
Chapter 3                                                   Theoretical Background 

3.1 Introduction 

This chapter includes the theoretical background. This chapter deals with the detailed 

derivation of formulation of the shifting of neutral axis. Finite element formulation for 

generalized thermoelasticity is also presented in the chapter. Also, Strain Energy Release 

Rate has been computed under thermo-mechanical loading. It also includes the governing 

equation of functionally-graded bimodular thermo-elasticity. It also deals with the 

bimodular property of composites. Calculation of bimodulus ratio and shifting of neutral 

axis of graphite/epoxy composite has been done through FE based software. 

3.2 Basic Theory of bimodularity in composites  

3.2.1 Assumptions 

Ambartsumyan linearized the nonlinear model, the constitutive relationship between stress 

and strain as the two linear lines with different slopes, as shown in Figure 3.1 [52]. 
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 Figure 3.1 Stress-stain curve for bimodular material  
 

The assumptions that are considered for the bimodular beam theory and finite element 

model are as follows- 
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1. The material is continuous, homogeneous and anisotropic. 

2. There is no shear deformation. 

3.  It is assumed that straight planes of cross-section of beam before application of the 

load remain plane after the application of load. 

4. The stress- strain relationship is bilinear.   

3.2.2 Formulation for equation of deformed shape 

The equation of the deformed shaped according to the shape of the deformed uniformly 

loaded simply supported beam (Figure 3.2) is   

 

( ) sin xx Db l
                                                                                                                 (3.1) 

where    

D : constant 

 ( )b x : deflection of the beam due to bending stress only. 

l : length of the projection of the deformed beam on x-axis. 

Applying the Boundary Conditions: 
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Figure 3.2 Simplysupported uniformly loaded beam   
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where 

( )M x : bending moment 

Since ( 0) 0b x   , and ( ) 0b x l   , these conditions are satisfied and from the symmetry 

of the deformed shape and the equation, it can be concluded that deflection at the middle of 

the beam is given as 
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where, 

m : maximum deflection of the beam due to bending. 

Equation of bending moment  

2 2 2 23( ) ( ) sin (1 ( ) cos )
2m m

x xM x EI
l l l l
   

                                                                 (3.4) 

where 

EI : flexural rigidity of the beam 

 At mid span, 

21( ) ( )
2 mM x EI

l


                                                                                                         (3.5) 

Equation of bending moment in terms of uniformly distributed load:  

2
( )

2 2
wL wx LM x x

l
                                                                                                        (3.6) 

where 
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w : uniformly distributed load 

L : length of the beam without deformation 

So the maximum bending moment will be  

( )
2 8
l wLlM x                                                                                                                  (3.7) 

So the equation of the deformed shape becomes 

3

2( ) sin
8

b
wLl xx

lEI



                                                                                                        (3.8) 

3.2.3 Location of neutral axis 

It is well known that the neutral axis (N.A.) of the bimodulus beam gets shifted. Evaluation 

of neutral axis shift, by using the concept of Jadan [51], can be done by assuming the 

summation of the axial forces on the cross-section of the beam is equal to zero.   

Considering the beam section as shown in Figure 3.3 and taking into account the 

assumptions made,  
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Figure 3.3 A cross-section of a bimodular beam 
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Also, 

T Ch h h                                                                                                                        (3.10) 

where F  – sum of axial forces 

  - stress 

t  – width of the beam 

Ch - height of the beam above neutral axis in compression region 

Th - height of the beam below neutral axis in tension region 

h  – total height of the beam 

For bimodulus beam,  

TE E  when Ty h  

CE E  when Cy h                                                                                                       (3.11) 

where TE - modulus of elasticity for tension 

CE - modulus of elasticity for compression 

Solving above equations give 
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                                                                                                        (3.12)                                                                      
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3.3 Functionally graded bimodular thermo-elasticity and its governing 

equations 

Assuming the symmetry of elastic compliance, ij jia a ( , 1, 2,3)i j  , for a temperature 

change of T and coefficient of thermal expansion  , the stress strain relations of 

bimodulus isotropic materials are expressed in terms of the components of the principal 

stress directions, ,  and  , as follows: 
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                                                                            (3.13) 

where diagonal elastic compliance iia  and off-diagonal compliance ( )ija i j are 

determined as: 

