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Abstract
In this paper, we attempt to propose Ekeland’s variational principle for interval-valued func-
tions (IVFs). To develop the variational principle, we study a concept of sequence of intervals.
In the sequel, the idea of gH -semicontinuity for IVFs is explored. A necessary and sufficient
condition for an IVF to be gH -continuous in terms of gH -lower and upper semicontinuity
is given. Moreover, we prove a characterization for gH -lower semicontinuity by the level
sets of the IVF. With the help of this characterization result, we ensure the existence of a
minimum for an extended gH -lower semicontinuous, level-bounded and proper IVF. To find
an approximate minima of a gH -lower semicontinuous and gH -Gâteaux differentiable IVF,
the proposed Ekeland’s variational principle is used.

Keywords Interval-valued functions · gH -semicontinuity · gH -Gâteaux differentiability ·
Ekeland’s variational principle

Mathematics Subject Classification 26A24 · 90C30 · 65K05

1 Introduction

In real analysis, we deal with real-valued functions and their calculus. Similarly, interval anal-
ysis deals with interval-valued functions (IVFs), where uncertain variables are represented
by intervals. The analysis of IVFs enables one to effectively deal with the errors/uncertainties
that appear while modeling the real-life problems.

To identify characteristic of IVFs, calculus plays a significant role. Wu (2007) pro-
posed the concepts of limit, continuity, and H -differentiability for IVFs. The concept of
H -differentiability uses H -difference to find the difference between elements of I (R),
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and hence it is restrictive (Stefanini and Bede 2009). To overcome the shortcomings of
H -differentiability, Stefanini and Bede (2009) introduced gH -differentiability for IVFs.
Thereafter, using gH -differentiability, Chalco-Cano et al. (2013) developed the calculus
for IVFs. In the same article (Chalco-Cano et al. 2013), the fundamental theorem of calculus
for IVFs has been presented. With the help of the parametric representation of an IVF, the
notions of gH -gradient and gH -partial derivative of an IVF has been discussed in Ghosh
(2017). Recently, Ghosh et al. (2020) introduced the concepts of gH -Gâteaux and Fréchet
derivatives for IVFs with the help of linear IVFs. Further, researchers have also discussed
concepts of differential equations with IVFs (Wu 2007; Ahmad et al. 2019; Chen et al. 2004;
Van Hoa 2015). In order to study the interval fractional differential equations, Lupulescu
(2015) developed the theory of fractional calculus for IVFs.

In developing mathematical theory for optimization with IVFs, apart from calculus of
IVFs, an appropriate choice for ordering of intervals is necessary since the set of intervals is
not linearly ordered (Ghosh et al. 2020) like the set of real numbers. Hence, the very definition
of optimality gets differed than that of conventional one. However, one can use some partial
ordering structures on the set of intervals. Some partial orderings of intervals are discussed by
Ishibuchi andTanaka in their 1990 paper (Ishibuchi andTanaka 1990). Bymaking use of these
partial orderings and H -differentiability,Wu (2007) proposed KKT optimality conditions for
an IOP. In a set of two papers,Wu (2008a, b) solved four types of IOPs and presentedweak and
strong duality theorems for IOPs using H -differentiability. Chalco-Cano et al. (2013) used
a more general concept of differentiability (gH -differentiability) and provided KKT type
optimality conditions for IOPs. Singh et al. (2016) investigated a class of interval-valued
multiobjective programming problems and proposed the concept of Pareto optimal solutions
for this class of optimization problems. Unlike the earlier approaches, in 2017, Osuna-Gómez
et al. (2017) provided efficiency conditions for an IOPwithout converting it into a real-valued
optimization problem. In 2018, Zhang et al. (2018) and Gong et al. (2016) proposed genetic
algorithms to solve IOPs. Ghosh et al. (2019) reported generalized KKT conditions to obtain
the solution of constrained IOPs. Recently, Van Su and Dinh (2020) presented duality results
for interval-valued pseudoconvex optimization problems with equilibrium constraints. Many
other authors have also proposed optimality conditions and solution concepts for IOP, for
instances, see Ghosh (2017), Ahmad et al. (2019), Ghosh et al. (2018), Wolfe (2000) and the
references therein.

1.1 Motivation and work done

So far, all the solution concepts in interval analysis to find minima of an IVF are for those
IVFs that are gH -continuous and gH -differentiable. However, while modeling the real-
world problems, we may get an objective function that is neither gH -differentiable nor
gH -continuous.1 We thus, in this study, introduce the notions of gH -semicontinuity and
give results which guarantees the existence of a minima and an approximate minima for an
IVF which need not be gH -differentiable or gH -continuous.
For a nonsmooth optimization problem, it is not always easy to find an exact optima (Facchinei
and Pang 2007). In such situations, one attempts to find approximate optima. It is a well-
known fact that Ekeland’s variational principle (Ekeland 1974) is helpful to give approximate
solutions (Facchinei and Pang 2007). Also, it is widely known that in the conventional and
vector optimization problems, the concept of weak sharp minima (Burke and Deng 2002)

1 Analytical models of some interesting real-world problems with neither differentiable nor continuous objec-
tive functions can be found in Clarke’s book Clarke (1990)
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plays an important role. It is closely related to sensitive analysis and convergence analysis
of optimization problems (Burke and Ferris 1993; Henrion and Outrata 2001). Ekeland’s
variational principle is a useful tool to show the existence of weak sharp minima for a
constrained optimization problem with nonsmooth objective function (Facchinei and Pang
2007). Moreover, Ekeland’s variational principle (Ekeland 1974) is one of the most powerful
tools for nonlinear analysis. It has applications in different areas including optimization
theory, fixed point theory, and global analysis, for instances, see Borwein et al. (1999),
Ekeland (1979), Fabian et al. (1996), Fabian and Mordukhovich (1998), Georgiev (1988),
Kruger (2003), Penot (1986). Due to all these wide applications of Ekeland’s variational
principle in different areas, especially in nonsmooth optimization and control theory, we
attempt to study this principle for gH -lower semicontinuous IVFs in this article. Further, we
also give Ekeland’s variational principle for gH -Gâteaux differentiable IVFs.

1.2 Delineation

The proposed study is presented in the following manner. In Sect. 2, basic terminologies and
definitions on intervals and IVFs are provided. In Sect. 3, we define gH -semicontinuity for
IVFs and give a characterization for gH -continuity of an IVF in terms of gH -lower and upper
semicontinuity. Also, we give a characterization of gH -lower semicontinuity, and using this
we prove that an extended gH -lower semicontinuous, level-bounded and proper IVF attains
its minimum. Further, a characterization of the set argument minimum of an IVF is given.
After that, we present Ekeland’s variational principle for IVFs and its application in Sect. 4.
Lastly, the conclusion and future scopes are given in Sect. 5.

2 Preliminaries and terminologies

In this article, the following notations are used.

– R denotes the set of real numbers
– R

+ denotes the set of nonnegative real numbers
– I (R) represents the set of all closed and bounded intervals
– Bold capital letters are used to represent the elements of I (R)

– I (R) = I (R) ∪ {−∞,+∞}
– 0 represents the interval [0, 0]
– X denotes a finite dimensional Banach space
– Bδ(x̄) is an open ball of radius δ centered at x̄ .

Consider two intervals A = [a, a] and B = [
b, b

]
. The addition of A and B, denoted A⊕B,

is defined by

A ⊕ B = [
a + b, a + b

]
.

The addition of A and a real number a, denoted A ⊕ a, is defined by

A ⊕ a = A ⊕ [a, a] = [
a + a, a + a

]
.

The subtraction of B from A, denoted A � B, is defined by

A � B = [
a − b, a − b

]
.
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The multiplication by a real number μ to A, denoted μ � A or A � μ, is defined by

μ � A = A � μ =
{

[μa, μa], if μ ≥ 0

[μa, μa], if μ < 0.

Definition 2.1 (gH -difference of intervals Stefanini and Bede 2009). Let A and B be two
elements of I (R). The gH -difference between A and B is defined as the interval C such that

C = A �gH B ⇐⇒

⎧
⎪⎨

⎪⎩

A = B ⊕ C

or

B = A � C.

