Fig 1.1 Classification of perovskite	Page No.
	5
Fig.1.2. The structure of ABO ₃ perovskite	5
Fig.1.3. Structure of Ca ₂ Mn ₂ O ₅ unit cell showing oxygen vacancy along the direction of normal A B plane	8
Fig.1.4. Crystal structure of $Bi_{2/3}Cu_3Ti_4O_{12}$ (BCTO)	11
Fig.1.5. Shows parallel plate capacitors in circuit, including the alignment of charges in the dielectric material [Mark Howard (2015)]	14
Fig.1.6. The polarized and non polarized plates of an applied electric field [Saint Jude (2012)]	15
Fig.1.7. Diamagnetic structure of the materials	26
Fig.1.8. Paramagnetic structure of the materials	28
Fig.1.9. Ferromagnetic structure of the materials	29
Fig.1.10. Hysteresis loop of the ferromagnetic materials	30
Fig.1.11. Anti-ferromagnetic structure of the materials	31
Fig.1.12. The hysteresis loops of soft and hard magnetic materials [Georges <i>et al.</i> (2014)]	32
Fig.1.13. Crystal structure of CaCu ₃ Ti ₄ O ₁₂ (CCTO) ceramic	38
Fig.1.14. Plot of Dielectric constant and tan δ as a function of temperature for CaCu ₃ Ti ₄ O ₁₂ at few selected temperature at 5 h.	39
Fig.1.15. Crystal structure of Bi ₄ Ti ₃ O ₁₂	41
Fig.1.16. Plot of Dielectric constant and as a function of temperature for Bi ₃ Ti ₄ O ₁₂ at few selected frequencies	42
Fig.2.1. Flow chart for the synthesis of Complex Perovskite by the semi-wet route	49
Fig.2.2. Flow chart for the synthesis of the Composites by semi-wet Route	51
Fig.2.3. Powder X-ray diffractrometer, RigakuMiniflex 600 (Japan)	53
Fig.2.4. Transmission Electron Microscope (TEM, FEI TECANI G ² 20	54

TWIN, USA) used to determining particle structure	
Fig.2.5. Scanning Electron Microscope (ZEISS, model EVO-18 Research) used for microstructure of the surface of the ceramics	56
Fig.2.6. LCR Meter (PSM 1735, Newton 4th Ltd, U.K.) used for dielectric properties measurement	58
Fig.3.1. XRD patterns of BCTO ceramic calcined at (a) 600 °C for 6 h (b) 800 °C for 6 h and (c) sintered at 900 °C for 8 h	63
Fig.3.2. FITR spectra for the BCTO ceramic (a) dry powder (b) calcined at 800 °C for 6 h	64
Fig.3.3 .(a & b) shows TEM micrographs of BCTO ceramic sintered at 900 °C for 8 h, (c) SAED pattern of BCTO ceramic and (d) presents a high resolution TEM micrograph of the BCTO	65
Fig.3.4. (a) SEM morphology of BCTO ceramic sintered at 900 °C for 8 h and (b) the corresponding EDX spectrum of BCTO ceramic	66
Fig.3.5. AFM images of BCTO Ceramic sintered at 900 °C for 8 h (a) two-dimensional image showing grains and grain boundaries (b) three-dimensional image (c) histogram of three-dimensionalparticle roughness and (d) particle size distribution curve	68
Fig.3.6. (a) Temperature-dependent zero field cooled (ZFC) and field cooled (FC) magnetization measured at H = 100 Oe and (b) magnetization versus applied field at 300K for the BCTO ceramic	69
Fig.3.7. Plot of (a) dielectric constant and (b) tan δ as a function of temperature for BCTO ceramic sintered at 900 °C for 8 h	71
Fig.3.8. Plot of (a) dielectric constant and (b) tan δ as a function of frequency for BCTO ceramic sintered at 900 °C for 8 h	72
Fig.4.1. XRD patterns of BLTO ceramic (a) calcined at 800 °C for 6 h and (b) Sintered at 900 °C for 8 h	77
Fig.4.2. FITR spectra for the BLTO ceramic calcined at 800 °C for 6 h	78
Fig.4.3. (a & b) shows TEM micrographs of BLTO ceramic sintered at 900 °C for 8 h, (c) Presents a high resolution TEM micrograph of the BLTO Interface and (d) SAED pattern of BLTO ceramic	79
Fig.4.4. (a) SEM Image (b) the corresponding EDX spectrum of Bi ₃ LaTi ₃ O ₁₂ ceramic sintered at 900 °C for 8 h	80

