
CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Thermoelasticity

Deformation of a body is associated with a change of its heat content and

the time varying loading of a body causes in it not only displacement but

also temperature distribution changing in time. Conversely, the heating of

a body produces in it deformation and temperature change. The motion of

a body is, in general, characterized by mutual interaction between defor-

mation and temperature fields. Furthermore, while designing mechanical

equipments, in most of the cases thermal effects need to be considered be-

sides mechanical ones, especially if they involve transient effects. This is

due to the fact that mechanical equipments during operation are affected by

various interactions, the most significant being the mechanical and thermal

effects. Mechanical and thermal loads usually occur simultaneously and as

a result, the displacement and temperature fields are created in close con-

nection with each other. Hence, these two fields are defined simultaneously

by taking into account the relationship between them. Thermomechanical

processes are described by the basic equations of continuum mechanics and

thermodynamics. In the solution of a variety of such problems, the applica-

tion of ’thermoelasticity’ proves to be efficient and in engineering practice
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these thermomechanical problems can be described by the different theo-

ries of thermoelasticity with adequate accuracy. In this case, the internal

energy of the body is a function of the deformation and temperature. As

a result of the coupling between these two fields, the temperature term

appears in the displacement equations of motion, and the deformation is

included in the equation of heat conduction. The principal and basic steps

in the evolution of the thermoelastic stress analysis technique are identified

and reviewed during 1805-1990. We can note some significant contributions

in this regard. It is worth mentioning that beginnings and early develop-

ment of thermoelastic stress observation and analysis have been made by

a school of mechanical, aerospace and civil engineering of the university

of Manchester and the first thermoelastic effect is recorded by Gough’s

observation (1805). Some of the earlier contribution in the theory of ther-

moelasticity was covered by Weber (1830) who first described the effect in

metals. Kelvin (Thomson) (1853; 1857) had established the classical the-

oretical treatment. Joule (1857; 1857; 1859) analyzed the thermoelasticity

of ferruginous metals and described the thermal effects of stretching solid

bodies. Further, the thermodynamic properties of thermoelastic solids are

studied to find the thermal effects of the longitudinal compression of solids.

The historical records on the efforts of this kind are also mentioned in the

publications of Todhunter (1886) providing the history of thermoelasticity

and strength of materials. However, it is worth recalling that the founda-

tions for coupled thermoelasticity were laid by Duhamel and Neuman in

the first half of the last Century. The coupling between deformation and

temperature fields was first postulated by Duhamel (1837; 1838), the origi-
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nator of the theory of thermal stresses. He introduced the dilatation term in

the equation of thermal conductivity. Later on, Neumann (1841) also for-

mulated independently the stress-strain-temperature relations, similar to

the relations given by Duhamel. Hence, these relations are now commonly

known as ‘Duhamel-Neumann’ relations. However, this equation was not

well grounded in the thermodynamical sense. Next, an attempt with ther-

modynamical justification of this equation was undertaken by Voigt (1910)

and Jeffreys (1930). It is known, that research in the field of thermoelas-

ticity was preceded by broad-scale investigations within the framework of

uncoupled theory with the simplifying assumption that the deformation of

an elastic body does not affect the thermal conductivity of the medium.

However, as recently as in 1956, Biot gave the full justification of the ther-

mal conductivity equation on the basis of thermodynamics of irreversible

processes. Biot (1956) also presented the fundamental methods for solving

the coupled thermoelasticity equation and established a variational theo-

rem. He described thermoelasticity as a broad range of phenomena- the

generalization of the classical theory of elasticity and of the theory of ther-

mal conductivity. Biot (1956), Boley and Weiner (1960), Parkus (1976),

Nowinski (1978) and numerous other scientists have dealt with the solution

of the problems, and as a result of their work the theory of classical linear

thermoelasticity was created based on the solid foundation of reversible

thermodynamics. Now, the thermoelasticity is a fully formed domain of

science. The fundamental relations and differential equations have been

formulated. This field has been advanced by extensive theoretical as well

as experimental research work carried out during last few decades. The
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reason for the sudden growth of interest is that the need for designing

equipment that can operate at very high temperatures arose almost si-

multaneously in several dynamically developing areas of industry including

production of high-speed aeroplanes, design of space vehicles, rocket and

jet engines, technology of large turbines and the design of nuclear reactors.

1.2 Classical Coupled Theory of Thermoelasticity

Biot (1956) worked on the field of thermoelasticity based on irreversible

thermodynamics and derived the constitutive relations and basic governing

equations of thermoelasticity by taking into account the coupling between

thermal and strain fields on the basis of Duhamel-Neumann relations. The

following fundamental equations represent the system of linear equations of

the theory of coupled dynamical thermoelasticity for anisotropic materials

due to Biot (1956):

Kinematic equations:

eij ==
1

2
(ui,j + uj,i) (1.1)

where, i, j varies from 1 to 3.

Equation of motion:

σij,j + ρFi = ρüi (1.2)

σij = σji (1.3)
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Energy scale equation:

qi,i + ρ(T0ṡ−R) = 0 (1.4)

Constitutive relations:

σij = Cijklekl − γijθ (1.5)

where, i, j, k, l = 1, 2, 3

qi = −Kijθ,j (1.6)

ρs =
ρce

T0
θ − γijeij (1.7)

where R is the strength of the internal heat source, s denotes the entropy,

Cijkl is the elasticity tensor, γij is the thermoelasticity tensor, Kij is the

thermal conductivity tensor and ce is the specific heat per unit mass, in

the isothermal state.