For A = [a, a] and B = [b, b], A �gH B is given by (see Stefanini and Bede 2009)

A �gH B = [min{a − b, a − b},max{a − b, a − b}].
Also, if A = [a, a] and a be any real number, then we have

A �gH a = A �gH [a, a] = [min{a − a, a − a},max{a − a, a − a}]= [a − a, a − a].
Definition 2.2 (Dominance of intervals Wu 2008b). Let A = [a, a] and B = [b, b] be two
elements of I (R). Then,

(i) B is said to be dominated by A if a ≤ b and a ≤ b, and then we write A � B;
(ii) B is said to be strictly dominated by A if A � B and A �= B, and then we write A ≺ B.

Equivalently, A ≺ B if and only if any of the following cases hold:

• Case 1. a < b and a ≤ b,
• Case 2. a ≤ b and a < b,
• Case 3. a < b and a < b;

(iii) if neither A � B nor B � A, we say that none of A and B dominates the other, or A
and B are not comparable. Equivalently, A and B are not comparable if either ‘a < b
and a > b’ or ‘a > b and a < b’;

(iv) B is said to be not dominated by A if either B � A or A and B are not comparable, and
then we write A ⊀ B. Similarly, a real number a is said to be not dominated by A if
either [a, a] � A or A and [a, a] are not comparable, and then we write A ⊀ a.

Remark 2.1 By Definition 2.2, it is easy to see that for any A, B ∈ I (R) either A ≺ B or
A ⊀ B.

Note 2.1 It is to be mentioned that dominance relation (Definition 2.2) and the interval arith-
metic used in this article are also proposed independently by Kulisch and Miranker (1981).

In the following two lemmas, we give a few inequalities about intervals and their norms.
The norm of an interval A = [

a, ā
]
is defined by (see Moore 1966)

‖A‖I (R) = max{|a|, |ā|}.
It is noteworthy that the set I (R) equipped with the norm ‖.‖I (R) is a normed quasilinear
space with respect to the operations ⊕,�gH and � (see Lupulescu 2015).

Next, we recall the definition of quasilinear normed space.
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Definition 2.3 (See Markov 2000). I (R) equipped with the norm ‖.‖I (R) with operations of
addition (⊕) and multiplication by real scalars (�), is called a quasilinear normed space if
the following laws hold:

(i) (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C) for all A,B,C ∈ I (R),
(ii) There exists an element E ∈ I (R) such that A ⊕ E = E ⊕ A = A for all A ∈ I (R),
(iii) A ⊕ B = B ⊕ A for all A,B ∈ I (R),
(iv) If A,B,C ∈ I (R) and A ⊕ C = B ⊕ C implies A = B
(v) λ � (μ � A) = (λμ) � A for all λ,μ ∈ R and A ∈ I (R),
(vi) 1 � A = A for all A ∈ I (R),
(vii) λ � (A ⊕ B) = λ � A ⊕ λ � B for all λ ∈ R and A,B ∈ I (R), and
(viii) (λ + μ) � A = λ � A ⊕ μ � A for all A ∈ I (R) and λ,μ ∈ R with λμ ≥ 0.

Lemma 2.1 Let A, B, C and D be elements of I (R). Then,

(i) ‖A ⊕ B‖I (R) ≤ ‖A‖I (R) + ‖B‖I (R) (triangle inequality for the elements of I (R)),
(ii) if A � C and B � D, then A ⊕ B � C ⊕ D,

Proof See A. ��
Lemma 2.2 (Properties of the elements of I (R) under gH-difference). For all elements
A, B, C, D ∈ I (R) and ε > 0, we have

(i) ‖A �gH B‖I (R) < ε ⇐⇒ B �gH [ε, ε] ≺ A ≺ B ⊕ [ε, ε],
(ii) A �gH [ε, ε] ⊀ B �⇒ A � B.

Proof See B. ��
Definition 2.4 (Infimum of a subset of I (R)). Let S ⊆ I (R). An interval Ā ∈ I (R) is said to
be a lower bound of S if Ā � B for all B in S. A lower bound Ā of S is called an infimum of
S if for all lower bounds C of S in I (R), C � Ā. We denote infimum of S by inf S.

Example 2.1 Let S = {[ 1
n , 1

] : n ∈ N
}
. The set of lower bounds of S is

{[α, β] : −∞ < α ≤ 0 and − ∞ < β ≤ 1}.
Therefore, the infimum of S is [0, 1] because [α, β] � [0, 1] for all−∞ < α ≤ 0 and −∞ <

β ≤ 1.

Definition 2.5 (Supremum of a subset of I (R)). Let S ⊆ I (R). An interval Ā ∈ I (R) is
said to be an upper bound of S if B � Ā for all B in S. An upper bound Ā of S is called a
supremum of S if for all upper bounds C of S in I (R), Ā � C. We denote supremum of S
by supS.

Example 2.2 Let S = {[ 1
n2

+ 1, 3
] : n ∈ N

}
. The set of upper bounds of S is

{[α, β] : 2 ≤ α < +∞ and 3 ≤ β < +∞}.
Therefore, the supremum of S is [2, 3] because [2, 3] � [α, β] for all 2 ≤ α < +∞ and 3 ≤
β < +∞.

Remark 2.2 Let S =
{
[aα, bα] ∈ I (R) : α ∈ � and � being an index set

}
. Then, by Defi-

nition 2.4 and 2.5, it follows that inf S =
[
inf
α∈�

aα, inf
α∈�

bα

]
and supS =

[
sup
α∈�

aα, sup
α∈�

bα

]
.

It is evident that if inf S and supS exist for an S, then they are unique.
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Note 2.2 Infimum and supremum of a subset of I (R) may not exist. For instance, con-
sider S = {[−2,−1], [−3,−1], [−4,−1], . . .}. Here, S has no lower bound in I (R) as
{−2,−3,−4, . . .} has no lower bound in R. Therefore, infimum of S does not exist in I (R).

Remark 2.3 (i) It is noteworthy that infimum and supremum of a subset of I (R) always
exist in I (R). For instance, consider S as in Note 2.2. Here, infimum of S does not exist
in I (R) but exists in I (R). Note that infimum of S is −∞.

(ii) Infimumand supremumof afinite subset S of real numbers always belong to the set S but
this is not true for a finite subset of I (R). For instance, consider S = {[−2, 4], [−1, 3]}.
Then, inf S = [−2, 3] and supS = [−1, 4].

Definition 2.6 (Infimum of an IVF). Let S be a nonempty subset of X and F : S → I (R) be
an extended IVF. Then infimum of F, denoted as inf

x∈S F(x) or inf
S

F, is equal to the infimum

of the range set of F, i.e.,
inf
S

F = inf{F(x) : x ∈ S}.
Similarly, the supremum of an IVF is defined by

sup
S

F = sup{F(x) : x ∈ S}.

Definition 2.7 (Sequence in I (R)). An IVF F : N → I (R) is called a sequence in I (R).
The image of nth element, F(n), is said to be the nth element of the sequence F.We denote

a sequence F by {F(n)}.
Example 2.3 (i) F : N → I (R) that is defined by F(n) = [n, n + 1] is a sequence.
(ii) F : N → I (R) that is defined by F(n) = [ n

4 , n
2

]
is also a sequence.

Definition 2.8 (Convergence of a sequence in I (R)).

1. A sequence {F(n)} is said to converge to L ∈ I (R) if for each ε > 0, there exists an
integer m > 0 such that

‖F(n) �gH L‖I (R) < ε for all n ≥ m.

The intervalL is called limit of the sequence {F(n)} and is presented by lim
n→+∞F(n) = L

or F(n) → L.
2. We say the limit of a sequence {F(n)} is +∞ if for every real number a > 0, there exists

an integer m > 0 such that

[a, a] ≺ F(n) for all n ≥ m.

3. We say the limit of a sequence {F(n)} is −∞ if for every real number a > 0, there exists
an integer m > 0 such that

F(n) ≺ [−a,−a] for all n ≥ m.

