
 

 

Appendix A            Life Estimation through Weibull Distribution 

A.1 Introduction 

Weibull proposed a distribution to describe the life length of materials under fatigue and 

fracture loads. Weibull developed this distribution to study fatigue and fracture of 

materials. The Weibull distribution is defined by a few parameters and estimation of these 

parameters for a given data set is necessary to describe the data set by the Weibull 

distribution.  

Weibull distribution theory is a probable distribution which gives details of the lifetime 

characteristics of a particular part or service component. It is particularly emphasized on 

failure-rate. Weibull distribution is used throughout reliability engineering to anticipate and 

account for issues related to wear-out during development [184]. 

A.2 Weibull distribution for estimation of life prediction 

Weibull proposed a distribution to describe the life length of materials under fatigue and 

fracture loads. According to this distribution, failure distribution can be described as [185]: 

0
1 exp

m
u

f
x xP

x

         
         for 0, 0, 0ux x x m                                                (A.1)                                

where 0x  is the scale parameter. It is the characteristic value of the distribution, such as 

time-to-failure or load. m is the shape parameter of the distribution or the Weibull modulus. 

It controls the width of the frequency distribution of the measured values of the parameters. 

The higher the value of the m , the narrower the distribution of the measured value and the 

higher its peak. ux  is called the location parameter which is the characteristic smallest 



 

 

188 LIFE ESTIMATION THROUGH WEIBULL DISTRIBUTION 

value of the measured parameter. There is zero probability of failure if the applied stress or 

time-to-failure x is smaller than ux .  

The Weibull theory uses the weakest link approach to describe the strength of various 

materials where the strength of the weakest link determines the strength of the chain. 

Consequently, the measured value of the parameter is the minimum value (smallest value) 

from a set of possible values.       

Equation (A.1) is a three parameter Weibull distribution. When location parameter is 

assumed to be zero, the resulting distribution is the two parameter Weibull distribution: 

0
1 exp

m

f
xP
x

         
                                                                                                  (A.2)                                                        

This two parameter Weibull distribution has been used extensively where the minimum 

value of random variable may be assumed to be equal to zero. The probability density 

function of Weibull distribution is  
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                                                                    (A.3)                                           

Depending upon the values of m and 0x , the probability density function can take a wide 

variety of shapes. Rough estimation of the Weibull distribution parameters can also be 

made graphically by plotting Equation (A.2) after taking double algorithms and a suitable 

transformation. More accurate values of Weibull distribution parameters for a failure data 

set of specimens are estimated by following method: 

1) Least square estimation (LSE) 

2) Maximum likelihood method (MLM) 
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A.2.1 Least Square Estimation (LSE) 

Equation (A.2) can be transformed into a linear form by rearranging the equation and 

taking logarithms of both sides twice: 
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The probability density function, fP , for a given x  can be calculated from n  measured 

data after ordering such that  1 2 ... nx x x   . Using order statistics of Wilks, an unbiased 

estimator of  fP  is  
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                                                                                                                        (A.5)                                                                                      

where  i  is the rank of the specimen in order of increasing measured value of x . Although 

there are other slightly different forms of fP , the above form gives the minimum variance. 

Substituting Equation (A.5) in Equation (A.2), we get  
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Both m and 0x  can be estimated by plotting ln ln( 1) / ( 1 )n n i    against ln x and fitting 

the straight line. The Weibull parameter m is the slope of the best fit straight line. Although 

a line may be fitted graphically using eye-estimation, fitting the straight line using least-

squares regression is generally preferred for accuracy of estimation. Equation (A.6) may be 

written as 
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where ic is the error due to the difference between the observed value of ( )f iP x and its 

expected value.  