1
ii

ij

a
E

a
E




 
                                                                                                                         (3.14) 

The functionally graded material is implemented through continuous variation of elastic 

modulus along bond line which is governed by following linear function profile [165]: 

,( , ) 1 ( 1)
( , , )T C

sf I s R
N x y z

                                                                                       (3.15) 

where s is the distance measured along the bond length, I is the hydrostatic stress and N is 

the ratio of length of bond and substrate. 
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where sL  and bL denote the length of substrate and length of bond, respectively and 

xx , yy and zz are the normal stresses components of any stress tensor.  

Material gradients are evaluated in terms of bimodular ratio ( R ) which is expressed as 

follow: 

2

1 ,
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E IR
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 
  
 

                                                                                                              (3.17) 

where 1( )E I  and 2 ( )E I  are the lower bound and upper bound Young Moduli of adhesive, 

respectively. T  and C  suffix used for the notation of tension and compression behavior 

under bimodularity.  

The hydrostatic stress I is evaluated by using above equation. The modulus of elasticity for 

tension and compression depends on hydrostatic stress which is defined as a step function, 

explained as follows: 

1,2
( )
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C

E for I
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E for I


  
                                                                                                   (3.18) 

The modulus of elasticity for tension and compression is evaluated according the positive 

and negative values of hydrostatic stress and the iteration continues as the criteria define 

above to calculate the bimodulus ratio. 
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According to the symmetric nature of the compliance, off-diagonal compliance ija in terms 

of tensile and compressive modulus of elasticity can be defined as 

12 23 31
CT

T C
a a a

E E


                                                                                            (3.19) 

where T and C are the Poisson’s ratio for tension and compression, respectively. 

It is assumed that ija is constant for tensile and compressive modulus of elasticity and not 

affected by the sign of stress. The assumptions of neglecting transverse normal stress and 

transverse shear deformation cannot be considered for moderately thick plate. However the 

analysis of plates with arbitrary profile becomes very complicated, so the derivation is 

restricted to the cylindrical bending of a flat plate. The effect of transverse normal stress on 

the deformation of the plate is generally smaller than that of transverse shear, so the former 

can be ignored in comparison to the latter. 

Figure 3.4 shows a rectangular coordinate system ,x y and z , is setup as y , parallel to the 

generator of a plate; z , perpendicular to the plane of a plate. Also thermal load is applied 

on plate. Equation (3.13) is transformed into the equations for cylindrical bending with 

respect to ,x y and z coordinate system as follows: 
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                                                         (3.20) 

where 1n stands for a cosine of an angle between   and x axes.  

The last equation in Equation (3.20) is expressed under the assumption that a similar 

relation of the conventional elastic material between the shearing stress and strain would 
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hold in an approximate manner because of the secondary nature of the transverse shear 

deformation effect on the total deformation when compared with that of in-plane stresses. 

Since the ' y ' direction corresponds to one of the principal directions from a geometrical 

consideration, it can be indicated as parallel to the ' ' direction. 

 Principal directions in the xz plane are denoted by  and , respectively. As the transverse 

normal stress z is neglected, principal stresses in xz plane can be expressed as 

11 2 2 2
2

1 ( 4 )
2 x x xz


  


  
    

  
                                                                                       (3.21) 

This implies that 

1 0  and  2 0   

So, either 

 1 2,      or 1 2,       

From the above equation it can be concluded that the sum of 11a and 33a becomes constant. 