Example 2.4 Consider the sequence F(n) = [ 1
n , 1

]
, n ∈ N, in I (R).

Let ε > 0 be given. Note that

‖F(n) �gH [0, 1]‖I (R) =
∥
∥∥∥

[
1

n
, 1

]
�gH [0, 1]

∥
∥∥∥
I (R)

=
∥
∥∥∥

[
0,

1

n

]∥
∥∥∥
I (R)

= 1

n
< ε whenever n >

1

ε
.

So, by taking m = � 1
ε
� + 1, where �·� is the floor function, we have

‖F(n) �gH [0, 1]‖I (R) < ε for all n ≥ m.

Thus, lim
n→+∞F(n) = L = [0, 1].
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Note 2.3 Let {F(n)} be a sequence in I (R) with F(n) =
[
f (n), f (n)

]
, where

{
f (n)

}
and

{
f (n)

}
be two convergent sequences in R. Then, {F(n)} is convergent and

lim
n→+∞F(n) =

[
lim

n→+∞ f (n), lim
n→+∞ f (n)

]
.

The reason is as follows.
Suppose f (n) and f (n) are convergent sequences with limits l1 and l2, respectively. Then,
for each ε > 0, there exist positive integers m1 and m2 such that

∣∣
∣ f (n) − l1

∣∣
∣ < ε for all n ≥ m1, and

∣∣ f (n) − l2
∣∣ < ε for all n ≥ m2

⇐⇒ max
{∣∣
∣ f (n) − l1

∣∣
∣ ,

∣∣ f (n) − l2
∣∣
}

< ε for all n ≥ m,

where m = max{m1,m2}
⇐⇒

∥∥∥
[
f (n), f (n)

]
�gH [l1, l2]

∥∥∥
I (R)

< ε for all n ≥ m

i.e.,
∥∥F(n) �gH [l1, l2]

∥∥
I (R)

< ε for all n ≥ m.

Thus,

lim
n→+∞F(n) = [l1, l2] =

[
lim

n→+∞ f (n), lim
n→+∞ f (n)

]
.

Definition 2.9 (Bounded sequence in I (R)). A sequence {F(n)} is said to be bounded above
if there exists an interval K1 ∈ I (R) such that

F(n) � K1 for all n ∈ N.

A sequence {F(n)} is said to be bounded below if there exists an interval K2 ∈ I (R) such
that

K2 � F(n) for all n ∈ N.

A sequence {F(n)} is said to be bounded if it is both bounded above and below.

Definition 2.10 A sequence {F(n)} is said to be monotonic increasing sequence if F(n) �
F(n + 1) for all n ∈ N.

Lemma 2.3 A bounded above monotonic increasing sequence of intervals is convergent and
converges to its supremum.

Proof Let {F(n)}be a bounded abovemonotonic increasing sequence andMbe its supremum.
Then, by Definition 2.5, we have

(i) F(n) � M for all n ∈ N and
(ii) for a given ε > 0, there exists an integer m > 0 such thatM �gH [ε, ε] ≺ F(m).

Since {F(n)} is a monotonic increasing sequence,

M �gH [ε, ε] ≺ F(m) � F(m + 1) � F(m + 2) � · · · � M.

That is, M �gH [ε, ε] ≺ F(m) ≺ M ⊕ [ε, ε] for all n ≥ m. Thus, the sequence {F(n)} is
convergent and lim

n→+∞F(n) = M. ��
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Definition 2.11 (Lower limit and upper limit of a sequence in I (R)). Let {F(n)} be a sequence.
The lower limit of {F(n)}, denoted lim inf F(n), is defined by

lim inf F(n) = lim
n→+∞ inf{F(n),F(n + 1),F(n + 2), . . .}.

Similarly, upper limit of {F(n)} is defined by
lim supF(n) = lim

n→+∞ sup{F(n),F(n + 1),F(n + 2), . . .}.

Example 2.5 Consider the following sequence in I (R):

F(n) =
{[

1
n2

, 1
n2

+ 1
]

if n is odd

[n, n2 + 1] if n is even.

It is easy to see that inf
n∈N

[
1
n2

, 1
n2

+ 1
]

= [0, 1] and inf
n∈N

[
n, n2 + 1

] = [1, 2]. Therefore,
lim

n→+∞ inf{F(n),F(n + 1),F(n + 2), . . .} = [0, 1] and hence, lim inf F(n) = [0, 1].

Note that sup
n∈N

[
1
n2

, 1
n2

+ 1
]

= [1, 2] and sup
n∈N

[
n, n2 + 1

] = +∞. Thus,

lim
n→+∞ sup{F(n),F(n + 1),F(n + 2), . . .} = +∞ and hence, lim supF(n) = +∞.

Next, we state the conventional Ekeland’s variational principle.

Theorem 2.1 (Ekeland’s variational principle for real-valued functions Ekeland (1974)).
Let f : X → R ∪ {+∞} be a lsc extended real-valued function and ε > 0. Assume that

inf
X

f is finite and f (x̄) < inf
X

f + ε.

Then, for any δ > 0, there exists an x0 ∈ X such that

(i) ‖x0 − x̄‖X < ε
δ
,

(ii) f (x0) ≤ f (x̄), and
(iii) argmin

x∈X
{ f (x) + δ‖x − x0‖X } = {x0}.

3 gH-continuity and gH-semicontinuity of interval-valued functions

In this section, we define gH -lower and gH -upper semicontinuity for extended IVFs and
show that gH -continuity of an IVF implies gH -lower and upper semicontinuity and vice-
versa. Further, we give a characterization of gH -lower semicontinuity in terms of the level
sets of the IVF (Theorem 3.6) and use this to prove that an extended gH -lower semicon-
tinuous, level-bounded and proper IVF attains its minimum (Theorem 3.7). We also give a
characterization of the set argument minimum of an IVF (Theorem 3.8).

Throughout this section, an extended IVF is an IVF with domain X and codomain I (R).

Definition 3.1 (gH -limit of an IVF). Let F : S → I (R) be an IVF on a nonempty subset
S of X . The function F is called tending to a limit L ∈ I (R) as x tends to x̄ , denoted by
lim
x→x̄

F(x), if for each ε > 0, there exists a δ > 0 such that

‖F(x) �gH L‖I (R) < ε whenever 0 < ‖x − x̄‖X < δ.
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Definition 3.2 (gH -continuity). Let F : S → I (R) be an IVF on a nonempty subset S of X .
The function F is said to be gH -continuous at x̄ ∈ S if for each ε > 0, there exists a δ > 0
such that

‖F(x) �gH F(x̄)‖I (R) < ε whenever ‖x − x̄‖X < δ.

Definition 3.3 (Lower limit and gH -lower semicontinuity of an extended IVF). The lower
limit of an extended IVF F at x̄ ∈ X , denoted lim inf

x→x̄
F(x), is defined by

lim inf
x→x̄

F(x) = lim
δ↓0 (inf{F(x) : x ∈ Bδ(x̄)})

= sup
δ>0

(inf{F(x) : x ∈ Bδ(x̄)}) .

F is called gH -lower semicontinuous (gH -lsc) at a point x̄ if

F(x̄) � lim inf
x→x̄

F(x). (1)

Further, F is called gH -lsc on X if (1) holds for every x̄ ∈ X .

Example 3.1 Consider the following IVF F : R
2 → I (R):

F(x1, x2) =
{

[1, 2] � sin
(

1
x1

)
⊕ cos2 x2 if x1x2 �= 0

[ − 2,−1] if x1x2 = 0.

The lower limit of F at (0, 0) is given by

lim inf
(x1,x2)→(0,0)

F(x1, x2) = lim
δ↓0 (inf{F(x1, x2) : (x1, x2) ∈ Bδ(0, 0)}) .

Note that as x1 → 0, sin
(

1
x1

)
oscillates between −1 and 1. Therefore, for any δ > 0,

inf
(x1,x2)∈Bδ(0,0)

F(x1, x2) = [1, 2] � (−1) = [−2,−1].