A.2.2 Maximum Likelihood Method (MLM) 

The Maximum likelihood method provides a procedure for deriving the estimates of the 

Weibull distribution parameters directly. A random variable x following the Weibull 

distribution has a probability density function 0( ; , )f x m x with Weibull parameters m and 

0x as given in Equation (A.3). The likelihood of obtaining particular sample value ix  may 

be assumed to be proportional to the probability density function at ix . Hence, the 

likelihood of obtaining n  independent observations 1 2, ,..., nx x x  is 
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L is the likelihood function of the data set  1 2, ,..., nx x x . The maximum-likelihood estimator 

of m and 0x  will then be the particular values of m and 0x  so that L or the probability of 

obtaining the data set is maximized. Due to the multiplicative nature of L , it is generally 

more convenient to maximize the logarithm of the likelihood function instead 
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and 
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The maximum-likelihood function of Weibull distribution can be written by substituting 

Equation (A.3) in Equation (A.8); 
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Taking the logarithm on both sides and rearranging the terms, 
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Taking the derivative of ln( )L  with respect to 0x  and equating it to zero, we get 
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Similarly, equating the derivative of ln( )L  with respect to m  to zero, we get 
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Substituting Equation (A.13) in Equation (A.14), we get 
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Equation (A.15) can be solved for m using the Newton-Raphson iterative method. This 

method requires evaluation of both the function and its derivative at different points. One of 

the significant advantages of this method is that it converges quadratically. The number of 

significant digits approximately doubles at each step near a root of the equation. 

According to Newton-Raphson method, 
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where ( )kf m is the left side of Equation (A.15) at the kth iteration of m . Since ( )kf m is 

( ) /k kdf m dm , ( )kf m is given by           
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Therefore, 1km   can be calculated from 
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From an initial guess of m , the value of Weibull modulus m can be estimated when the 

difference between subsequent iterations is less than a predefined tolerance value.  

A.3 Parameters of Weibull distribution function 

The case where 0x  and 10x   is called the standard Weibull distribution. The case 

where 0x  is called the 2-parameter Weibull distribution. The equation for the standard 

Weibull distribution reduces to  

( 1)( ) exp( ( )), 0; 0m mf x mx x x m                                                            (A.19) 
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Figure A.1 Weibull Probability Density Function  

The curve of the function varies greatly depending on the numerical values of parameters. 

Most important is the shape parameter, ‘ m ’, which reflects the pattern of curve. Note that 

when ‘ m ’ is 1.0, the Weibull function reduces to the Exponential and that when ‘ m ’ is 

about 3.5 (and 10x  , 0x  ), the Weibull closely approximates the Normal distribution. 

In practice, ‘ m ’ varies from about 1/3 to 5. The scale parameter ‘ 0x ’ is related to the 

peakedness of the curve, i.e., as ‘ 0x ’ changes, the curve becomes flatter of more peaked. 

The location parameter ‘ x ’ is the smallest possible value of ‘ x ’. This is often assumed to 

be 0, thereby simplifying the equation.  Figure A.1 shows the variation of function for 

different values of shape parameter, considering 0x  and 10x  . 
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The Weibull covers many shapes of distributions. This makes it popular in practice because 

it reduces the problems of examining a set of the common distributions (example: normal 

or exponential) fits best. 

The Weibull distribution gives a distribution for which the failure rate is proportional to 

power of time (Figure A.2). 

 If 1m  , failure rate decreases over time 

 If 1m  , failure rate is constant over time 

 If 1m  , failure rate increases over time 

In the field of material science, ‘ m ’ is a distribution of strength known as Weibull 

Modulus. 
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Figure A.2 Weibull Failure Rate for 0<m<1, m=1, m>1 

Graphite is similar to the ceramic materials in some respects that it is not processed via 

melting [186,187]. Some of the important characteristics of graphite are its strength at high 
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temperature, high thermal conductivity and shock resistance, fire proof and acid and 

alkaline proof. It is similar to other brittle materials in some respect that it does not exhibit 

plastic deformation and show wide scatter in strength. It has a non-linear stress-strain 

response and this behavior is different in tension than in compression. This is because of 

the distributed damage and damage accumulation within the material prior to rupture. This 

type of material is known as known as quasi-brittle material [188,189].  

The fracture of graphite can be a complex process, with different grades of graphite 

potentially having different failure behaviors. Fracture is nominally brittle or quasi-brittle, 

with little or no plasticity prior to failure. This means that fracture is influenced by pre-

existing flaws or inherently weak regions in the material. Porosity can also be an important 

factor for fracture. Tensile fracture occurs when a local concentration of micro-cracks 

develop and coalesce to form an unstable micro-crack of critical size. Tucker and 

McLchlan [190] discussed the micro-growth tends to be trans-granular (through the grains), 

with the crack path within the individual grain corresponding to the crystalline cleavage 

plane [191,192].    