Moreover, by considering Equation (3.19), the coefficient 11 33 122a a a  (in Equation 

(3.20)) behaves as constant and is not affected by the sign of any stress. 
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Figure 3.4 Rectangular plate (a) Loading condition (b) Coordinate system  

 

A method from Ambartsumyan [9] for anisotropic plates or shells in consideration of the 

effect of the transverse shear can be applied. For the material which satisfies the 

relation CT

T CE E


 , the anisotropic material model reduces to that of Ambartsumyan’s 

bimodular isotropic material model. Then, the functions, 1( ), ( )f z X x and 2 ( )X x are 
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introduced, where ( )f z  is a function of coordinate of the thickness direction ' z ' and 

vanishes on both surfaces of the plate ( 2) 0f h   and 1( )X x and 2 ( )X x are the functions 

of the coordinate in the x direction. Now xz can be expressed as follows to satisfy 

boundary conditions on both sides: 

1 2( ) ( ) ( ) ( )xz
zX x X x f z x
h

                                                                                      (3.22) 

where φ(x) is shear force 

A lateral deflection and in-plane displacement in x direction is denoted as w  and ( , )u x z , 

respectively and transverse shear strain xz is expressed as follows: 

xz
u w
z x

  
 
 

                                                                                                                 (3.23) 

Substituting Eqs (3.22) and (3.23) into Equation (3.20), we obtained 

11 33 12 1 2( 2 ) ( ) ( ) ( ) ( )u z wa a a X x X x f x x
z h x


        
  

                                         (3.24) 

It is supposed that the lateral displacement w  is a function of x only i.e. ( )w w x and does 

not vary in thickness direction z . Now considering 11 33 122a a a  as constant and then 

integrating w.r.t to z , the above equation becomes 

2
11 33 12 1 2 0

0
( 2 ) ( ) ( ) ( ) ( ) ( )

2

zz dwu a a a X x z X x x f z dz z u x
h dx

 
        


                  (3.25) 

where 0 ( )u x stands for the magnitude of u at the middle plane of the plate that is at 0z  , 

which implies 0 ( ) ( ,0)u x u x . 

From Equation (3.25), x is formulated as 
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2 2
01 2

11 33 12 20
( 2 ) ( )

2

z
x

dudX dXu z d d wa a a z f z dz z
x dx dx h dx dxdx

 
           

              (3.26) 

In Equation (3.26), the last two terms in the right hand side are the same as for the 

expression based on conventional plate theory of Kirchhoff-Love, and then the first term of 

Equation (3.26) and the expression of xz corresponds to a correction to the elementary 

theory of a bimodulus plate.  If ( )f z is indicated by an appropriate function, the in-plane 

displacement and strain components can be expressed in concrete form. 

From Equation (3.20), we obtained 
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Also, 
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Using the stress-strain relation, we obtained 

12 12 112 2
212 12 11 12212 11 12 11 1221222 22 2211 12

222
12

12 11 12
22

22

42 2 (2( 1) 2( 1) 4 2(1 ) 2(3 ) 2(1 )2 21
(1 )(1 2 ) 2

(2 1) 4

x z

z

a a a
a a a aa a a a aaa a aa aE a

aa a a aa
a

 


         



 

 

   
   
                       

   
  
     

2
3 212 12

33 11 12 12 11 11 1212
22 22

2) ( ) 1 2

1 2

aa T a a a a a a a
a a

E T

 



     




  
  
  
  

  
                         




(3.29) 

Using Equation (3.13) and the invariance identity of a summation of three principal strains, 

we find 
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3.4 Finite element formulation for generalized thermoelasticity 

In this section, the governing equations of generalized thermoelasticity (the G–L theory) 

are summarized, followed by the corresponding finite element equations. The G–L theory 

of generalized thermoelasticity consists of the equilibrium equation 

,ij j i if u                                                                                                                  (3.31) 

the heat transfer equation 

,i iT q h                                                                                                                  (3.32) 

and the Fourier’s heat conduction law 

, ,i i j jq k                                                                                                                        (3.33) 

where ,i j  is the stress, if  is the body force,   is the mass density, iu  is the displacement, 

  is the entropy density, iq  is the heat flux, h  is the heat source density, ijk  is the thermal 

conductivity coefficient, and 0T T    is the absolute temperature with   and 0T  

denoting the temperature changed and the reference temperature, respectively. In Equations 

(3.31)–(3.33), super-dot refers to the derivative with respect to time; comma followed by 

sub-index denotes the corresponding partial differentiation, and summation convention over 

repeated sub-indices applies. 