Also, note that when (x1, x2) = (0, 0), F(x1, x2) = [−2,−1]. Thus,
lim inf

(x1,x2)→(0,0)
F(x1, x2) = [−2,−1].

Since F(0, 0) = [−2,−1] � [−2,−1] = lim inf
(x1,x2)→(0,0)

F(x1, x2), the function F is gH -lsc at

(0, 0).

Note 3.1 Let F be an extended IVF with F(x) =
[
f (x), f (x)

]
, where f , f : X →

R ∪ {−∞,+∞} be two extended real-valued functions. Then, F is gH -lsc at x̄ ∈ X if and
only if f and f both are lsc at x̄ . The reason is as follows.

f and f are lsc at x̄ ⇐⇒ f (x̄) ≤ lim inf
x→x̄

f (x) and f (x̄) ≤ lim inf
x→x̄

f (x)

⇐⇒
[
f (x̄), f (x̄)

]
�

[
lim inf
x→x̄

f (x), lim inf
x→x̄

f (x)

]

⇐⇒
[
f (x̄), f (x̄)

]
� lim inf

x→x̄

[
f (x), f (x)

]
, by Remark 2.2

i.e., F(x̄) � lim inf
x→x̄

F(x).

123



28 Page 10 of 24 G. Kumar , D. Ghosh

Note 3.1 reduces our efforts to check gH -lower semicontinuity of extended IVFs that are

given in the form F(x) =
[
f (x), f (x)

]
. For example, consider F : R

2 → I (R) as

F(x1, x2) =
{[ |x1x2|

2x12+x22
, e|6x1x2 |
x12+x22

]
if x1x2 �= 0

0 if x1x2 = 0

and take x̄ = (0, 0). It is easy to see that both

f (x1, x2) =
{ |x1x2|

2x12+x22
if x1x2 �= 0

0 if x1x2 = 0

and

f (x1, x2) =
{

e|6x1x2 |
x12+x22

if x1x2 �= 0

0 if x1x2 = 0

are lsc at x̄ . Thus, by Note 3.1, F is gH -lsc at x̄ .

Theorem 3.1 Let F be an extended IVF. Then, F is gH-lsc at x̄ ∈ X if and only if for each
ε > 0, there exists a δ > 0 such that F(x̄) �gH [ε, ε] ≺ F(x) for all x ∈ Bδ(x̄).

Proof Let F be gH -lsc at x̄ .
To the contrary, suppose there exists an ε0 > 0 such that for all δ > 0, F(x̄) �gH [ε0, ε0] ⊀

F(x) for at least one x in Bδ(x̄).
Then,

F(x̄) �gH [ε0, ε0] ⊀ inf{F(x) : x ∈ Bδ(x̄)} for all δ > 0

�⇒ F(x̄) �gH [ε0, ε0] ⊀ lim
δ↓0(inf{F(x) : x ∈ Bδ(x̄)})

�⇒ F(x̄) �gH [ε0, ε0] ⊀ lim inf
x→x̄

F(x)

�⇒ F(x̄) � lim inf
x→x̄

F(x), by (i i) of Lemma 2.2,

which contradicts that F is gH -lsc at x̄ . Thus, for each ε > 0, there exists a δ > 0 such that
F(x̄) �gH [ε, ε] ≺ F(x) for all x ∈ Bδ(x̄).

Conversely, suppose for a given ε > 0, there exists a δ > 0 such that F(x̄) �gH [ε, ε] ≺
F(x) for all x ∈ Bδ(x̄). Then,

F(x̄) �gH [ε, ε] � inf{F(x) : x ∈ Bδ(x̄)}
�⇒ F(x̄) �gH [ε, ε] � lim

δ↓0(inf{F(x) : x ∈ Bδ(x̄)})
�⇒ F(x̄) �gH [ε, ε] � lim inf

x→x̄
F(x).

As F(x̄) �gH [ε, ε] � lim inf
x→x̄

F(x) for every ε > 0, we have F(x̄) � lim inf
x→x̄

F(x). Thus,

F is gH -lsc at x̄ . ��
Definition 3.4 (Upper limit and gH -upper semicontinuity of an extended IVF). The upper
limit of an extended IVF F at x̄ ∈ X , denoted lim sup

x→x̄
F(x), is defined as

lim sup
x→x̄

F(x) = lim
δ↓0 (sup{F(x) : x ∈ Bδ(x̄)})

= inf
δ>0

(sup{F(x) : x ∈ Bδ(x̄)}) .
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F is called gH -upper semicontinuous (gH -usc) at x̄ if

lim sup
x→x̄

F(x) � F(x̄). (2)

Further, F is called gH -usc on X if (2) holds for every x̄ ∈ X .

Note 3.2 Let F be an extended IVF with F(x) =
[
f (x), f (x)

]
, where f , f : X →

R ∪ {−∞,+∞} be two extended real-valued functions. Then, because of a similar reason
as in Note 3.1, F is gH -usc at x̄ ∈ X if and only if f and f are usc at x̄ .

Theorem 3.2 Let F be an extended IVF. Then, F is gH-usc at x̄ ∈ X if and only if for each
ε > 0, there exists a δ > 0 such that F(x) ≺ F(x̄) ⊕ [ε, ε] for all x ∈ Bδ(x̄).

Proof Similar to the proof of Theorem 3.1. ��
Theorem 3.3 An extended IVF F is gH-continuous if and only if F is both gH-lower and
upper semicontinuous.

Proof Let F be gH -continuous at x̄ ∈ X . Then, for each ε > 0, there exists a δ > 0 such
that

‖F(x) �gH F(x̄)‖I (R) < ε for all x ∈ Bδ(x̄)

⇐⇒ F(x̄) �gH [ε, ε] ≺ F(x) ≺ F(x̄) ⊕ [ε, ε] for all x ∈ Bδ(x̄), by (i i) of Lemma 2.2

⇐⇒ F(x̄) is gH -lsc and gH -usc at x̄, by Theorems 3.1 and 3.2.

��
Definition 3.5 (Proper IVF). An extended IVF F is called a proper function if there exists
an x̄ ∈ X such that F(x̄) ≺ [+∞,+∞] and [−∞,−∞] ≺ F(x) for all x ∈ X .

Example 3.2 Consider the IVF F : R
2 → I (R) that is given by F(x1, x2) = [

x1, ex1 + x22
]
.

Note that F(0, 0) = [0, 1] ≺ [+∞,+∞]. Also, [−∞,−∞] ≺ F(x1, x2) for all (x1, x2) ∈
R
2. Therefore, F is a proper function.

Lemma 3.1 Let F1 and F2 be two proper extended IVFs, and S be a nonempty subset of X .
Then,

(i) inf
x∈S F1(x) ⊕ inf

x∈S F2(x) � inf
x∈S{F1(x) ⊕ F2(x)} and

(ii) sup
x∈S

{F1(x) ⊕ F2(x)} � sup
x∈S

F1(x) ⊕ sup
x∈S

F2(x).

Proof Let α1 = inf
x∈S F1(x) and α2 = inf

x∈S F2(x). Then,

α1 � F1(x) for all x ∈ S and α2 � F2(x) for all x ∈ S
�⇒ α1 ⊕ α2 � F1(x) ⊕ F2(x) for all x ∈ S, by (i i) of Lemma 2.1

�⇒ α1 ⊕ α2 � inf
x∈S(F1(x) ⊕ F2(x))

i.e., inf
x∈S F1(x) ⊕ inf

x∈S F2(x) � inf
x∈S{F1(x) ⊕ F2(x)}.

Part (ii) can be similarly proved. ��
Theorem 3.4 Let F1 and F2 be two proper extended IVFs, and S be a nonempty subset of X .
Then,
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(i) lim inf
x→x̄

F1(x) ⊕ lim inf
x→x̄

F2(x) � lim inf
x→x̄

(F1 ⊕ F2)(x) and

(ii) lim sup
x→x̄

(F1 ⊕ F2)(x) � lim sup
x→x̄

F1(x) ⊕ lim sup
x→x̄

F2(x).