The Fourier law for isotropic homogeneous medium is given in the form

qi = −Kθ,i (1.8)

From the equation of motion (1.2) and energy-scale equation (1.4) using

the linear constitutive equations (1.5)-(1.7) we get the more general basic

equations of linear thermoelasticity as

(Cijklekl),j − (γijθ),j + ρFi − ρüi = 0 (1.9)
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(Kijθ,j),i − ρceθ̇ + ρR + T0γij ėij = 0 (1.10)

In the case of homogeneous, isotropic material with respect to (1.1),

(1.9) and (1.10) can be transcribed as

µui,jj + (λ+ µ)uk,ki + γθ,i + ρFi − ρüi = 0 (1.11)

Kθ,ii − ρceθ̇ + ρR + γT0u̇i,i = 0 (1.12)

These equations are the coupled field equations referring to ui and θ

variables, for homogeneous and isotropic materials of the classical theory

of linear thermoelasticity.

Biot’s thermoelasticity theory as represented by above system of equa-

tions is the first coupled dynamical thermoelasticity theory that describes a

broad range of phenomena. Biot’s theory has been considered as an elegant

model of thermoelasticity. Several eminent researchers including Boley and

Weiner (1960), Chadwick (1960), Nowacki (1962, 1975), Parkus (1976),

Nowinski (1978), Dhaliwal and Singh (1980), Chandrasekharaiah (1986)

have contributed significantly providing the wide and detailed discussions

along with interesting applications and theorems based on it. However, it

has been realized through subsequent theoretical as well as experimental

research work that although the theory proposed by Biot (1956) removes

the drawback of uncoupled theory of thermoelasticity but it suffers from the

deficiency of admitting thermal signals propagating with finite speed. This
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is considered as a paradox inherent in this theory. In addition to this para-

dox, this theory also exhibits unsatisfactory description of a solid’s response

to fast transient heating, like short laser pulses. Due to such shortcomings

of this theory in several cases, researchers have put their efforts in recent

years to modify the concept of this theory. Basically, this shortcoming

arose from the inherent limitation in Fourier law of heat conduction which

has been discussed in the next section.

1.3 Limitations of Fourier Law and its Generalization

From the view of Fourier law given by Eq. (1.8), it can be interpreted

that heat flux is the instantaneous result of a temperature gradient estab-

lished at a point of a body. The corresponding heat conduction equation

in absence of any heat source for isotropic and homogeneous body is given

by

K∇2θ = ρCeθ̇ − ρR (1.13)

It is a parabolic type partial differential equation (diffusion equation).

It has been realized that this law is successfully applicable to the problems

that involve large spatial dimension and/or long time response. However,

it is physically unrealistic for the transient behavior of heat conduction,

specially at extremely short time, e.g., on the order of a fraction of second

(10−12s to 10−15s). It has been realized that it yields unacceptable results in

the cases involving high heat flux condition and short time behavior (such

as laser-material interactions), high thermal gradients, etc. Moreover, heat
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conduction of many nano-scale devices demonstrates some distinct phe-

nomena, that are not captured by the conventional Fourier law. In this

respect, it is worth to be mentioned that in 1867, Maxwell postulated the

occurrence of a wave-type heat flow and indicated that the thermal dis-

turbance is a wave like phenomenon rather than diffusion phenomenon.

Accordingly, the modification of Fourier law was suggested by him for the

first time. An extensive research work has been carried out to address this

apparent unrealistic prediction by Fourier law. Existence of wave type ther-

mal signal has been discussed by some eminent researchers. The wave-type

heat flow is now called as “second sound” effect (see Chandrasekharaiah

(1986)). Possibility of “second sound” effect was also speculated by Nernst

(1917) and later on by Landau (1941) and by Tisza (1947). Landau (1941)

reported that “second sound” can be demonstrated as the propagation of

phonon density disturbance for super-fluid helium and estimated its speed

to be equal to
vp√
3

at 0K temperature, where vp is the speed of the ordi-

nary sound (first sound). The “second sound” was detected experimen-

tally for the first time by Peshkov (1944) in liquid helium. He mentioned

that the speed of thermal signal was found to be equal to 19 m/s at 1.4

K. Tisza’s and Landau’s predictions were also verified experimentally by

other researchers including Maurer and Herlin (1949), Pellam and Scott

(1949), and Atkins and Osborne (1950). Lifshitz (1958) observed that in

fluid helium second sound occurs at low temperatures. Subsequently, “sec-

ond sound” had also been detected by several workers like, Ackerman et al.

(1966), Ackerman and Overton (1969) and Bertman and Standiford (1970),

McNelly et al. (1970), Jackson et al. (1970), Jackson and Walker (1971),
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Rogers (1971). In this respect, we refer the detailed review article by Chan-

drasekharaiah (1986). Parallel to experimental research work to account

for the inadequacy of Fourier law, several theoretical work have also been

carried out. We give a brief discussion for some of the well established

non-Fourier heat conduction models in the next section.

1.4 Non-Fourier Heat Conduction Models

Cattaneo (1958) and Vernotte (1958; 1961) recommended independently

a modification to Fourier law of heat conduction for the first time. A flux

rate term was introduced into Fourier law and the proposed heat conduction

law was

~q(~r, t) + τ
∂−→q (−→r , t)

∂t
= −K−→∇θ(−→r , t) (1.14)

Here τ ≥ 0 is referred to as thermal relaxation time which is defined

as the finite built-up time (phase-lag), for the onset of heat flow at −→r
after a temperature gradient is imposed there. Equation (1.14) yields the

following hyperbolic type heat conduction equation:

K∇2θ = (1 + τ
∂

∂t
)(ρCeθ̇ − ρR) (1.15)