Since only linear behavior is considered in this paper, the following linear constitutive 

equations are adopted, i.e., 

1

2
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( )
ij ijkl kl ij

ij ij E
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     
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where ijklC  is the elastic stiffness,  

, ,( ) / 2ij i j j iu u    is the strain, ij is the thermal constant, and Ec  is the specific heat 

capacity. It is noted that the G–L theory differs from the classical theory of thermoelasticity 

in that two relaxation time parameters 1  and 2  are involved in the constitutive equations 

(3.34). When 1  and 2  vanish identically, the G–L theory reduces to the classical 

thermoelasticity. 

It should be noted that appropriate boundary conditions associated with the governing 

Equations (3.31)–(3.33) must be adopted in order to properly formulate a problem. When 

the displacement and temperature are prescribed on the surfaces uA  and A , respectively, 

one has 

i iu u on uA  and   on A                                                                                        (3.35) 

where iu and  are the prescribed values. On the other hand, if surface traction and surface 

flux are applied to the corresponding surfaces A  and qA , the following boundary 

conditions must be satisfied, 

i ji j iT n T   on A and i iQ q n Q   on qA                                                               (3.36) 

where iT and Q are the given surface traction and flux, respectively. 

The finite element equations of a generalized thermoelasticity problem can be readily 

obtained by following the standard procedure (Prevost and Tao (1983)). In the finite 

element method, the displacement component  u  and temperature   are related to the 

corresponding nodal values  ( )eu  and  ( )e  by 
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     ( )e
p nu N u        ( )e

t nN 
                                                                        (3.37) 

where 2p   for the two-dimensional problems considered here, n  is the number of nodes 

per element, and  N  and  N   are the shape functions for the displacement and 

temperature, respectively. With Equation (3.37), the strain    and temperature gradient 

,i i    can be expressed in terms of the nodal quantities  ( )eu and  ( )e as 

    ( )eB u              ( )eB                                                                               (3.38) 

The principle of virtual work for the generalized thermoelasticity is 

              0
q
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                     
          (3.39) 

Substituting the constitutive relations (3.34) and Equation (3.38) and neglecting the body 

force (the body force is not considered here), the finite element equations corresponding to 

Equations (3.31)–(3.33), (3.35) and (3.36) can be obtained as 
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       (3.40) 

where ne  is the total number of elements. The coefficients in Equation (3.40) and the right 

hand force vectors  ( )
1

eF and  ( )
2

eF are given below. 
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3.5 Computation of energy release rate 

Linear Elastic Fracture Mechanics (LEFM) is useful in describing the growth of 

delamination in composite laminates [74]. In fracture mechanics, the total strain energy 

release rate (SERR), GT, is calculated along the delamination front and is consists of three 

individual components. The first component, GI, emerges due to interlaminar tension. The 

second component, GII, emerges due to interlaminar sliding shear and the third component, 

GIII, arises due to interlaminar scissoring shear. These Energy Release Rate (ERR) 

components are then compared to interlaminar fracture toughness values to predict the 

delamination growth. The interlaminar fracture toughness values are computed 

experimentally under mixed mode loading, i.e, mode I and mode II loading [75-77]. Based 

on the concepts of LEFM, the Virtual Crack Closure Technique (VCCT) and Modified 

Crack Closure Integral (MCCI) methods have been applied to calculate all the modes of 

ERR.  

3.5.1 Virtual Crack Closure Technique (VCCT) 

The finite element codes have been used to simulate delamination growth by means of 

proper interfacial elements able to release pairs of nodes on the delamination front which 

satisfy the conditions based on Strain Energy release rate (SERR). The Strain Energy 
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release rate can be evaluated by the VCCT equation along the delamination front at each 

pair of nodes for suitable growth criteria i.e three fracture modes: mode I (opening mode), 

mode II (forward shear mode) and mode III (parallel shear mode) (Figure 3.5). 