Proof

lim inf
x→x̄

F1(x) ⊕ lim inf
x→x̄

F2(x) = lim
δ↓0 inf

x∈Bδ(x̄)
F1(x) ⊕ lim

δ↓0 inf
x∈Bδ(x̄)

F2(x), by Definition 3.3

� lim
δ↓0

(
inf

x∈Bδ(x̄)
F1(x) ⊕ inf

x∈Bδ(x̄)
F2(x)

)

� lim
δ↓0 inf

x∈Bδ(x̄)
(F1 ⊕ F2)(x), by (i) of Lemma 3.1

= lim inf
x→x̄

(F1 ⊕ F2)(x).

This completes the proof of (i). Part (ii) can be similarly proved. ��
Theorem 3.5 Let F1 and F2 be two proper and gH-lsc extended IVFs. Then, F1 ⊕ F2 is
gH-lsc.

Proof Take x̄ ∈ X . Since F1 and F2 are gH -lsc at x̄ , we have

F1(x̄) � lim inf
x→x̄

F1(x) and F2(x̄) � lim inf
x→x̄

F2(x)

�⇒ F1(x̄) ⊕ F2(x̄) � lim inf
x→x̄

F1(x) ⊕ lim inf
x→x̄

F2(x), by (i i) of Lemma 2.1

�⇒ (F1 ⊕ F2)(x̄) � lim inf
x→x̄

(F1 ⊕ F2)(x), by (i) of T heorem 3.4

�⇒ F1 ⊕ F2 is gH -lsc at x̄ .

Since x̄ is arbitrarily chosen, so F1 ⊕ F2 is gH -lsc on X . ��
Lemma 3.2 (Characterization of lower limits of IVFs). Let F be an extended IVF. Then,

lim inf
x→x̄

F(x) = inf
{
α ∈ I (R) : there exists a sequence xk → x̄ with F(xk) → α

}
.

Proof Let ᾱ = lim inf
x→x̄

F(x). Assume that sequence xk → x̄ with F(xk) → α. In the below,

we show that ᾱ � α.

Since xk → x̄ , for any δ > 0, there exists kδ ∈ N such that xk ∈ Bδ(x̄) for every k ≥ kδ .
Therefore,

inf{F(x) : x ∈ Bδ(x̄)} � F(xk) for any δ > 0

�⇒ inf{F(x) : x ∈ Bδ(x̄)} � lim
k→+∞F(xk) for any δ > 0

�⇒ inf{F(x) : x ∈ Bδ(x̄)} � α for any δ > 0

�⇒ lim
δ↓0 inf{F(x) : x ∈ Bδ(x̄)} � α

�⇒ lim inf
x→x̄

F(x) = ᾱ � α.

Next, we show that there exists a sequence xk → x̄ with F(xk) → ᾱ.

Consider a nonnegative sequence {δk}with δk ↓ 0, and construct a sequence ᾱk = inf{F(x) :
x ∈ Bδk (x̄)}.
As δk ↓ 0, by Definition 3.3 of lower limit, ᾱk → ᾱ. Also, by definition of infimum,
for a given ε > 0 and k ∈ N, there exists xk ∈ Bδk (x̄) such that F(xk) � ᾱk . That is,
ᾱk � F(xk) � αk , where αk → ᾱ.
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Note that xk ∈ Bδk (x̄) and δk ↓ 0. Therefore, as k → +∞, xk → x̄ . Also, note that F(xk)
is a monotonic increasing bounded sequence and therefore, by Lemma 2.3, F(xk) converges
to ᾱ, and the proof is complete. ��
Lemma 3.3 (Characterization of upper limits of IVFs). Let F be an extended IVF. Then,

lim sup
x→x̄

F(x) = sup
{
α ∈ I (R) : there exists a sequence xk → x̄ with F(xk) → α

}
.

Proof Similar to the proof of Lemma 3.2. ��
Definition 3.6 (Level set of an IVF). Let F be an extended IVF. For an α ∈ I (R), the level
set of F, denoted as levα⊀F, is defined by

levα⊀F = {x ∈ X : α ⊀ F(x)}.

Example 3.3 Consider F : R
2 → I (R) as F(x) = [1, 2] � x12 ⊕ [3, 4] � ex2

2
and α =

[−1, 10]. Then,
levα⊀F =

{
(x1, x2) ∈ R

2 : [−1, 10] ⊀ [1, 2] � x1
2 ⊕ [3, 4] � ex2

2
}

=
{
(x1, x2) ∈ R

2 : [−1, 10] ⊀

[
x1

2 + 3ex2
2
, 2x1

2 + 4ex2
2
]}

=
{
(x1, x2) ∈ R

2 :
[
x1

2 + 3ex2
2
, 2x1

2 + 4ex2
2
]

� [−1, 10] or
[−1, 10] and

[
x1

2 + 3ex2
2
, 2x1

2 + 4ex2
2
]
are not comparable

}

=
{
(x1, x2) ∈ R

2 : [−1, 10] and
[
x1

2 + 3ex2
2
, 2x1

2 + 4ex2
2
]
are not comparable

}

=
{
(x1, x2) ∈ R

2 : ‘x12 + 3ex2
2

< −1 and 2x1
2 + 4ex2

2
> 10’ or

‘x1
2 + 3ex2

2
> −1 and 2x1

2 + 4ex2
2

< 10’
}

=
{
(x1, x2) ∈ R

2 : x12 + 3ex2
2

> −1 and 2x1
2 + 4ex2

2
< 10

}

=
{
(x1, x2) ∈ R

2 : 2x12 + 4ex2
2

< 10
}

.

Hence,

levα⊀F =
{
(x1, x2) ∈ R

2 : x12 + 2ex2
2

< 5
}

.

Definition 3.7 (Level-bounded IVF). An extended IVF F is said to be level-bounded if for
any α ∈ I (R), levα⊀F is bounded.

Lemma 3.4 Let F be an extended IVF and x̄ ∈ X . Then,

inf{xk }
(lim inf F(xk)) ⊀ lim inf

x→x̄
F(x), (3)

where the infimum on the left-hand side is taken over all sequences xk → x̄ .

Proof LetM = lim inf
x→x̄

F(x) and L = inf{xk }
lim inf F(xk).

IfM = −∞, there is nothing to prove.
Next, let M = +∞. Let {xk} be an arbitrary sequence converging to x̄ . We show that
F(xk) → +∞. Since M = +∞, for any given α > 0, there exists a δ > 0 such that
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[α, α] ≺ inf x∈Bδ(x̄) F(x). Since xk → x̄ , there exists an integer m > 0 such that xk ∈
Bδ(x̄) for all n ≥ m. Thus, [α, α] ≺ F(xk) for all n ≥ m, and hence F(xk) → +∞.
Finally, let [−∞,−∞] ≺ M ≺ [+∞,+∞], i.e., M ∈ I (R). Suppose that there exists
ε0 > 0 such that for all δ > 0, infx∈Bδ(x̄) F(x) � M �gH [ε0, ε0]. Then,

lim
δ↓0 inf

x∈Bδ(x̄)
F(x) � M �gH [ε0, ε0]

�⇒ lim inf
x→x̄

F(x) � M �gH [ε0, ε0]
i.e., M � M �gH [ε0, ε0],

which is not true. Thus, for a given ε > 0, there exists a δ > 0 such that inf x∈Bδ(x̄) F(x) �

M �gH [ε, ε]. This implies F(x) � M �gH [ε, ε] for all x ∈ Bδ(x̄).
Let {xk} be a sequence converging to x̄ . Since xk ∈ Bδ(x̄) for large enough k, we have
lim inf F(xk) � M �gH [ε, ε] for any ε > 0. Thus, lim inf F(xk) ⊀ M for any sequence
converging to x̄ , and hence L ⊀ M. Therefore, (3) holds. ��
Theorem 3.6 Let F be an extended IVF. Then, F is gH-lsc on X if and only if the level set
levα⊀F is closed for every α ∈ I (R).

