(A-1). Stehfest Method of Laplace Inversion

Let $\overline{f}(s)$ be the Laplace transform of a function, f(t) which is piece-wise continuous in $[0, \infty)$ and is of exponential order. Then the Laplace inverse of the function, f(t) is given by (see Stehfest (1970) and Kuhlman (2013)),

$$f(t) = \frac{\ln(2)}{2} \sum_{k=1}^{N} V_k \overline{f}\left(k\frac{\ln(2)}{t}\right)$$
(A1-1)

where N is a suitable positive integer and V_k is given by

$$V_{k} = (-1)^{(k+N/2)} \sum_{j=[(k+1)/2]}^{\min(k,N/2)} \frac{j^{\frac{N}{2}}(2j)!}{\left(\frac{N}{2} - j\right)! j! (j-1)! (k-j)! (2j-k)!}$$
(A1-2)

(A-2). Zakian Method of Laplace Inversion

The Laplace transform, $\overline{f}(s)$ of the function f(t) is defined by

$$\overline{f}(s) = \int_0^\infty f(t) \mathrm{e}^{-\mathrm{st}} \mathrm{dt}$$
 (A2-1)

where we assume, $Re(s) > \alpha$ and f(t) is integrable and of exponential order α , then it may be inverted by using the economical and efficient formula (Zakian *et al.* (1969)).

i	K_i		α_i	
	$\operatorname{Re}(K_i)$	$\operatorname{Im}(K_i)$	$\operatorname{Re}(\alpha_i)$	$\operatorname{Im}(\alpha_i)$
1	-3.690208210 E+04	$1.969904257 \ \mathrm{E}{+}05$	$1.283767675 \mathrm{E}{+}01$	$1.666063445 \mathrm{E}{+}00$
2	6.127702524 E+04	-9.540862551 E+04	21.222613209 E+01	5.012718792 E+00
3	-2.891656288 E+04	$1.816918531 \ \mathrm{E}{+}04$	31.093430308 E+01	8.409673116 E+00
4	4.655361138 E+03	-1.901528642 E+00	48.776434715 E+00	1.192185389 E+01
5	-l.187414011 E+02	-1.413036911 E+02	55.225453361 E+00	$1.572952905 \ \mathrm{E}{+}01$

Table-1. (Zakian *et al.*(1969)).

$$f_N(t) = \frac{1}{t} \sum_{i=-N}^{N} K_i \overline{f} \left(\frac{\alpha_i}{t}\right)$$
(A2-2)

where $f_N(t)$ is the approximation to the function f(t). The constants K_i and α_i are real or complex numbers. The approximation can be made with arbitrary accuracy since $f_N(t) \to f(t)$ as $N \to \infty$. For the most applications, sufficient accuracy can be obtained with N = 5 and the constants are listed in the Table-1. The arithmetic involved in computing the inversion formula given by (A2-2) with complex constants and for N =5 can be modified as follows:

$$f_N(t) = \frac{2}{t} \sum_{i=1}^5 Re\left[K_i \overline{f}\left(\frac{\alpha_i}{t}\right)\right]$$
(A2-3)

Thus, the Eqn. (A2-3) can be used to compute the inverse of Laplace transform of the function f(t).