√
τ0)}]

8rωξτ40
√

β
,

θ21 = −
ξ2(128r2−16r

√

ω+9ω)
r2τ0(16ξ−9

√

ω)ω
√

ω
, θ22 =

ε2[−16β(
√

βτ0−
√

ω)−9ω](128r2−16r
√

ω+9ω)
r2τ20 (16ξ−9

√

ω)
2
ω2

,

σr
11 =

a1τ1
ωτ0

, σr
12 =

a1[(7−8λ1)ξ
√

βτ0+r{8ξτ0+τ1(−8ξ+(7−8λ1)
√

βτ0)}]
8rωξτ20

,

σr
22 =

a1ξ
2[16ξτ0

√

ω−9ωτ0+τ1{(√βτ0−
√

ω)+9ω}](128r2−16r√ω+9ω)
r2τ20 (16ξ−9

√

ω)
2
ω2

For the GL model:

ū =
φ0

a2D1

√

ξ

r

2
∑

i=1

2
∑

j=1

(−1)ie−mi(r−ξ)
[

uij

pj

]

(2.42)

θ̄ =
φ0

D1

√

ξ

r

2
∑

i=1

2
∑

j=1

(−1)ie−mi(r−ξ)
[

θij

pj

]

(2.43)
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σ̄rr =
φ0

a2D1

√

ξ

r

2
∑

i=1

2
∑

j=1

(−1)ie−mi(r−ξ)
[

σr
ij

pj−1

]

(2.44)

where the corresponding notations of the TGL model reduce to the fol-

lowing expressions for this case

D1 = S
ξ
11 − S

ξ
21, D2 = S

ξ
12 − S

ξ
22 +

(

S
ξ
21

b10
− S

ξ
11

b20

)

1
8ξ ,

Sr
i1 = −bi0Fi1 − a1a2τ1, S

r
i2 = bi0Fi2 − bi1Fi1 − a1a2 +

a1a2τ1
8rbi0

+ (8λ1−7)Fi1

8r , (i = 1, 2),

S
ξ
ij = Sr

ij

∣

∣

∣

∣

r=ξ

(i, j = 1, 2),

Fi1 =
(

τ0
bi0
− τ0bi1

(bi0)2
− bi0

)

, Fi2 =
(

1
bi0
− bi1

)

,

u11 = F11S
ξ
21, u12 = F12S

ξ
21 + F11S

ξ
22 − D2

D1
F11S

ξ
21 +

3F11S
ξ
21

8rb10
,

u21 = F21S
ξ
11, u22 = F22S

ξ
11 + F21S

ξ
12 − D2

D1
F12S

ξ
11 +

3F21S
ξ
11

8rb20
,

θ11 = S
ξ
21, θ12 = S

ξ
22 − D2

D1
S
ξ
21 −

S
ξ
21

8rb10
,

θ21 = S
ξ
11, θ12 = S

ξ
12 − D2

D1
S
ξ
11 −

S
ξ
11

8rb20
,

σr
11 = S

ξ
21S

r
11, σ

r
12 = S

ξ
22S

r
11 + S

ξ
21S

r
12 − D2

D1
S
ξ
21S

r
11 ,

σr
21 = Sr

21S
ξ
11, σ

r
22 = S

ξ
12S

r
21 + S

ξ
11S

r
22 − D2

D1
S
ξ
11S

r
21

2.5 Analytical Results

To invert the Laplace transforms involved in equations (2.38)–(2.44), we use

the convolution theorem of Laplace transform and the following formulas

(Oberhettinger and Badii,1973)

L−1
[

e−
a
p

pν+1

]

=

(

t

a

)
ν
2

Jν

(

2
√
at
)

, Re(ν) > −1, a > 0

L−1
[

e
a
p

pν+1

]

=

(

t

a

)
ν
2

Iν

(

2
√
at
)

, Re(ν) > −1, a > 0
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L−1
[

e
a
p

]

= δ(t) +

√

t

a
I1

(

2
√
at
)

, a > 0

L−1
[

e−
a
p

]