Proof Let F be gH -lsc on X . For a fixed α ∈ I (R), suppose that {xk} ⊆ levα⊀F such that
xk → x̄ . Then,

α ⊀ F(xk)

�⇒ α ⊀ lim inf F(xk)

�⇒ α ⊀ lim inf
x→x̄

F(x), by Lemma 3.4

�⇒ α ⊀ F(x̄) since F is gH-lsc at x̄ .

Thus, x̄ ∈ levα⊀F, and hence levα⊀F is closed.
Since α ∈ I (R) is arbitrarily chosen, levα⊀F is closed for every α ∈ I (R).
Conversely, suppose the level set levα⊀F is closed for every α ∈ I (R). Fix an x̄ ∈ X . To
prove that F is gH -lsc at x̄ , we need to show that

F(x̄) � lim inf
x→x̄

F(x).

Let ᾱ = lim inf
x→x̄

F(x). The case of ᾱ = +∞ is trivial; so assume ᾱ ≺ [+∞,+∞].
By Lemma 3.2, there exists a sequence xk → x̄ with F(xk) → ᾱ. For any α such that ᾱ ≺ α,
it will eventually be true that α ⊀ F(xk), or in other words, that xk ∈ levα⊀F. Since levα⊀F
is closed, x̄ ∈ levα⊀F.
Thus, α ⊀ F(x̄) for every α such that ᾱ ≺ α, then ᾱ ⊀ F(x̄). Therefore, either F(x̄) � ᾱ or
ᾱ and F(x̄) are not comparable. But since ᾱ = lim inf

x→x̄
F(x), so ᾱ is comparable with F(x̄),

and hence F(x̄) � ᾱ.
Since x̄ ∈ X is arbitrarily chosen, F is gH -lsc on X . This completes the proof. ��
Definition 3.8 (Indicator function). Consider a subset S of X . The indicator function of
S, δS(s) : X → R∪{+∞} is defined by

δS(s) =
{
0 if s ∈ S
+∞ if s /∈ S.

Remark 3.1 (i) It is easy to see that δS is proper if and only if S is nonempty.
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(ii) By Theorem 3.6, δS is gH -lsc if and only if S is closed.

Definition 3.9 (Argumentminimumof an IVF). LetF be an extended IVF. Then, the argument
minimum of F, denoted as argmin

x∈X
F(x), is defined by

argmin
x∈X

F(x) =

⎧
⎪⎨

⎪⎩

{
x ∈ X : F(x) = inf

y∈X F(y)
}

if inf
y∈X F(y) �= +∞

∅ if inf
y∈X F(y) = +∞.

Example 3.4 Consider F : R
2 → I (R) as F(x1, x2) =
⎧
⎨

⎩

[
− 1

|x1| , e
− 1

|x1 | +x22
]

if x1 �= 0

[ − ∞, 0] if x1 = 0.

Then, inf
(x1,x2)∈R2

F(x1, x2) = [−∞, 0].

argmin
x∈R2

F(x) =
{
(x1, x2) ∈ R

2 : F(x1, x2) = inf
x∈R2

F(x1, x2) = [−∞, 0]
}

= {(0, x2) : x2 ∈ R}.
Therefore, argmin

x∈R2
F(x) = {(0, x2) : x2 ∈ R}.

Theorem 3.7 (Minimum attained by an extended IVF). Let F be gH-lsc, level-bounded and
proper extended IVF. Then, the set argminX F is nonempty and compact.

Proof Let ᾱ = inf F. So, ᾱ ≺ [+∞,+∞] because F is proper.
Note that levα⊀F �= ∅ for any α that satisfies ᾱ ≺ α ≺ [+∞,+∞]. Also, as F is

level-bounded, levα⊀F is bounded and by Theorem 3.6, it is also closed. Thus, levα⊀F is
nonempty compact for ᾱ ≺ α ≺ [+∞,+∞] and are nested as levα⊀F ⊆ levβ⊀F when
α ≺ β. Therefore,

⋂

ᾱ≺α≺+∞
levα⊀F = levᾱ⊀F = argminX F

is nonempty and compact. ��
Next, we present a theorem which gives a characterization of the argument minimum set

of an IVF in terms of gH -Gâteaux differentiability. An IVF F : X → I (R) is said to be
gH -Gâteaux differentiable (see Ghosh et al. 2020) at x̄ ∈ X if the limit

FG (x̄)(h) = lim
λ→0+

1

λ
� (

F(x̄ + λh) �gH F(x̄)
)

exists for all h ∈ X and FG (x̄) is a gH -continuous linear IVF from X to I (R). Then, we
call FG (x̄) as the gH -Gâteaux derivative of F at x̄ .

Theorem 3.8 (Characterizationof the set argumentminimumof an IVF). LetFbean extended
IVF and x̄ ∈ argminx∈X F(x). If the function F has a gH-Gâteaux derivative at x̄ in every
direction h ∈ X , then

FG (x̄)(h) = 0 for all h ∈ X .

Proof Observe that any x̄ ∈ argminx∈X F(x), is also an efficient point. Then, the proof
follows from proof of the Theorem 4.2 in Ghosh et al. (2020). ��
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4 Ekeland’s variational principle and its applications

In this section, we present the main results—Ekeland’s variational principle for IVFs along
with its application for gH -Gâteaux differentiable IVFs.

Lemma 4.1 Let x̄ ∈ X and A ∈ I (R). Then, {x ∈ X : A ⊀ ‖x − x̄‖X } is a bounded set.

Proof Let A = [a, a]. Then,
{x ∈ X : A ⊀ ‖x − x̄‖X }

= {x ∈ X : [a, a] ⊀ ‖x − x̄‖X }
= {x ∈ X : ‖x − x̄‖X � [a, a] or ‘[a, a] and ‖x − x̄‖X are not comparable’}
= {x ∈ X : ‘‖x − x̄‖X ≤ a and ‖x − x̄‖X ≤ a’

or ‘[a, a] and ‖x − x̄‖X are not comparable’}
= {x ∈ X : ‘‖x − x̄‖X ≤ a’ or ‘‖x − x̄‖X < a and ‖x − x̄‖X > a’

or ‘‖x − x̄‖X > a and ‖x − x̄‖X < a’}
= {x ∈ X : ‖x − x̄‖X ≤ a or a < ‖x − x̄‖X < a},

which is a bounded set.
Hence, for any x̄ ∈ X and A ∈ I (R), {x ∈ X : A ⊀ ‖x − x̄‖X } is bounded. ��
Theorem 4.1 (Ekeland’s variational principle for IVFs). Let F : X → I (R) ∪ {+∞} be a
gH-lsc extended IVF and ε > 0. Assume that

inf
X

F is finite and F(x̄) ≺ inf
X

F ⊕ [ε, ε].
Then, for any δ > 0, there exists an x0 ∈ X such that

(i) ‖x0 − x̄‖X < ε
δ
,

(ii) F(x0) � F(x̄), and
(iii) argmin

x∈X
{F(x) ⊕ δ‖x − x0‖X } = {x0}.

Proof Let ᾱ = inf
X

F and F(x) = F(x) ⊕ δ‖x − x̄‖X .

Since F is the sum of two gH -lsc and proper IVFs, F is gH -lsc by Theorem 3.5. Also,

levα⊀F = {
x ∈ X : α ⊀ F(x)

}

= {x ∈ X : α ⊀ F(x) ⊕ δ‖x − x̄‖X }
⊆ {x ∈ X : α ⊀ ᾱ ⊕ δ‖x − x̄‖X }
=

{
x ∈ X : α �gH ᾱ

δ
⊀ ‖x − x̄‖X

}

= {x ∈ X : A ⊀ ‖x − x̄‖X } , where A = α �gH ᾱ

δ
.