Clearly, the above hyperbolic type equation represents the combined

diffusion and wave-like behavior of heat transport and predicts a wave-like

thermal signal propagating with the finite speed,
√

K
ρCeτ

when τ > 0. This

modified heat conduction law is called as CV law and also as Maxwell-

Cattaneo law. It has been observed by several researchers (see Chan-
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drasekharaiah (1986; 1998)) that this new heat conduction law yields more

realistic results in the cases that involve a localized moving heat source

with high intensity, a rapidly propagating crack tip, shock wave propa-

gation, thermal resonance, interfacial effects between dissimilar materials,

laser material processing, laser surgery which involve short time intervals

and high heat fluxes. Francis (1972) provided a table of values of τ for some

materials. One method for determining the value of τ for a given material

was described by Mengi and Turhan (1978). They reported that the values

of τ range from 10−10s for gases to 10−14s for metals and for liquids and

insulators value falls within this range. Several authors (e.g. Boley (1964),

Nowinski (1978)) have suggested that the term containing thermal relax-

ation time parameter may be ignored in many practical problems due to

its small numerical value. But several researchers including Baumister and

Hamill (1969, 1971), Chen et al. (1969), Maurer and Thompson (1973),

Sadd and Didlake (1977), Sadd and Cha (1982) have indicated that in heat

transfer problems the hyperbolic heat equation gives significantly differ-

ent results than the parabolic equation. Chandrasekharaiah (1986, 1998),

Hetnarski and Ignaczak (1999), Wang et al. (2007), Ignaczak and Ostoja-

Starzewski (2010), Straughan (2011), etc. have elaborated in details about

the work carried out in this aspect.

It has now been obvious that the advancement of short-pulse laser tech-

nology and their huge applications to modern micro-fabrication technology

are attracting attention of the researchers towards the issues of high rate

heating on thin films (Tzou (1995b)). It has been understood that laser

pulses can be made shorter to the range of femtoseconds (10−15s ). Further,
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if the response time is shorter then the non-equilibrium thermodynamic

transition and the microscopic effects in the energy exchange during heat

transport procedure become significant. In view of recent experiments,

the heat conduction theory of Cattaneo and Vernotte also fails in some

cases, specially during heating of thin films (Tzou (1995a; 1995b) ). In

order to surmount the drawbacks of the classical heat conduction model as

well as of the Cattaneo-Vernotte model, Tzou (1995a; 1995b) proposed the

dual-phase-lag (DPL) theory of heat conduction. This model establishes

that either the temperature gradient may dominate the heat flux or the

heat flux may dominate the temperature gradient. In fact, prior to the

introduction of this dual-phase-lag model of Tzou, some other models were

established in order to capture the microscopic effects in heat transport

mechanism. The phonon-scattering model was put forward by Joseph and

Preziosi (1989) and Guyer and Krumhansl (1964). The phonon-electron

interaction model was developed by Brorson et al. (1987), Anisimov et

al. (1974) and Fujimoto et al. (1984), a microscopic two-step model was

introduced by Qiu and Tien (1992, 1993). In view of the concepts of all

such models, Tzou (1995b) has pronounced the effects of micro-structural

interactions in the fast transient process of heat transport phenomenon by

a macroscopic formulation. He developed a more generalized and accurate

law of heat conduction, known as dual-phase-lag model, in the form

~q(~r, t+ τq) = −K
−→∇T (−→r , t+ τT ) (1.16)

Here τq, τT are two delay times. τq represents the phase-lag of the heat
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flux vector and captures the thermal wave behavior, i.e,. a small-scale

response in time for heat flux. τT is the phase-lag of the temperature

gradient and captures the effect of phonon-electron interactions, a micro-

scale response in space. Thus, the dual-phase-lag concept is capable of

predicting the small-scale response in both space and time. The phase-lags

τq and τT are assumed to be positive and they are the intrinsic properties

of the medium (Tzou (1997)).

Now, applying Taylor series expansion of (1.16) by retaining terms up to

the second order in τq but only up to the first order in τT (Tzou (1995a)),

one can obtain

~q + τq
∂−→q
∂t

+
τ 2q

2

∂2−→q
∂t2

= −K
[

−→∇θ + τT
∂
−→∇θ

∂t

]

(1.17)

Corresponding heat conduction equation is

(1+τT
∂

∂t
)∇2θ =

ρCe

K
(1+τq

∂

∂t
+
τ 2q

2

∂2

∂t2
)
∂θ

∂t
+

ρ

K
(1+τq

∂

∂t
+
τ 2q

2

∂2

∂t2
)R (1.18)

Equation (1.18) is clearly a hyperbolic type heat conduction equation

that admits the thermal wave to propagate with a finite speed, VT =

1
τq

√

2KτT
ρCe

(Tzou (1995a)).

1.5 Generalized Thermoelasticity Theories

With the introduction of non-Fourier heat conduction models, parallel

research activities have also been carried out in the field of thermoelasticity

for providing the major growth of the area of thermoelasticity. Accordingly,

several models have been proposed which are capable of removing the ap-
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parent drawbacks of classical coupled theory given by Biot (1956). Such

theories are called as generalized theory of thermoelasticity or hyperbolic

thermoelasticity. A brief description of such models are given below:

1.5.1 Thermoelasticity with thermal relaxation parameters

Lord and Shulman (1967) proposed one generalized thermoelastic model

which includes one thermal relaxation parameter. In this model, the flux

rate term was incorporated into the Fourier law of heat conduction. Basi-

cally this theory is based on Cattaneo-Vernotte law (1.14) and as a result

the heat conduction equation in this theory exhibits wave-type heat phe-

nomenon, i.e., the propagation speeds for elastic and thermal waves are

finite. This thermoelasticity theory is also called as ’Extended Thermoe-

lasticity theory (ETE)’ or ’Lord-Shulman theory (LS theory)’. The LS

theory is considered as the first generalization to the coupled thermoelas-

ticity theory. This theory was extended by Dhaliwal and Sherief (1980) to

general anisotropic media in the presence of heat sources.

The second generalization to the coupled thermoelasticity is known as

the theory of thermoelasticity with two relaxation times or the theory of

temperature-rate dependent thermoelasticity. Muller (1971) reported a re-

view of thermodynamics of thermoelastic solids and proposed an entropy

production inequality with some restrictions on a class of constitutive equa-

tions. A generalization to this inequality was then proposed by Green and

Laws (1972). Subsequently, Green and Lindsay (1972) proposed a new

thermoelasticity theory in which they obtained an explicit version of the

constitutive equations by introducing two non negative constants that act
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as thermal relaxation times or temperature-rates. However, the classical

Fourier law of heat conduction is not violated in this theory if the medium

under consideration has a center of symmetry. This temperature rate de-

pendent thermoelasticity theory (TRDTE) also admits “second sound” ef-

fect like the ETE theory.