Fig.4.5. AFM images of BLTO ceramic sintered at 900 °C for 8 h (a) two-dimensional and corresponding watershed image showing grains and grain boundaries (b) three-dimensional image exhibited high peak distribution (c) histogram of three-dimensional particle roughness and (d) particle size distribution curve	81
Fig.4.6. (a)Temperature-dependent zero field cooled (ZFC) and field cooled (FC) magnetization measured at $H = 100$ Oe and (b) magnetization versus applied field at 300 K for the BLTO ceramic	83
Fig.4.7. Plot of (a) dielectric constant and (b) tan δ as a function of temperature for BLTO ceramic sintered at 900 °C for 8 h	85
Fig.4.8. Plot of (a) dielectric constant and (b) tan δ as a function of frequency for BLTO ceramic sintered at 900 °C for 8 h	86
Fig.5.1. XRD patterns of BCLT-55 composite (a) calcined at 800 °C for 6 h and (b) sintered at 900 °C for 8 h	92
Fig.5.2. FITR spectra for the BCLT-55 composite calcined at 800 °C for 6 h	93
Fig.5.3 . (a & b) shows TEM micrographs of BCLT-55 composite sintered at 900 °C for 8 h, (c) presents a high resolution TEM micrograph of the BCLT-55 interface and (d) SAED pattern of BCLT-55 composite	94
Fig.5.4. (a) SEM images (b) EDX spectra corresponding to BCLT-55 composite sintered at 900 °C for 8 h	95
Fig.5.5. AFM images of BCLT-55 composite sintered at 900 °C for 8 h, (a&b) two-dimensional image showing grains and grain-boundaries, (c&d) three-dimensional image and histogram curve shows roughness of grain	96
Fig.5.6 . (a) Temperature-dependent zero field cooled (ZFC) and field cooled (FC) magnetization measured at H=100 Oe, (b) magnetization versus applied field at 300 K for the BCLT-55 composite	98
Fig.5.7. Plot of (a) tangent loss (tan δ) and (b) dielectric constant as a function of temperature for BCLT-55 composite sintered at 900 °C for 8 h	100
Fig.5.8. Plot of (a) tangent loss $(\tan \delta)$ and (b) dielectric constant as a function of frequency for BCLT-55 composite at few selected temperatures	101

Fig.6.1. XRD patterns of BCLT-91 composite sintered at 900 °C for 8 h	106
Fig.6.2. FITR spectra for the BCLT composite calcined at 800 °C for 6 h	107
Fig.6.3 .(a&b) Bright field TEM image (c) high resolution TEM micrograph (HR-TEM) (d) selected area electron diffraction (SAED) pattern of BCLT-91 composite sintered at 900 °C for 8 h	109
Fig.6.4. SEM image of BCLT-91 composite sintered at 900 °C for 8 h.	110
Fig.6.5. EDX spectrum of BCLT-91 composite sintered at 900 °C for 8 h	111
 Fig.6.6. AFM images of BCLT-91 composite sintered at 900 °C for 8 h (a) two-dimensional image showing grains and grain boundaries (b) three-dimensional image exhibited high peak distribution (c) histogram of three-dimensional particle roughness and (d) particle size distribution curve 	112
Fig.6.7. (a)Temperature-dependent zero field cooled (ZFC) and field cooled (FC) magnetization measured at H= 100 Oe and (b) magnetization versus applied field at 300 K and inset figure shows coercivity of BCLT-91 composite	113
 Fig.6.8. Plot of (a) dielectric constant and (b) tan δ as a function of frequency at few selected temperatures for BCLT-91 composite sintered at 900 °C for 8 h Fig.6.9. Plot of (a) dielectric constant and (b) tan δ as a function of 	115 116
temperature at few selected frequencies for BCLT-91 composite sintered at 900 °C for 8 h	
Fig.7.1. XRD patterns of BCLT-19 composite (a) calcined at 800 °C for 6 h and (b) sintered at 900 °C for 8 h	121
Fig.7.2. FITR spectra for the BCLT-19 composite (a) dry powder (b) calcined at 800 °C for 6 h	122
Fig.7.3. (a) shows TEM micrographs of BCLT-19 composite sintered at 900 °C for 8 h, (b) SAED pattern (c) presents a high resolution TEM micrograph of the BCLT-19 composite	123
Fig.7.4. (a) SEM micrograph and (b) EDX spectrum of BCLT-19 composite sintered at 900 °C for 8 h	124
Fig.7.5. (a) watershed image of two-dimensional AFM image showing grains and grain-boundaries, (b) three-dimensional image and (c&d) histogram curve shows roughness of particle and average grain size for the composite BCLT-19 sintered at 900 °C for 8h	126
Fig.7.6. (a) Temperature-dependent zero field cooled (ZFC) and field	127

cooled (FC) magnetization measured at H=100 Oe, (b) magnetization versus applied field at 300 K for the BCLT-19 composite

Fig.7.7. Plot of (a) dielectric constant and (b) tangent loss (tan	δ) as a 129
function of temperature for BCLT-19 composite sinte	red at
900 °C for 8 h	

Fig.7.8. Plot of (a) dielectric constant and (b) tangent loss (tan δ) as a function of frequency for BCLT-19 composite at few selected temperatures