The commonly used linear form of the Power Law Growth Criterion to check fail release 

[166] is given by,  

1equiv I II III

equivc Ic IIc IIIc

G G G Gf
G G G G

                                                                                   (3.42) 

where iG is the energy release rate associated to the fracture mode i and icG is the critical 

value of the energy release rate associated to the fracture mode i . The VCCT equation for 

elements with only corner nodes can be written as: 

2
i i

i
F uG

A





with , ,i I II III                                                                                            (3.43) 

where iF is the force at delamination tip for the fracture mode i , iu is the opening 

displacement for the fracture mode i  and A is the crack surface created by the 

delamination opening.  
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Figure 3.5 Fracture modes 
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3.5.2 Modified Crack Closure Integral (MCCI) 

Three dimensional finite element analysis is conducted to study the damage phenomena of 

composite laminates by the help of MCCI. The present study concerned with the analysis of 

thermo-elastic residual stress effect on the mixed-mode elliptical delamination crack 

growth behavior due to thermal and mechanical loading [78,79] (Figure 3.6). The figure 

shows the 8-noded element and this can be extended to 20-noded element. The advantage 

of 20-noded element over 8-noded is that 20-noded gives better results. A very fine mesh is 

necessary to obtain high quality results, and therefore high computer capacity.   

                                                                                                                                                         Propogated failure                                    
                                                                                                                                                         front 

 

  

                                                                                                                                                                    z,w           

  y,v 

                                                                                                                                                         

                                                                                                                                   x,u

      

             a                                Δa                            Δa                                                                                                                            

 Nodes along debond front 
 

Figure 3.6 MCCI applied to the stiffened panel for computation of SERR 

The strain energy release rate components at any point on the delamination front under 

mechanical and thermal loading due to uniform temperature drop from curing temperature 

to room temperature, is obtained by superposing their respective effects based on 
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assumptions of linear elasticity [80]. The energy released by the propagation of a crack of 

length a  to a a   can be expressed as [18], 

0

1 [ ( ) ( )][ ( ) ( )]
2

a

M T M TW x x x a x a dx   


                                                     (3.44) 

where the subscripts M and T represent mechanical and thermal loading respectively. 

( )x a   is the crack opening displacement between the upper and lower delaminated 

surfaces and ( )x  is the stress at the crack front required to close the delaminated area.  

The three components of strain energy release rates for mode I, mode II and mode III can 

be expressed as follows.  

0 0

0 0

0 0

1lim [ ( ) ( )][ ( ) ( )]
2

1lim [ ( ) ( )][ ( ) ( )]
2

1lim [ ( ) ( )][ ( ) ( )]
2

a

I zzM zzT zM zT
a

a

II zxM zxT xM xT
a

a

III zyM zyT yM yT
a

G x x u x a u x a dx
a

G x x u x a u x a dx
a

G x x u x a u x a dx
a

   

   

   



 



 



 

    


    


    








                  (3.45) 

The total energy release rate TG considering the thermal residual stress effects is the 

algebraic sum of the individual modes. 

T I II IIIG G G G                                                                                                          (3.46) 

[ ]zz zx zy    are the interlaminar stress. , ,z x yu u u    are respectively the relative opening, 

sliding and tearing displacements of the initial delaminated surfaces to the final one along 

the delaminated interface.  

 For the superposition analysis, the stresses and displacements along the delamination front 

are calculated for the axial loading only without considering thermal residual stresses. Then 
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a separate analysis is performed, where the laminate is subjected to thermal loading only 

due to uniform temperature drop from the curing temperature. The stresses and 

displacements thus obtained are superposed with the results from uniaxial tensile loading 

for calculating the components of strain energy release rates due to the mechanical, thermal 

and superposition of these two loadings. The superposition procedure is followed as 

described above, the strain energy release rate around the delamination front is expressed in 

following equation. Substituting the values of individual components of strain energy 

release rate from Equation (3.45) in Equation (3.46), following expression for the total 

strain energy release rate TG  is obtained. 
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           (3.47)                                                    

Now rearranging and separating the terms with respect to individual parameters ,M T and 

their interactions respectively in Equation (3.47), the expression derived has been stated 

next. 

After reshuffling the similar subscripted terms, the expression for TG  is as follows. 
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where,  
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(3.49) 

where, , ,  and M MT THG G G are the strain energy release rate components due to 

mechanical, superposition of individual effects thermo-mechanical loading and only 

thermal loading respectively.  