1.5.2 Thermoelasticity theory of type-I, II and III (GN-I, II and III theory)

Next generalization to the coupled thermoelasticity has been made by

Green and Naghdi (1991, 1992, 1993, 1995a; 1995b; 1995c) who have intro-

duced their theory as an alternative one as compared to the conventional

theory. In this theory, the propagation of heat has been modeled in a

very elegant way to establish a fully consistent theory of thermoelasticity

that is capable of organizing the thermal wave transmission in a reason-

able manner and is based on the firm ground of thermodynamic principles.

Moreover, to account for the finite speed for thermal wave, Green and

Naghdi (1993) speculated a new concept in generalized thermoelasticity

which is known as the thermoelasticity with no energy dissipation. The

most distinct characteristic of this theory is that it is completely in con-

trast to the classical thermoelasticity associated with Fourier law of heat

conduction. Furthermore, the potential function which is used to derive the

stress tensor is used to determine the constitutive equation for the entropy

flux vector. Basically, Green-Naghdi (GN) theory depends on entropy bal-

ance law rather than the usual entropy inequality. The theory proposed

by Green and Naghdi (1991, 1992, 1993, 1995a; 1995b; 1995c) has been

categorized into three parts which have been labeled as thermoelasticity
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of type-I, II and III. Linearized version of type-I theory is similar to the

classical theory of thermoelasticity predicting an infinite speed of thermal

wave propagation, whereas, the type-II model describes the finite speed

of heat propagation wave as a special case of type III. Hence, in the heat

equation of type III, the heat flux is the combination of type-I and type-II

theories. For isotropic medium, the heat conduction equation for isotropic

and homogeneous medium in the theory proposed by Green and Naghdi of

type-III is expressed in the following way:

K∗∇2θ +K∇2θ̇ = ρCvθ̈ + γT0üi,i (1.19)

For the case when K >> K∗, above equation leads to the heat conduc-

tion equation of Green and Naghdi of type-I (GN-I) theory of thermoelas-

ticity as

K∇2θ̇ = ρCvθ̈ + γT0üi,i (1.20)

For the case when K∗ >> K, we obtain the heat conduction equation

of Green and Naghdi of type-II (GN-II) theory of thermoelasticity as

K∗∇2θ = ρCvθ̈ + γT0üi,i (1.21)

1.5.3 Thermoelasticity with phase-lags

The review/survey articles by Chandrasekharaiah (1986, 1998) and Het-

narski and Ignaczak (1999) provided detailed discussion about ETE, TRDTE

theories and Green-Naghdi theory of thermoelasticity. In the review arti-
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cle by Chandrasekharaiah (1998), another theory of thermoelasticity has

been developed in the frame of ETE theory by introducing the dual-phase-

lag heat conduction law given by Tzou (1995a, 1995b) in place of Fourier

law. Two different versions of the dual-phase-lag thermoelasticity theory

had been formulated in this article. Out of these two models, one model

accounts for the finite speed of thermal signal.

Subsequently, Roychoudhuri (2007) proposed a model of thermoelastic-

ity in which Fourier law of heat conduction is modified by introducing three

different phase-lags for the heat flux vector, the temperature gradient and

the thermal displacement gradient vectors. Hence, this model is known

as the three-phase-lag thermoelasticity theory (TPLTE). The generalized

heat conduction model that is proposed here is given in form

~q(−→r , t+ τq) = −
[

K
−→∇T (−→r , t+ τT ) +K⋆−→∇ν(−→r , t+ τν)

]

(1.22)

Here τν denotes the phase-lag in thermal displacement gradient and −→
∇ν is

the gradient of thermal displacement such that ν̇ = T . Therefore, TPLTE

is considered as the generalization of GN-III thermoelasticity theory.

1.5.4 An exact heat conduction model with a single delay term (Quintanilla

(2011))

The above mentioned thermoelasticity theories have attracted the serious

attention of researchers in recent years in order to find out several features

of these models. Some qualitative analysis on these models are also re-

ported. Quintanilla and Racke (2008) have discussed the stability of three-

phase-lag model of heat conduction equation and the effects of considering
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all these three material parameters. Since, the phase-lag theories could let

to parabolic-type or hyperbolic-type differential equations based on the or-

der of Taylor’s series expansion of the phase-lag parameters, a big interest

has also been developed to study the different Taylor’s approximations to

these heat conduction equations where continuous dependence and also sta-

bility can be achieved (see Horgan and Quintanilla (2005), Mukhopadhyay

and Kumar (2010a), Quintanilla (2002), Quintanilla (2003), Quintanilla

and Racke (2006a,2008)). Dreher et al. (2009) have reported an analy-

sis on dual-phase-lag and three-phase-lag heat conduction models. It has

been analysed that if we combine the constitutive equations introduced in

dual-phase-lag and three-phase-lag heat conduction theory with the energy

equation, then we find a sequence of eigenvalues in a point spectrum such

that its real parts tend to infinity (see Jordan et al. (2008), Dreher et al.

(2009)). This implies the ill-posed behavior of the problem in Hadamard

sense and we can not find the continuous dependence results of the solution

with respect to initial parameters. By mentioning about these unaccept-

able results, Quintanilla (2011) has recently attempted to reformulate the

three-phase-lag heat conduction model and suggested an alternative heat

conduction theory with a single delay term. Leseduarte and Quintanilla

(2013) re-examined this new model given by Quintanilla (2011) and dis-

cussed the stability and spatial behavior of the solutions under this model.