= δ(t)−
√

t

a
J1

(

2
√
at
)

, a > 0

where Jν and Iν are the Bessel function and the modified Bessel function

respectively. Since it can be shown that b12 < 0 and b21 > 0 for the GL

model and C > 0 for the TGL model, the solutions of all field variables in

the physical domain (r, t) are obtained as follows:

For the TGL model:

u(r, t) = φ0

√

ξ

r



e
−

β−ετ0
2β
√

τ0β
(r−ξ)

2
∑

j=1







u1j

(

η1

C(r − ξ)

)
j+1

2

Jj+1(η
′

1)H(η1)







+ e
−

1√
ω
(r−ξ)

2
∑

j=1

{

u2j
tj+2

(j + 2)!

}





φ(r, t) = φ0

√

ξ

r



e
−

β−ετ0
2β
√

τ0β
(r−ξ)

2
∑

j=1







φ1j

(

η1

C(r − ξ)

)
j+4

2

Jj+4(η
′

1)H(η1)







+ e
−

1√
ω
(r−ξ)

2
∑

j=1

{

φ2j
tj−1

(j − 1)!

}





θ(r, t) = φ0

√

ξ

r



e
−

β−ετ0
2β
√

τ0β
(r−ξ)

2
∑

j=1







θ1j

(

η1

C(r − ξ)

)
j+2

2

Jj+2(η
′

1)H(η1)







+ e
−

1√
ω
(r−ξ)

2
∑

j=1

{

θ2j
tj+1

(j + 1)!

}





σrr(r, t) = φ0

√

ξ

r



e
−

β−ετ0
2β
√

τ0β
(r−ξ)

2
∑

j=1







σr
1j

(

η1

C(r − ξ)

)
j
2

Jj(η
′

1)H(η1)







+ e
−

1√
ω
(r−ξ)

2
∑

j=1

{

σr
2j

tj

j!

}





where

η1 = t−
√

τ0

β
(r − ξ), η

′

1 = 2

√

C(r − ξ)

(

t−
√

τ0

β
(r − ξ)

)

and clearly the definitions of β and ε imply

β − ετ0

β
√
τ0β

=
a1a2 (τ1 − τ0)

β
√
τ0β

> 0

49



CHAPTER 2. AN INVESTIGATION ON THERMOELASTIC INTERACTIONS UNDER TWO...

For the GL model:

u(r, t) =
φ0

D1a2

√

ξ

r











2
∑

j=1

−e−b11(r−ξ)

{

u1j

(

η1

b12(r−ξ)

)

j−1

2

Jj−1

(

2
√

b12(r − ξ)η1

)

H(η1)

}

+
2
∑

j=1

−e−b21(r−ξ)

{

u2j

(

η2

−b22(r−ξ)

)

j−1

2

Ij−1

(

2
√

−b22(r − ξ)η2

)

H(η2)

}











θ(r, t) =
φ0

D1

√

ξ

r











2
∑

j=1

−e−b11(r−ξ)

{

θ1j

(

η1

b12(r−ξ)

)

j−1

2

Jj−1

(

2
√

b12(r − ξ)η1

)

H(η1)

}

+
2
∑

j=1

e−b21(r−ξ)

{

θ2j

(

η2

−b22(r−ξ)

)

j−1

2

Ij−1

(

2
√

−b22(r − ξ)η2

)

H(η2)

}











σrr(r, t) =
φ0

D1a2

√

ξ

r





















−e−b11(r−ξ)







σr
11

{

δ(η1)−
(

b12(r−ξ)
η1

)
1
2

J1

(

2
√

b12(r − ξ)η1

)

H(η1)

}

+σr
12J0

(

2
√

b12(r − ξ)η1

)

H(η1)







+e−b21(r−ξ)







σr
21

{

δ(η2) +
(

b22(r−ξ)
η2

)
1
2

J1

(

2
√

−b22(r − ξ)η2

)

H(η2)

}

+σr
22I0

(

2
√

−b22(r − ξ)η2

)

H(η2)



























where η1 = t− b10(r − ξ), η2 = t− b20(r − ξ).