3.6 Analysis of shifting of neutral axis due to bimodularity 

It has been well recognized that most materials, including concrete, ceramics, graphite, and 

some composites, exhibit different tensile and compressive strains even when the same 

stress is applied in tension or compression. This gives rise to different elastic moduli in 

tension and compression. This leads to the calculation of both the elastic modulus for 

tension ( TE ) and compression ( CE ). Structural materials exhibiting different stress-strain 

curves in compression and tension are termed as bimodulus materials. Not only anisotropic 
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and orthotropic materials such as composites, but also some traditional isotropic materials 

as ceramics, graphites may also have different moduli in tension and compression. In the 

case of bimodulus materials the constitutive matrix is a function of stress. Though the 

stress-strain relationship is actually curvilinear, but it is approximated as bilinear with 

different slopes (Figure 1.6). Hence the analysis of structures made up of bimodulus 

materials is more involved. As graphite components are used under multiaxial stress 

conditions, therefore evaluation and prediction of bimodulus ratio ( T CE E ) is important 

for structural design of components. Awani et al. [167] has established the influence of 

bimodularity on the characteristic strength of graphite by conducting several experiments 

and proposed analytical models to characterize size dependence strength of such category 

of materials. Two basic material models viz. Ambartsumyan [168-170] are being most 

widely used for characterizing such bimodulus behavior. Ambartsumyan material model is 

based on the criterion of positive-negative signs of principal stress state at a point in a 

stressed body. This model has found its application mostly to isotropic materials having 

bimodulus characteristics. Bert material model is based on the criterion of positive-negative 

signs in the longitudinal strain of fibers in orthotropic materials, and hence has its 

significance in research for laminated composites. 

The Young's modulus ( E ) value of a material is normally determined by the slope of the 

stress-strain curve at the origin for a standard specimen. However, when nonlinearity of 

stress-strain curve is observed even at origin, the standard procedure of evaluation of 

modulus for a 0.1% strain based on elasticity theory overestimates it considerably. In 

flexural tests, unequal modulus for tension and compression causes the slender specimen to 

experience a shift in the neutral axis. Hence the location of maximum bending stress in 
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tension and compression are also shifted away from the geometric symmetric axis. 

Therefore, displacements need to be expressed as functions of the ratio of moduli 

( T CE E ). As shown in Figure 3.7, in a three point bending flexure test, the neutral axis 

shifted to account for the mismatch in tension and compression moduli. The shift in 

geometric symmetric axis and hence from the closed form solution of theory of simple 

bending fractional shift in neutral axis can be expressed in terms of moduli ratio as follows.  
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                                                            (3.50)            

where, Ch and Th are fractional height of the beam in compression and tension respectively 

and h is the total height of the beam. 

 

Figure 3.7 Schematic of three-point bending flexure specimen 

Figure 3.8 shows a typical graphical representation of behavior of slender sections of 

bimodulus materials under flexure loading. This gives a typical nomenclature of percentage 

of beam in compression or tension with respect to variation of bimodulus ratio. 
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Figure 3.8 Typical schematic representation of percentage of beam in compression or 

tension with respect to bimodulus ratio of a slender flexure bimodulus specimen 

The phenomena of different behavior in tension and compression were first recognized by 

Saint-Venant [171], however, the concept did not receive much attention for a long time 

from research community. Later on, the concept of a bimodulus material was originated by 

Timoshenko [172] while considering the flexural stress in such a material undergoing pure 

bending. The effective modulus for stiffness of such a beam in pure bending was given by 

Marin [173]. The bimodulus concept was extended to two-dimensional materials by 

Ambartsumyan [174]. Within the last few decades, several attempts have been made to 

establish constitutive relationships for such materials. Also, a lot of literature related to 

analytical and numerical solutions is available for the bending and shear deformation of 

bimodular beams. Though in the last few decades, some numerical analyses for the 

structural problems considering bimodulus behavior of the material have been done and the 

shifting of neutral axis in a complicated specimen of bimodular material but the more 

accurate reliability prediction remains really a challenging issue. 
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For the determination of shifting of neutral axis in bimodular specimen, three-point and 

four point bend tests have been performed in Comsol finite element based software. Stress 

analysis has been done on the specimen with graphite/epoxy material properties using finite 

element software. Figure 3.9 shows the normal stress distribution in x -direction for three 

point bend test and four point bend tests. The results reflect that the maximum value of 

stress in compression zone is quite high in comparison to tension zone, due to material bi-

modularity. Young's Modulus of elasticity in tension ( TE ) is quite high in comparison to 

compression ( CE ) for graphite composite. Similar type of effect of bi-modularity is shown 

in von-Mises stress distribution (Figure 3.10). So the effect of bi-modularity is clearly 

visible in normal stress distribution in x -direction and von-Mises stress distribution.  