They considered τν > τq = τT and τ = τν− τq, so that the constitutive law

of heat conduction was taken as

~q(t) = −
[

K
−→∇T (t) +K∗−→∇ν(t+ τ)

]

(1.23)
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The Taylor’s series approximation until order l in the thermal gradient

part of the above constitutive law yields

~q(t) = −[K−→∇T (t)+K∗{−→∇ν(t)+τ
−→∇ ν̇(t)+...+

τ l

l(l − 1)...1

−→∇ν(l)}] (1.24)

If this equation is adjoined with the energy equation, the new heat con-

duction equation is obtained as

ceṪ (t) = −[K∆T (t) +K∗{∆ν(t) + τ∆T (t) + ...+
τ l

l(l − 1)...1
∆T (l−1)}]

(1.25)

where ce is the specific heat, ∆ = ∇2 is the Laplacian operator. Lesed-

uarte and Quintanilla (2013) has shown that the solution of this equation

is always stable (at least) whenever l ≤ 3.

When we take l = 0, the Eq. (1.25) reduces to the form

ceṪ (t) = −[K∆T (t) +K∗∆ν(t)] (1.26)

This is the heat conduction equation under GN-III model.

When we take l = 2 in Eq. (1.25), we get the following equation of heat

conduction:

ceṪ (t) = −[K∆T (t) +K∗(1 + τ
∂

∂t
+

τ 2

2

∂2

∂t2
)∆ν(t)] (1.27)

If we neglect the term containing τ 2 for smallness in Eq. (1.27), then we

get the following equation:
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ceṪ (t) = −[K∆T (t) +K∗(1 + τ
∂

∂t
)∆ν(t)] (1.28)

The spatial behavior of the solutions for this theory was discussed by

Leseduarte and Quintanilla (2013). Furthermore, a Phragmen-Lindelof

type alternative was found out. Further, it had been shown that the so-

lutions either decay in an exponential way or blow up at infinity in an

exponential way. They further extended their results to a thermoelasticity

theory by considering the Taylor’s series approximation of the equation of

heat conduction to the delay term. Phragmen-Lindelof type alternative is

also obtained for both the forward and backward in time equations. The

continuous dependence results are further extended to the thermoelastic

case.

1.5.5 Two-temperature thermoelasticity theory

In the mechanics of continuous media, the material is said to have hered-

itary characteristics or memory if the behavior of a material at time t is

specified in terms of the experience of the body up to the time t. Cole-

man (1964) formulated a theory of materials with memory. An alternative

thermoelasticity theory called as two-temperature thermoelasticity theory

was proposed by Chen and Gurtin (1968), Chen and Willian (1968), and

Chen et al. (1969). The two-temperature thermoelasticity theory proposes

that the heat conduction on a deformable body depends on two different

temperatures- the conductive temperature, and the thermodynamic tem-

perature, (Gurtin and Williams (1966), Chen and Gurtin (1968), Chen and

Willian (1968), and Chen et al. (1969)). According to this thermoelastic-
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ity theory, the entropy contribution due to heat-conduction is governed by

thermodynamic temperature and that of the heat supply is governed by

the conductive temperature. Further, the stress, the energy, the entropy,

the heat-flux and the thermodynamic temperature at a given time depend

on the histories up to the time of the deformation gradient, the conduc-

tive temperature and the gradient of this temperature. Chen et al. (1969)

suggested that the difference between the two temperatures is proportional

to heat supply. In case of the absence of heat supply, the two tempera-

tures are equal for time-independent situation. However, for time depen-

dent cases the two temperatures are in general different, regardless of heat

supply. Uniqueness and reciprocity theorems for the two-temperature ther-

moelasticity theory in case of a homogeneous and isotropic solid have been

provided by Iesan (1970). Subsequently, qualitative investigations on this

theory were carried out by several researchers including Warren and Chen

(1973), Amos (1969), Chakrabarti (1973) etc. This two-temperature ther-

moelasticity theory has been revisited once again in the recent years. Puri

and Jordan (2006) discussed the propagation of harmonic plane waves in

two-temperature theory in a detailed way and discussed several qualitative

behavior of the two-temperature model. The existence, structural stability,

convergence and spatial behavior of two-temperature thermoelasticity have

been provided by Quintanilla (2004a). Recently, Youssef (2006b) extended

this theory in the context of the generalized theory of heat conduction and

formulated a generalized two-temperature theory of thermoelasticity by

providing the uniqueness theorem. Magana and Quintanilla (2009) stud-

ied the uniqueness and growth of solutions of this theory. Subsequently,
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Youssef (2008), Youssef and Al-Lehaibi (2007) carried out some investiga-

tions on two-temperature generalized thermoelasticity and indicated some

significant features of the theory.

1.6 Literature Review

The generalized thermoelasticity theories that have come into existence

in recent years are applied as a wide range of extensions of classical cou-

pled dynamical thermoelasticity. A significant attention of several active

researchers has been paid on these theories to explore various problems

involving thermoelastic interactions in different kinds of media and under

different thermoelastic loading conditions. Major objective here is to in-

vestigate the thermoelastic behavior of field variables for homogeneous and

non-homogeneous medium under various thermoelastic system. A wide

literature in the reference of generalized thermoelasticity can be found

in the review articles/books by Chandrasekharaiah (1986; 1998), Jou et

al. (1996), Suhubi (1975), Iesan (1994), Ignaczak and Ostoja-Starzewski

(2010), Hetnarski and Eslami (2008), etc. The Ph.D. theses of Roushan Ku-

mar (2010), Rajesh Prasad (2012), Shweta Kothari (2013), Bharti Kumari

(2017) and Shashi Kant (2018) may be referred in this respect. However,

we mention below some work relevant to the present thesis.

