LIST OF SYMBOLS

 $\delta(.)$ Dirac delta function

 ∇ Gradient operator

 ∇^2 Laplacian operator

 u_i Components of displacement vector

 e_{ij} Components of strain tensor

 $e = e_{kk}$ dilatation

 σ_{ij} Cauchy stress vector

 σ_{rr} Radial stress

 $\sigma_{\varphi\varphi}$ and $\sigma_{\vartheta\vartheta}$ Circumferential stress components

 T_0 Reference temperature

T Temperature

 θ Thermodynamic temperature above reference temperature, T_0

 ϕ Conductive temperature above reference temperature, T_0

K Thermal conductivity

 K^* Thermal conductivity rate of the material

 κ Diffusivity of the material

 $\eta = \frac{1}{\kappa}$ A material constant

 ρ Mass density of the material

 $c_{E/v}$ Specific heat at constant strain/volume

 λ, μ Lame's constants of material

 α Two-temperature parameter

 α_t Coefficient of linear thermal expansion

 $\gamma = (3\lambda + 2\mu)\alpha_t$ A thermoelastic constant

 τ_0, τ_1, τ Thermal relaxation time parameters/phase-lags

 au_T Phase-lag of temperature gradient

$ au_q$	Phase-lag of heat flux vector
$ au_ u$	Phase-lag of thermal displacement
δ_{ij}	Kronecker delta

Note: Throughout the thesis, the subscripted comma notations are used to denote the partial derivatives with respect to the space variables. The over-headed dots denote partial derivatives with respect to time variable, t. The bold notation is used for vector quantities. Subscripts i, j, k take the values 1, 2, 3 and summation is implied by index repetition.