LIST OF FIGURES

Page No.

Figure 1.1 Constituents of composite
Figure 1.2 Laminated composite material
Figure 1.3 Types of composites: (a) Particulate composite (b) Flake composite (c) Fiber
Composite
Figure 1.4 Schematic of Laminate construction and analysis methods
Figure 1.5 List of Composite parts in the main structure of the boeing 757-200 aircraft11
Fig. 1.6 Bimodular constitutive model for (a) bilinear model when $E_T > E_C$ (b) bilinear
model when $E_T < E_C$ and (c) non-linear model for actual condition
Figure 1.7 Cross-section of a bond17
Figure 1.8 Structure of adhesive joint
Figure 1.9 Failure mechanism of adhesive bonding (a) Structural failure (b) adhesive
failure (c) Cohesive failure
Figure 1.10 Delamination in composite structure
Figure 1.11 Skin-stiffener composite panel
Figure 1.12 Types of defects in adhesive bond
Figure 3.1 Stress-stain curve for bimodular material
Figure 3.2 Simply supported uniformly loaded beam
Figure 3.3 A cross-section of a bimodular beam
Figure 3.4 Coordinate system and notation of plate
Figure 3.5 Fracture modes
Figure 3.6 MCCI applied to the stiffened panel for computation of SERR70
Figure 3.7 Schematic of three-point bending flexure specimen75
Figure 3.8 Typical schematic representation of percentage of beam in compression or
tension with respect to bimodulus ratio of a slender flexure bimodulus specimen76
Figure 3.9 Normal stress distribution in x- direction for (a) three point bend specimen and
(b) four point bend specimen77
Figure 3.10 Von-Mises Stress distribution (a) three point bend specimen and (b) four point
bend specimen

Figure 3.11 Young's Modulus plot for (a) three point bend specimen and (b) four point
bend specimen
Figure 3.12 (a) Young's Modulus plot on middle surface of the beam for three point bend
specimen and (b) the plane at which the figure (a) is plotted
Figure 4.1 Configuration of double supported tee joint
Figure 4.2 Finite element model for double supported tee joint85
Figure 4.3 Variation of von-Mises stress at different bond length of laminate A $[0]_8$ 87
Figure 4.4 Variation of thermal gradient at different bond length of laminate A [0] ₈ 87
Figure 4.5 Variation of thermal flux at different bond length of laminate A [0] ₈ 88
Figure 4.6 Variation of DOF at different bond length of laminate A [0] ₈ 88
Figure 4.7 Variation of von-Mises stress at different bond length of laminate B [0/45] ₄ 89
Figure 4.8 Variation of thermal gradient at different bond length of laminate B [0/45] ₄ 90
Figure 4.9 Variation of thermal flux at different bond length of laminate B [0/45] ₄ 90
Figure 4.10 Variation of DOF at different bond length of laminate B [0/45] ₄ 91
Figure 4.11 Variation of von-Mises stress at different bond length of laminate C [0/90] ₄ 92
Figure 4.12 Variation of thermal gradient at different bond length of laminate C [0/90] ₄ 92
Figure 4.13 Variation of thermal flux at different bond length of laminate C [0/90] ₄ 93
Figure 4.14 Variation of DOF at different bond length of laminate C [0/90] ₄ 93
Figure 5.1 Configuration of tee-joint
Figure 5.2 Zoomed view of FE model of the damaged specimen of tee-joint at the vicinity
of crack tip101
Figure 5.3 SERR along the interface of main plate and adhesive for varied bimodular ratio
"R' in functionally graded bimodular adhesively bonded tee-joint under mechanical
loading105
Figure 5.4 Effect of the position of delamination on total SERR at various bimodular ratio
under mechanical loading (a) $R = 1$, (b) $R = 2$, (c) $R = 3$, (d) $R = 4$, (e) $R = 5$ 108
Figure 5.5 Comparison of Total SERR for various R at $y=2.3$ mm under mechanical
loading
Figure 5.6 SERR along the interface of main plate and adhesive for varied bimodular ratio
<i>'R'</i> in functionally graded bimodular adhesively bonded tee-joint under thermo-
mechanical loading111

Figure 5.7 Effect of the position of delamination on total SERR at various bimodular ratio
under thermo-mechanical loading (a) $R = 1$, (b) $R = 2$, (c) $R = 3$, (d) $R = 4$, (e) $R = 5$ 113
Figure 5.8 Comparison of Total SERR for various R at $y=2.3$ mm under thermo-
mechanical loading114
Figure 5.9 Effect of mechanical and thermo-mechanical loading on total SERR at
y=2.1mm with various bimodular ratio (a) $R=1$, (b) $R=2$, (c) $R=3$, (d) $R=4$, (e)
<i>R</i> =5117
Figure 6.1 Specimen configuration 123
Figure 6.2 3D model of (a) Tensile and (b) bending specimen with load124
Figure 6.3 Location of delamination in specimen
Figure 6.4 Typical damage pattern observed in skin-stiffener specimen127
Figure 6.5 Finite element modeling of the graphite/epoxy specimen with embedded
delamination at the interface128
Figure 6.6 Zoomed view of FE model for stiffened panel
Figure 6.7 Comparison of G_I distribution at different width along delamination front for
three point bending
Figure 6.8 Comparison of G_{II} distribution at different width along delamination front for
three point bending
Figure 6.9 Comparison of G_{III} distribution at different width along delamination front for
three point bending
Figure 6.10 Comparison of G_T distribution at different width along delamination front for
three point bending
Figure 6.11 Comparison of G_T distribution at different width along delamination front for
three point bending under various loadings
Figure 6.12 Comparison of G_I distribution at different width along delamination front for
tension
Figure 6.13 Comparison of G_{II} distribution at different width along delamination front for
tension

xii

Figure 6.14 Comparison of G_{III} distribution at different width along delamination front for
tension
Figure 6.15 Comparison of G_T distribution at different width along delamination front for
tension
Figure 6.16 Comparison of G_T distribution at different width along delamination front for
tension under various loading138
Figure 7.1 Geometrical description of the stiffened panel
Figure 7.2 FE model of analysed configuration
Figure 7.3 Solid model representing initial bonded region147
Figure 7.4 Load versus applied displacement curve 149
Figure 7.5 Variation of total SERR with varied applied displacement150
Figure 7.6 Effect of the applied displacement on total SERR with various bimodular ratio
under mechanical loading (a) $u_x = 0.05$ mm, (b) $u_x = 0.6$ mm, (c) $u_x = 1.5$ mm, (d)
<i>u_x</i> =2.1mm152
Figure 7.7 Effect of the applied displacement on total SERR with various bimodular ratio
under residual thermal stresses (a) $u_x = 0.05$ mm, (b) $u_x = 0.6$ mm, (c) $u_x = 1.5$ mm, (d)
<i>u_x</i> =2.1mm155
Figure 7.8 Effect of mechanical and thermo-mechanical loading on total SERR with
various bimodular ratio (a) $R = 1$, (b) $R = 2$, (c) $R = 3$, (d) $R = 4$, (e) $R = 5$ 158
Figure A.1 Weibull Probability Density Function
Figure A.2 Weibull Failure Rate for 0 <m<1, m="">1194</m<1,>
Figure A.3 Plot of failure stress data for axial orientaion
Figure A.4 Plot of failure stress data for radial orientation