2.6 Discussions

The short-time approximated solutions obtained above reveal that in the

case of the TGL model, the solution for each field consists of two dif-

ferent parts. The first part, containing the term H(η1), represents the

contribution of a wave (predominantly an elastic wave) near the wave front

r = t
√

β
τ0

+ ξ which propagates with finite velocity
√

β
τ0

and with an

exponential decay. It is observed that neither the speed nor the decay co-

efficient depends on the two-temperature parameter. The other part of the

solution does not represent the contribution of any wave but is distributed

throughout the medium decaying exponentially with radial distance r. The

decaying exponent is clearly observed to depend on the two-temperature
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parameter, α. The two-temperature model therefore does not indicate a

finite speed of the thermal signal or a predominantly thermal wave as a

contribution to the solution of the field variables.

On the contrary, in the case of the GL model, the solutions of all fields

consist of two coupled waves. The term containing H(η1) represents the

predominantly elastic wave near the wave front r = t
b10

+ξ with velocity 1
b10

(called V1). The second part represents the predominantly thermal wave

propagating with finite speed 1
b20
(called V2). Both the waves are seen to

decay exponentially with radial distance.

The short-time approximated solutions further indicate a significant dis-

similarity between the GL and TGL models regarding the nature of differ-

ent filed variables at the wave fronts. In the case of the TGL model, all the

field variables are continuous in nature, where in the case of the GL model

the temperature and displacement fields have discontinuities with finite

jumps at both the wave fronts r = tV1 + ξ and r = tV2 + ξ. Furthermore,

both the stress fields are observed to experience a δ-function singularity

and infinite singularity near r = tV1 + ξ and r = tV2 + ξ. A discontinuity

in the displacement field is obviously an unrealistic feature of the GL model

for this particular problem. The magnitudes of finite discontinuity in the

case of the GL model are obtained as

u+ − u−
∣

∣

∣

∣

r=tV1+ξ

=
φ0

a2D1

√

ξ

r

[

−e−b11
t

b10 u11

]

, u+ − u−
∣

∣

∣

∣

r=tV2+ξ

=
φ0

a2D1

√

ξ

r

[

e
−b21

t
b20 u21

]

σ+
rr − σ−rr

∣

∣

∣

∣

r=tV1+ξ

=
φ0

a2D1

√

ξ

r

[

−e−b11
t

b10 σr
12

]

, σ+
rr − σ−rr

∣

∣

∣

∣

r=tV2+ξ

=
φ0

a2D1

√

ξ

r

[

e
−b21

t
b20 σr

22

]
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θ+ − θ−
∣

∣

∣

∣

r=tV1+ξ

=
φ0

D1

√

ξ

r

[

−e−b11
t

b10 θ11

]

, θ+ − θ−
∣

∣

∣

∣

r=tV2+ξ

=
φ0

D1

√

ξ

r

[

e
−b21

t
b20 θ21

]

It must be mentioned here that the results for the GL model in the

present study agree with the corresponding results reported by Chan-

drasekharaiah and Keshavan (1992).

By comparing the results of the two-temperature Lord–Shulman (TLS)

model with one relaxation as reported by Mukhopadhyay and Kumar (2009)

we also observe a very significant dissimilarity between the TLS and TGL

models. In the case of the TLS model, unlike the TGL model, the predom-

inantly elastic wave propagates without any attenuation.

Therefore, it can be emphasized that the discontinuities of finite jump

for the temperature and displacement fields and the delta function singu-

larities experienced by the stress fields for the case of the GL model are

not observed in the case of the TGL model, which is a significant feature

of the two-temperature thermoelastic model with two relaxation parame-

ters. However, the two-temperature model does not predict a finite speed

of the thermal signal and a predominantly thermal wave is not found as a

contribution to the solution of the physical fields, although these theories

include the thermal relaxation parameters. This is obviously a significant

feature of the two-temperature model and these models therefore may not

be referred to as generalized thermoelastic models which have a significant

feature of admitting a finite speed of the thermal wave.
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