Paria (1958) investigated a coupled thermoelastic problem of half space

under Biot’s theory. He obtained the short-time approximated analyti-

cal solution using Laplace transform technique. Hetnarski (1961; 1964)

studied one dimensional coupled thermoelasticity problem subjected to

sudden heating with constant temperature on bounding plane and fur-
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ther studied the short-time approximated fundamental solution of coupled

thermoelastic problem. A wide variety of work on the generalized theo-

ries due to Lord and Shulman (1967), Green and Lindsay (1972), Green

and Naghdi (1991; 1992; 1993), Chandrasekharaiah (1998) (dual-phase-lag

theory) and Roychoudhuri (2007) (Three-phase-lag thermoelasticity the-

ory) are reported. Sharma (1987) has solved a half space problem by

first decoupling the field equations purely into a displacement equation

and temperature equation and then by employing the Fourier and Laplace

transforms techniques. Other related work under Lord- Shulman theory

were carried out by Dhaliwal and Rokne (1988), Anwar and Sherief (1988),

Rama Murthy and Sharma (1991), Bykovtsev and Shatalov (1987), An-

war (1991), Balla (1991), Sharma and Chand (1988), Roychoudhuri and

Roy (1990a), Ezzat (1997), Roychoudhuri and Banerjee (1996), Chand et

al. (1990), Saxena et al. (1991), Sherief and Ezzat (1996) and Misra et

al. (1992). They reported different responses of the thermoelastic system

under different types of boundary conditions. Chakravorty and Chakra-

vorty (1998) have used the transform technique to study the thermoelastic

interactions due to a line heat source moving inside a half-space. Cylin-

drical and spherical waves generated by various boundary loads have been

discussed in the works by Sharma (1987), Misra et al. (1987), Furukawa

et al. (1990), Sharma and Chand (1991; 1996), Sherief and Anwar (1988),

Roychoudhuri and Bhatta (1983), Mukhopadhyay et al. (1991), and Baner-

jee and Roychoudhuri (1995). In these works, various thermo-mechanical

boundary conditions were assumed and various methods are employed to

study the behavior of physical variables under different cylindrical and
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spherical medium. Sherief and Ezzat (1994) have discussed the interac-

tions for a problem due to an instantaneous point heat source. Das et al.

(1997) have studied the disturbances due to plane heat source and line heat

source on one-dimensional and two-dimensional problem in an unbounded

body by employing the eigenvalue approach. Apart from these problems,

the propagation of plane harmonic wave solution have been studied by

Sharma (1986), Sharma and Sidhu (1986), and Sharma and Singh (1987;

1989; 1990).

The temperature-rate dependent thermoelasticity by Green and Lind-

say (1972) has been studied by several researchers. Chandrasekharaiah

(1980; 1981) have analyzed the wave propagation in a half space gener-

ated due to thermal and/or mechanical loads applied to the boundary of

the medium. Jakubowaska (1985), Gladysz (1986) and Ignaczak (1978;

1989) have made general analysis on generalized theory of thermoelastic-

ity. Chandrasekharaiah and Srikantiah (1986) have obtained small-time

approximated solutions by employing the eigenvalue approach. Dhaliwal

and Rokne (1989) have constructed small-time solutions under different

thermoelastic systems. Sherief (1993) has studied the thermoelastic in-

teraction in an elastic half space by using the state space approach and

the Laplace transform technique. Sherief (1994) further derived small-time

solution, through the Laplace transform technique, in the case of thermal

shock acting for a finite period of time. Tamma and Namburu (1992) have

applied a FEM-based analysis for a half-space problem. Further, Furukawa

et al. (1989), Roychoudhuri and Roy (1989; 1990b), Chatterjee and Roy-

choudhuri (1990), Sherief and Saleh (1998) and Erbay et al. (1991) have
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reported some interesting results in this direction. The generated waves due

to heat sources have been considered by some authors like, lgnaczak (1985),

Sherief (1992), Chandrasekharaiah and Srikantiah (1987), Chandrasekhara-

iah and Murthy (1991), Ezzat (1995), Ignaczak and Mrowka-Matejewska

(1990) and Hetnarski and lgnaczak (1993; 1994). They highlighted some de-

tailed qualitative mathematical analysis of the results. Green and Naghdi

thermoelasticity theory has been investigated by Chandrasekharaiah (1996;

1997a; 1997b; 1998), Chandrasekharaiah and Srinath (1997a; 1997b; 1998a;

1998b; 2000), and Nappa (1998), in which a detailed analysis on thermoe-

lastic interaction under the model have been reported. Aouadi (2008) has

obtained the variational principle for theory of Lord and Shulman with

one relaxation time and use it to obtain a uniqueness theorem under suit-

able conditions. A reciprocity theorem for the formulated problem is also

established. Mukhopadhyay and Kumar (2008) have considered four differ-

ent theories of thermoelasticity to study the thermoelastic interactions in

an unbounded elastic medium with a spherical cavity and the numerical

values of the physical quantities are also computed by employing Laplace

transform technique for the copper material and results are displayed in

graphical forms. Further, the effects of three-phase-lags on thermoelastic

interactions due to step input in temperature on the stress free boundary of

a cylindrical cavity in an unbounded medium were presented by Kumar and

Mukhopadhyay (2009) and significant dissimilarities between two models

showing the effects of phase-lags are pointed out on the basis of analyti-

cal as well as numerical results of the problem. Ezzat and Youssef (2010)

have established a three-dimensional mathematical model of the general-
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ized thermoelasticity with one relaxation time and applied Laplace and

double Fourier transform techniques for a specific problem of a half space

subjected to thermal shock and traction free surface. Guo et al. (2014) have

applied a time discontinuous Galerkin finite element method (DGFEM) for

the solution of generalized thermoelastic coupled problems on the basis of

well-known Lord-Shulman theory and showed that the present DGFEM

shows good abilities and provides much more accurate solutions for gen-

eralized thermoelastic coupled behavior. Abbas and Zenkour (2014) have

found the thermoelastic interactions in a semi-infinite medium subjected to

a ramp-type heating with the aid of a finite element method under the dual-

phase-lag model. Yahya and Edfawy (2014) have considered the problem

of dynamic thermoelastic stresses in a spherical shell with fixed boundaries

whose inner surface is subjected to a step jump in temperature under Lord

and Shulman and Green and Lindsay formulations of thermoelasticity and

obtained the numerical solutions for the temperature and displacement

equations using the finite difference method. Abbas et al. (2015) have

studied the deformation in a micropolar thermoelastic diffusion medium

due to thermal source by the use of finite element method (FEM) in the

context of Lord-Shulman (LS) theory of Thermoelasticity. El-Karamany

and Ezzat (2016) have proposed three models of generalized thermoelastic-

ity: a single-phase-lag Green-Naghdi theory of type III, a dual-phase-lag

Green-Naghdi theory of type II and of type III. A uniqueness theorem is

proved for the considered theories and also variational characterization of

solution is established. At the same time, Alzahrani and Abbas (2016)