Therefore, by Lemma 4.1, F is level-bounded. Clearly, F is proper. Hence, by Theorem 3.7,
C = argminX F is nonempty and compact.
Let us consider the function F̃ = F ⊕ δC on X . Note that F̃ is proper and level-bounded.
Since C is nonempty and compact, so by Remark 3.1, δC is gH -lsc. Thus, by Theorem 3.5,
F̃ is gH -lsc, and hence by Theorem 3.7, argminX F̃ is nonempty.
Let x0 ∈ argminX F̃. Then, over the set C , F is minimum at x0.
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Since x0 ∈ C , F(x0) ≺ F(x) for x /∈ C . This implies that for any x /∈ C ,

F(x0) ⊕ δ‖x0 − x̄‖X ≺ F(x) ⊕ δ‖x − x̄‖X
�⇒ F(x0) ≺ F(x) ⊕ δ‖x − x̄‖X �gH δ‖x0 − x̄‖X .

Hence, F(x0) ≺ F(x)⊕ δ‖x − x0‖X for all x /∈ C with x �= x0, and thus argminx∈X {F(x)⊕
δ‖x − x0‖X } = {x0}.
Also, as x0 ∈ C , we have F(x0) � F(x̄), which implies

F(x0) � F(x̄) because F(x̄) = F(x̄)

�⇒ F(x0) ⊕ δ‖x0 − x̄‖X � F(x̄)

�⇒ F(x0) � F(x̄) �gH δ‖x0 − x̄‖X
�⇒ F(x0) ≺ ᾱ ⊕ [ε, ε] �gH δ‖x0 − x̄‖X because F(x̄) ≺ inf

X
F ⊕ [ε, ε]

�⇒ δ‖x0 − x̄‖X ≺ ᾱ ⊕ [ε, ε] �gH F(x0)

�⇒ δ‖x0 − x̄‖X ≺ [ε, ε] because ᾱ �gH F(x0) � 0

�⇒ ‖x0 − x̄‖X <
ε

δ
.

This completes the proof. ��

Note 4.1 It is to note that if the IVF F considered in Theorem 4.1 is degenerate IVF, i.e.,
F = f = f , then Theorem 4.1 reduces to the conventional Ekeland’s variational principle
(Theorem 2.1). Hence, Ekeland’s variational principle for IVFs (Theorem 4.1) is a true
generalization of conventional Ekeland’s variational principle (Theorem 2.1).

Example 4.1 In this example, we verify Theorem 4.1 for the IVF F : R
2 → I (R) given by

F(x1, x2) =
[
|x1x2|, e|x1x2|

]
.

It is easy to see that f and f are lsc, and hence by Note 3.1, F is gH -lsc. Note that F(0, 0) =
[0, 1] ≺ F(x1, x2) for all x1, x2 ∈ R

2. Therefore, by Definition 2.6, [0, 1] is the infimum of
F. Let x̄ = (1, 1) and ε = 2. Note that F(x̄) = [1, e] ≺ [0, 1] + [ε, ε] = [2, 3]. Thus, all
the hypotheses of Theorem 4.1 are satisfied. We verify Theorem 4.1, by taking δ = 4. For
x0 = ( 3

4 ,
3
4

)
observe the following.

1. ‖x0 − x̄‖ < ε
δ

= 2
4 ,

2. F(x0) = [ 9
16 , e

9
16 ] � [1, e] = F(x̄).

3. argmin
x∈R2

[|x1x2|, e|x1x2|] ⊕ 4‖x − x0‖ = {x0}.

Similarly, Theorem 4.1 can be verified for other values of δ.

Next, we give an application of Ekeland’s variational principle for IVFs. In order to do that
we need the concept of norm of a bounded linear IVF. By a bounded linear IVF (see Ghosh
et al. 2020), we mean a linear IVF G : X → I (R) for which there exists a nonnegative real
number C such that

‖G(x)‖I (R)≤ C‖x‖X for all x ∈ X .

In the next lemma, we introduce norm for a bounded linear IVF.
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Lemma 4.2 (Norm of a bounded linear IVF). Let G : X → I (R) be a bounded linear IVF.
Then,

‖G‖ = sup
x∈X‖x‖X =1

‖G(x)‖I (R)

is a norm on the set of all bounded linear IVFs on X .

Proof Observe that ‖G‖ ≥ 0 for any bounded linear IVF G and ‖G‖ = 0 if and only if
G = 0. Let γ ∈ R. We see that

‖γ � G‖
= sup

x∈X‖x‖X =1

‖(γ � G)(x)‖I (R) = sup
x∈X‖x‖X =1

|γ |‖G(x)‖I (R)

= |γ | sup
x∈X‖x‖X =1

‖G(x)‖I (R) = |γ |‖G‖.

Further,

‖G1 ⊕ G2‖ = sup
x∈X‖x‖X =1

‖(G1 ⊕ G2)(x)‖I (R)

= sup
x∈X‖x‖X =1

‖G1(x) ⊕ G2(x)‖I (R)

≤ sup
x∈X‖x‖X =1

(‖G1(x)‖I (R) + ‖G2(x)‖I (R)), by (i) of Lemma 2.1

= sup
x∈X‖x‖X =1

‖G1(x)‖I (R) + sup
x∈X‖x‖X =1

‖G2(x)‖I (R)

= ‖G1‖ + ‖G2‖.
Hence, the result follows. ��
Theorem 4.2 Let G : X → I (R) be a linear IVF. If G is gH-continuous on X , then G is a
bounded linear IVF.

Proof By the hypothesis,G is gH -continuous at the zero vector of X . Therefore, by Lemma
4.2 in Ghosh et al. (2020), G is a bounded linear IVF. ��

As an application of Theorem 4.1, we give a variational principle for gH -Gâteaux differ-
entiable IVFs.

Theorem 4.3 (Variational principle for gH-Gâteaux differentiable IVFs). Let F : X →
I (R)∪{+∞} be a gH-lsc and gH-Gâteaux differentiable extended IVF, and ε > 0. Suppose
that

inf
X

F is finite and F(x̄) ≺ inf
X

F ⊕ [ε, ε].

Then, for any δ > 0, there exists an x0 ∈ X such that

(i) ‖x0 − x̄‖X < ε
δ
,

(ii) F(x0) � F(x̄), and
(iii) ‖FG (x0)‖ ≤ δ.
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Proof By Theorem 4.1, there exists an x0 ∈ X that satisfies (i) and (ii), and x0 ∈
argminx∈X {F(x) ⊕ δ‖x − x0‖X }. Therefore, F(x0) � F(x) ⊕ δ‖x − x0‖X and hence

F(x0) �gH δ‖x − x0‖X � F(x). (4)

Take any h ∈ X and set x = x0 + th in Eq. (4) with t > 0. Then, we get

F(x0) �gH δ‖th‖X � F(x0 + th).

Thus,

−δ‖h‖X � 1

t
� (

F(x0 + th) �gH F(x0)
)
.

Letting t → 0+, we get

−δ‖h‖X � FG (x0)(h).

Taking the infimum on both sides over all h ∈ X with ‖h‖X = 1, we get

−δ ≤ −‖FG (x0)‖, or, ‖FG (x0)‖ ≤ δ.

This completes the proof. ��
The importance of the Theorem 4.3 is that in the absence of points belonging to the set

argminx∈X F(x), we can capture a point x0 that almost minimizes F. In other words, the
equations F(x0) = inf

X
F and FG (x0) = 0 can be satisfied to any prescribed accuracy δ > 0.

5 Discussion and conclusion

In this article, the concept of gH -semicontinuity (Definitions 3.3 and 3.4) has been intro-
duced for IVFs. Their interrelation with gH -continuity has been shown (Theorem 3.3). The
concept of sequence of intervals is used to give a characterization of lower and upper limits of
extended IVFs (Lemmas 3.2 and 3.3). By using a characterization of gH -lower semicontinu-
ity for IVFs (Theorem 3.6), it has been reported that an extended gH -lsc, level-bounded and
proper IVF always attains its minimum (Theorem 3.7). A characterization of the set of argu-
ment minimum of an IVF has been provided with the help of gH -Gâteaux differentiability
(Theorem 3.8). We have further presented Ekeland’s variational principle for IVFs (Theo-
rem 4.1). The proposed Ekeland’s variational principle has been applied to find variational
principle for gH -Gâteaux differentiable IVFs (Theorem 4.3).
In this article, we have considered analyzing closed and bounded intervals and IVFs whose
values are closed and bounded intervals. A future study can be performed for other types of
intervals. The analysis for other types of intervals is important because if we do not restrict
the study for closed and bounded intervals the supremum of a set of closed and bounded
intervals may become an open interval. For instance, for S = {[

1 − 1
n , 2 − 1

n

] : n ∈ N
}
,

supS = (1, 2).
Immediately in the next step, we shall consider to solve the following two problems as

the applications of the proposed study.