 

(a)                                                                      (b) 

Figure 3.9 Normal stress distribution in x- direction for (a) three point bend specimen and (b) 
four point bend specimen 
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(a)                                                             (b) 

Figure 3.10 von-Mises Stress distribution (a) three point bend specimen and (b) four point bend 
specimen 

 

Figure 3.11 describes the variation of Young’s modulus for the three-point and four-point 

flexure specimens indicating the asymmetric variation of tension and compression zone 

with respect to geometric centroidal axis. The tension zone is reflected by red color 

whereas compression is reflected by blue color in 3D geometry in three point and four point 

bend specimens shown in Figure 3.11. The tension and compression zones and shifting of 

neutral axis due to difference in modularity in tension and compression under three point 

loading condition is shown in Figure 3.12. The detailed data for shifting of neutral axis at 

vertical cross-section at various locations and analytically calculated neutral axis shift in 

three point bend specimen is represented in Table 3.1.  

 

(a)                                                                      (b) 

Figure 3.11 Young's Modulus plot for (a) three point bend specimen and (b) four point 

bend specimen 
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(a)                                                                     (b) 

Figure 3.12 (a) Young's Modulus plot on middle surface of the beam for three point bend 
specimen and (b) the plane at which the figure (a) is plotted 

Table 3.1 The results obtained from the three point bend specimen simulation 

 
ET 9382.208 MPa 
EC 6198.801 MPa 
Ratio 1.513 
Neutral axis location 4.497 mm 
Neutral axis shift at 50 mm -0.502 mm 
Analytical neutral axis location 4.483 mm 
Analytical neutral axis shift -0.516 mm 

 

3.7 Conclusion    

This chapter includes the theory and equations related to the objectives of the thesis. In the 

first section, the equations related to bimodularity and shifting of neutral axis due to the 

bimodular behavior have been included. Further, governing equations based on the 

functionally graded bimodularity under thermo-elasticity and finite element formulation for 

generalized thermoelasticity have been given. It has been well recognized that most 

materials, including concrete, ceramics, graphite, and some composites, exhibit different 

tensile and compressive strains even when the same stress is applied in tension or 

compression. This gives rise to different elastic moduli in tension and compression. As 
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composites are used under multiaxial stress conditions, therefore evaluation and prediction 

of modulus ratio is important for structural design of components. This leads to the 

calculation of both the elastic modulus for tension ( tE ) and compression ( cE ). Calculation 

of bimodulus ratio and shifting of neutral axis of graphite/epoxy composite has been done 

through FE based software. 

Some conclusion has been summarized from the present work as follows. 

1. The bimodular material exhibits two different stress-strain plots for tension and 

compression. 

2. The bimodular behavior causes the neutral axis shifting on the application of flexural 

load and affects the state of stress under tensile and compressive loadings. 

3. Maximum value of stress in compression zone is quite high in comparison to tension 

zone, due to material bi-modularity. Young's Modulus of elasticity in tension ( TE ) is quite 

high in comparison to compression ( CE ) for graphite composite. 

Influence of bimodularity has been found to be predominantly affecting the state of stress 

of flexural specimens. The shift in neutral axis indicates the severity of tensile or 

compression regions with reference loading pattern in the numerical illustrations. Therefore 

in design of high risk structures, the uncertainty of failure modes needs to be revisited. It 

can be stated here that structures containing high stress gradient zones or stress raisers 

should be designed based on bimodular stress dependent elasticity concepts rather than 

unimodular constitutive procedures though the former involves significant complexity of 

incorporating elasticity as a function of stress state. In subsequent chapters endeavors has 

been made to characterize fracture behavior of adhesive bonded joints with consideration of 

bimodular interface behavior. 