have devoted a paper to the study of a two-dimensional thermal shock
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problem with weak, normal and strong conductivity using the eigenvalue

approach in the context of the new consideration of heat conduction with

fractional order generalized thermoelasticity of the Lord-Shulman model

(LS model). Some problems on thick circular plate in the context of gen-

eralized thermoelasticity have been recently investigated by Tripathi et al.

(2016a; 2016b; 2017).

The microscopic electron and phonon temperature distributions in the

thermoelastic medium have been captured by two-temperature thermoelas-

ticity theory. Warren and Chen (1973) have investigated the wave propaga-

tion in the two-temperature theory of thermoelasticity. Quintanilla (2004a;

2004b) has provided the existence, stability, spacial behavior, convergence

and uniqueness for the theory of two-temperature thermoelasticity. Youssef

and Al-Harby (2007) have employed the state-space approach to a problem

of infinite body with a spherical cavity subjected to different types of ther-

mal loading under a two-temperature generalized thermoelasticity. Youssef

(2008) has studied a two-dimensional problem of a two-temperature gen-

eralized thermoelastic half-space problem subjected to ramp type heating.

Abbas and Youssef (2009) and Ezzat et.al. (2009) analysed the thermoe-

lastic interactions in the elastic medium for a two-temperature generalized

magneto-thermoelasticity. Mukhopadhyay and Kumar (2009) have stud-

ied the thermoelastic deformation occurred in an infinite medium with a

cylindrical cavity. Youssef (2010b) addressed the thermoelastic observa-

tions for an elastic half-space with constant elastic parameters with mov-

ing heat source and due to ramp type heating. Ezzat and Awad (2010)

derived the equations of motion and the constitutive relations to prove
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the uniqueness of the solution under thermal shock problem for the the-

ory of micropolar generalized two-temperature thermoelasticity. Kaushal

et al. (2010) have solved a boundary-value problem by applying the Han-

kel transform in the contexts of two temperature based Lord-Shulman and

Green-Lindsay thermoelasticity theory. Kumar et al. (2010) established

a variational principle of convolution type and a reciprocal principle in

the context of linear theory for a homogeneous and isotropic body for

this model. The propagation of harmonic plane wave solution in elastic

media has been discussed by Kumar and Mukhopadhyay (2010b) in the

context of the two-temperature theory. Youssef (2010a) solved a problem

of thermoelastic interactions in an elastic infinite medium with cylindrical

cavity thermally shocked at its bounding surface and subjected to moving

heat source with constant velocity. Youssef and El-Bary (2010) have stud-

ied thermoelastic problem with variable thermal conductivity and a note

on the spatial decay estimates in semi-cylindrical bounded domains is pro-

vided by Awad (2011). The work by Banik and Kanoria (2011) is concerned

with the determination of the thermoelastic displacement, stress, conduc-

tive temperature, and thermodynamic temperature in an infinite isotropic

elastic body with a spherical cavity in the context of two-temperature

Lord-Shulman model and two-temperature Green-Naghdi models of ther-

moelasticity. El-Karamany and Ezzat (2011a) have introduced two gen-

eral models for fractional order heat conduction under non-homogeneous

anisotropic elastic solid and obtained the constitutive equations for the two-

temperature thermoelasticity theory by proving uniqueness and reciprocal

theorems and establishing the convolutional type variational principle. El-
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Karamany and Ezzat (2011b) and Youssef and Elsibai (2015) have con-

sidered the two-temperature Green–Naghdi theories and have proved that

the two-temperature thermoelasticity theory admits dissipation of energy

and this theory without energy dissipation is valid only when the tempera-

ture parameter becomes zero. Miglani and Kaushal (2011) have discussed

about the deformation occurred in a generalized thermoelasticity with two

temperatures . The theory of two-temperature thermoelasticity with two

phase-lags has been studied by Mukhopadhyay et al. (2011) and Singh and

Bijarnia (2012) have found the propagation of plane waves for the thermoe-

lasticity without energy dissipation. Banik and Kanoria (2012) have tried

to observe the effects of three-phase-lag on two-temperature thermoelas-

ticity for infinite medium with spherical cavity. Miranville and Quintanilla

(2017) considered the LS and GL theory under two-temperature thermoe-

lasticity and have investigated the spatial behavior of the solutions.

In context of the exact heat conduction theory with a delay term pro-

posed by Quintanilla (2011), a uniqueness theorem, variational principle

as well as a reciprocity principle have been established for an anisotropic

body by Kumari and Mukhopadhyay (2017b). In recent years, Magana and

Quintanilla (2018), Borgmeyer et al. (2014), and Lesedurte and Quintanilla

(2013; 2017) have made an interesting impact with the studies based on

this model. Kant and Mukhopadhyay (2016) have employed the Laplace

transform and Hankle transform techniques to obtain the solution for a

thick plate. Here, a complete analysis on the wave propagation and dis-

continuities of different wave fields are found out. Further, Kumari and

Mukhopadhyay (2017a) have derived the fundamental solution of equa-
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tions for the case of homogeneous and isotropic bodies and have deter-

mined the effects of concentrated heat sources and body forces in an un-

bounded medium. They have obtained the fundamental solutions of the

field equations in case of steady vibrations too. A uniqueness theorem and

instability of solutions under the relaxed assumption that the elasticity

tensor can be negative is established by Quintanilla (2017). Biswas et al.