Problem 1. The applications of the proposed variational principles in control systems
in imprecise or uncertain environment will be shown shortly. Study of a
control system in imprecise environment eventually appears due to the incom-
plete information (e.g., demand for a product) or unpredictable changes (e.g.,
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changes in the climate) in the system. The general control problem in an impre-
cise or uncertain environment that we shall consider to study is the following:

min G(x(T ))

subject to
dx

dt
= F(t, x(t), u(t)),

x(0) = x0 ∈ C0, x(T ) ∈ C1,

where C0 and C1 are closed subsets of R
n ; x : [0, T ] → R

n and u : [0, T ] →
K are state and control variables, respectively, for somemetrizable subset K of
R
n ;F : [0, T ]×R

n×K → I (R) is a gH -continuous IVF andG : R
n → I (R)

is a gH -Fréchet differentiable IVF. To solve this system, the procedure adopted
by Clarke in Clarke (1976) may be useful.

Problem 2. We shall attempt to give optimality conditions for the following IOP, where X
and Y are finite dimensional Banach spaces, C is a nonempty closed subset of
X × Y , and S is a closed convex subset of Y:

min F(x, y)

subject to gi (x, y) � 0, i = 1, 2, . . . ,m,

h j (x, y) = 0, j = 1, 2, . . . , k,

(x, y) ∈ C,

y ∈ S,
〈
F(x, y), y − z

〉 ≤ 0 for all z ∈ S,

where F : X × Y → I (R), gi : X × Y → I (R) ∪ {+∞}, i =
1, 2, . . . , m, h j : X ×Y → I (R)∪ {+∞}, j = 1, 2, . . . , k, F : X ×Y →
Y, and

〈
F(x, y), y − z

〉
denotes an inner product of F(x, y) and y − z.

Also, with the help of the proposed Ekeland’s variational principle, in future, we shall try to
investigate the concept of weak sharp minima (Burke and Deng 2002) for IVFs and use it for
sensitivity analysis of IOPs.
In parallel to the research proposed on IVFs, the research of fuzzy-valued functions (FVFs)
may be another interesting path for future study. We hope that some FVF results would be
similarly obtained to this article.
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A proof of Lemma 2.1

Proof of (i) Let A = [a, a] and B = [b, b]. Then,
‖A ⊕ B‖I (R) = ‖[a, a] ⊕ [b, b]‖I (R) = ‖[a + b, a + b]‖I (R) = max{|a + b|, |a + b|}.

We now have the following two possible cases.

• Case 1. ‖A⊕B‖I (R) = |a+b|.Since |a+b| ≤ |a|+|b| ≤ max{|a|, |a|}+max{|b|, |b|} =
‖A‖I (R) + ‖B‖I (R),

we get ‖A ⊕ B‖I (R) ≤ ‖A‖I (R) + ‖B‖I (R).
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• Case 2. ‖A⊕B‖I (R) = |a+b|.Since |a+b| ≤ |a|+|b| ≤ max{|a|, |a|}+max{|b|, |b|} =
‖A‖I (R) + ‖B‖I (R),

therefore, ‖A ⊕ B‖I (R) ≤ ‖A‖I (R) + ‖B‖I (R).

Hence, ‖A ⊕ B‖I (R) ≤ ‖A‖I (R) + ‖B‖I (R) for all A, B ∈ I (R). ��
Proof of (ii) Let A = [a, a], B = [b, b], C = [c, c] and D = [d, d]. We note that

A � C �⇒ [a, a] � [c, c] �⇒ a ≤ c and a ≤ c. (5)

Also,
B � D �⇒ [b, b] � [d, d] �⇒ b ≤ d and b ≤ d. (6)

From (5) and (6), we have

a + b ≤ c + d and a + b ≤ c + d

�⇒ [a + b, a + b] � [c + d, c + d].
Thus, A ⊕ B � C ⊕ D. ��

Proof of Lemma 2.2

Proof of (i). LetA = [a, a], B = [b, b] and ε > 0.A�gHB = [a−b, a−b] or [a−b, a−b].
Let us now consider the following four possible cases.

• Case 1. A �gH B = [a − b, a − b] and ‖A �gH B‖I (R) = |a − b|.
So, we have

a − b ≤ a − b and |a − b| ≤ |a − b|. (7)

Let ‖A �gH B‖I (R) < ε. Then,
|a − b| < ε. (8)

By eq. (8), we have −ε < a − b < ε, and hence b− ε < a. By eqs. (7) and (8), we have
|a−b| < ε. This impliesb−ε < a.Therefore,B�gH [ε, ε] = [b−ε, b−ε] ≺ [a, a] = A.

Note that by eq. (8), a < b + ε. Also, by eqs. (7) and (8), we have |a − b| < ε. This
implies a < b + ε. Therefore, A = [a, a] ≺ [b + ε, b + ε] = B ⊕ [ε, ε].

• Case 2. A �gH B = [a − b, a − b] and ‖A �gH B‖I (R) = |a − b|.
So, we have

a − b ≤ a − b and |a − b| ≤ |a − b|. (9)

Consider

‖A �gH B‖I (R) < ε

�⇒ |a − b| < ε (10)

By eq. (10), we have
b − ε < a.

Byeqs. (9) and10),wehave |a−b| < ε. This impliesb−ε < a.Therefore,B�gH [ε, ε] =
[b − ε, b − ε] ≺ [a, a].
Note that by eq. (10), a < b + ε. Also, by eqs. (9) and (10), we have |a − b| < ε. This
implies a < b + ε. Therefore, A = [a, a] ≺ [b + ε, b + ε] = B ⊕ [ε, ε].

• Case 3. A �gH B = [a − b, a − b] and ‖A �gH B‖I (R) = |a − b|.
This case can be proved by following the steps similar to Case 1.
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• Case 4. A �gH B = [a − b, a − b] and ‖A �gH B‖I (R) = |a − b|.
This case can be proved by following the steps similar to Case 2.

Conversely, let B �gH [ε, ε] ≺ A ≺ B ⊕ [ε, ε]. Note that
B �gH [ε, ε] ≺ A �⇒ [b − ε, b − ε] ≺ [a, a]

�⇒ b − ε < a and b − ε < a. (11)

Also,

A ≺ B ⊕ [ε, ε] �⇒ [a, a] ≺ [b + ε, b + ε]
�⇒ a < b + ε and a < b + ε. (12)

From eqs. (11) and (12), we have

b − ε < a < b + ε and b − ε < a < b + ε

�⇒ |a − b| < ε and |a − b| < ε

�⇒ max{|a − b|, |a − b|} < ε

i.e.,‖A �gH B‖I (R) < ε.

This completes the proof of (i). ��
Proof of (ii) Let A = [a, a], B = [b, b] and ε > 0.
Consider A�gH [ε, ε] ⊀ B. This implies [a − ε, a − ε] ⊀ [b, b]. Thus, ‘b ≤ a − ε and b ≤
a − ε’ or ‘b < a − ε and b > a − ε’ or ‘b > a − ε and b < a − ε’. Let us consider all these
three possibilities in the following three cases.

• Case 1. b ≤ a − ε and b ≤ a − ε.
So, we have

a > b and a > b, because ε > 0

�⇒ B ≺ A �⇒ A � B.

• Case 2. b < a − ε and b > a − ε. Since b < a − ε, so a > b, and thus A � B.

• Case 3. b > a − ε and b < a − ε. Since b < a − ε, so a > b, and thus A � B.

Hence, proof of (ii) is complete. ��
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