(2017a) discussed Rayleigh surface wave propagation in orthotropic ther-

moelastic solids under three-phase-lag model. Biswas et al. (2017b) have

further investigated the thermal shock response in magnetothermoelastic

orthotropic medium with three-phase-lag model. Eigen function expansion

method has been employed by Biswas and Mukhopadhyay (2018a; 2018b)

to analyze thermal shock behavior in magneto-thermoelastic orthotropic

medium under three theories and to characterize Rayleigh wave propaga-

tion in orthotropic medium with phase-lags. Biswas and Shaw (2018) con-

sidered a thermodynamic framework to analyze thermal shock behavior in

anisotropic hollow cylinder with energy dissipation.

In the past few years, some studies on non-homogeneous material pa-

rameters in the context of the generalized thermoelasticity theories have

been carried out. Banik and Kanoria (2013) considered the three-phase-lag

thermoelastic models, GN-II and GN-III models to find out thermoelas-

tic interactions in a functionally graded isotropic unbounded medium due

to the presence of periodically varying heat sources. They have applied

the Laplace-Fourier double transform to solve the problem. The study

of generalized solution for the vibration of functionally graded (FG) mi-

crobeam in the context of the dual-phase-lag model has been carried out
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by Abouelregal and Zenkour (2014). The obtained numerical results are

presented for the FG beam with exponentially varying material properties

through the thickness to analyse the effects of ramp type heating. Abbas

(2015) obtained the solution of a problem on thermoelastic interactions

in a functional graded material due to thermal shock in the context of

the fractional order three-phase-lag model. The analytical solution in the

transform domain is obtained by using the eigenvalue approach for func-

tionally graded materials. Sherief and Abd El-Latief (2016) considered a

problem in the context of the generalized theory of thermoelasticity for a

half space. Here, the material of the half space is functionally graded in

which Lame’s modulii are functions of the vertical distance from the surface

of the medium. The surface is traction free and subjected to a time de-

pendent thermal shock. The problem has been solved by using the Laplace

transform method together with the perturbation technique. Further, the

generalized coupled thermoelasticity based on the Lord-Shulman (LS) the-

ory is employed by Heydarpour and Aghdam (2016) to study the transient

thermoelastic behavior of rotating functionally graded (FG) truncated con-

ical shells subjected to thermal shock with different boundary conditions.

Sharma and Mishra (2017) have studied a problem on functionally graded

sphere and analyzed the results in the context of linear theory of gener-

alized thermoelasticity with one relaxation time. Here, Laplace transform

has been used to solve the problem which yields natural frequencies of

free vibrations without performing inversion of the transform. Thermal

behavior of functionally graded solid sphere with non-uniform heat gener-

ation has been discussed by Pawar et al. (2017). Sur and Kanoria (2017)
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have attempted to discuss about the behaviour of displacements, temper-

ature and stress distributions for the three-phase-lag and Green-Naghdi

heat equations in a functionally graded transversely isotropic plate sub-

jected to a spatially varying heat source by employing the Laplace-Fourier

double transform. Abbas and Mohamed (2017) have considered the prob-

lem of magneto-thermoelastic interactions in a functionally graded mate-

rial (FGM) under dual-phase-lag model in the presence of thermal shock.

The propagation of thermal and thermoelastic waves have been studied

by Wang et al.(2018) for a hollow cylinder whose material properties are

spatially graded and temperature dependent. They employ the thermoe-

lasticity theory with one relaxation parameter (LS Theory) and solved the

problem by using Laplace transform technique. Very recently, Nikolarakis

and Theotokoglou (2018) have analyzed the effects of functionally graded

ceramic/metal layer under Lord-Shulman theory with the aid of finite ele-

ment method.

1.7 Objective of the Thesis

Main Objective of the present thesis is concerned with the mathemati-

cal modeling on various problems involving thermoelastic interactions. A

mathematical model is an abstraction or simplification that allows one

to describe or summarize a system. Since, the modeling of any device

and phenomena is very essential part to both the engineering and sci-

ence, therefore, engineers and scientists have the perfect practical reasons

for doing mathematical modeling. The thesis aims to study the physical

behavior of field variables of various thermoelastic systems under differ-
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ent thermoelastic models and thereby to understand the basic differences

among these models with respect to the responses of the field variables

due to thermoelastic interactions. The thesis is basically divided into two

different parts concerning with mathematical modeling on various types of

coupled thermo-mechanical problems in the contexts of some recent models

of thermoelasticity. It is aimed at analyzing various aspects of these re-

cently proposed thermoelasticity theories by investigating some problems

involving thermoelastic interactions inside a medium due to various types

of thermo-mechanical loads. In the first part of the thesis, we concentrate

on the two-temperature thermoelastic model with two relaxation parame-

ters and the second part considers the thermoelastic model with a single

delay term. Different types of coupled problems are solved in both the

parts. Problems on homogeneous as well as non-homogeneous medium are

considered and different methodologies are applied to solve the problems.

In order to consider the non-homogeneity of the medium, we considered

two problems with temperature-dependent thermal conductivity and one

problem with functionally graded material (FGM) properties. FGMs are

composite media that have continuously changing material properties and

they constitute a new branch of materials developed with the purpose of

designing structures to withstand suddenly applied loads as compared to

traditional laminated composites. It is very important to highlight the

thermo-mechanical responses of structural elements with FGM properties.

Work carried out in this direction is rare as the mathematical formulation

on coupling effects of FGMs with thermal field is a challenging task. It

is worth pursuing research in this direction. Hence, an attempt has been
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made to investigate a problem of FGMs and focus on mathematical for-

mulation of governing equations by employing the recent theory of heat

conduction. The formulation of such problems further follows solution of a

non-linear system of coupled equations by applying the numerical scheme:

hybrid finite element method. It is aimed that the thesis will bring some

light into the effects of applying the recently developed non-Fourier heat

conduction models to understand thermo-mechanical responses under some

situations.
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