So the failure and life estimation of the graphite can be easily done by Weibull distribution 

(Equation A.1). This chapter presents the estimation of Weibull parameters by Least Square 

Method and Maximum Likelihood Method. A computer program has been developed for 

the analysis of two parameter Weibull distribution. It is illustrated that maximum likelihood 

estimator gives more accurate values of Weibull model in comparison to least square 

estimation. Rough estimation method of Weibull parameters is extended to the more 

accurate methods for nuclear grade-graphite specimen data [193] for fatigue and fracture 

characterization of graphite claded nuclear reactor. 
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A.4 Problem formulation  

The estimation of shape and scale parameters of Weibull distribution is carried out by using 

least square and maximum likelihood methods. Experimental data of graphite is used for 

evaluation and then the value of shape parameter evaluated by different methods is 

compared with the result given in Price paper [193]. 

Price conducted more than 2000 ambient temperature tensile tests on H-451 nuclear grade 

graphite specimen. Four 127mm deep slabs were cut transverse to the axis. Two slabs (1 

and 4) were located within 25mm of the two ends of the log, and two slabs (2 and 3) were 

located adjacent to the mid-length plane of the log. Each slab was cut into an edge section 

and center section on a radius of 108mm along the centerline axis of the log. Test 

specimens were core drilled in the axial (with grain) and radial (against grain) orientations 

from the central zone and the edge zone of each slab.  

A.5 Results and discussion  

Figures A.3 and A.4 represent the plots of failure stress data of axial and radial orientations, 

respectively. These plots are for the determination of Weibull parameters using Least 

Square Estimation method. Figures show the best fit line graph for a particular location 

each in axial and radial orientations. This type of graph is drawn for all location in both 

orientations to evaluate the shape and scale parameters. The adjusted R-square value for all 

graphs is more than 95%, which shows that the parameters are accurately determined. Also, 

in case of Maximum Likelihood Method, a program is developed in FORTRAN to estimate 

the Weibull parameters. Tables A.1 and A.2 show the results of shape and scale parameters 

of small tensile specimen at different locations using different methods for axial and radial 

orientations, respectively.      
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Figure A.3 Plot of failure stress data for axial orientaion 
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Figure A.4 Plot of failure stress data for radial orientation 

Table A.1 Comparison of estimated values of Weibull parameters (axial orientation) 
 
Locations Methods of 

estimation 
Shape parameter Scale parameter 

End edge 1 Analytically (Price, 
1976) 

9.4 - 
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 LSE 9.2 1.058 
 MLM 10.3 1.057 
End edge 4 Analytically (Price, 

1976) 
10.0 - 

 LSE 9.35 1.1 
 MLM 9.19 1.08 
End centre 1 Analytically (Price, 

1976) 
7.5 - 

 LSE 6.8 1.07 
 MLM 7.99 1.02 
End centre 4 Analytically (Price, 

1976) 
8.2 - 

 LSE 7.56 1.1 
 MLM 8.08 1.07 
Mid length 
edge 2 

Analytically (Price, 
1976) 

12.6 - 

 LSE 12.09 1.07 
 MLM 12.05 1.06 
Mid length 
edge 3 

Analytically (Price, 
1976) 

10.0 - 

 LSE 9.18 1.05 
 MLM 9.71 1.05 
Mid length 
centre 2 

Analytically (Price, 
1976) 

13.4 - 

 LSE 13.16 1.04 
 MLM 13.26 1.04 
Mid length 
centre 3 

Analytically (Price, 
1976) 

6.8 - 

 LSE 6.31 1.05 
 MLM 7.2 1.04 
 

 
Table A.2 Comparison of estimated values of Weibull parameters (radial orientation) 

 
Locations Methods of 

estimation 
Shape parameter Scale parameter 

End edge 1 Analytically (Price, 
1976) 

7.2 - 

 LSE 7.02 1.03 
 MLM 8.27 1.02 
End edge 4 Analytically (Price, 

1976) 
9.9 - 

 LSE 9.45 1.04 
 MLM 10.2 1.05 
End centre 1 Analytically (Price, 

1976) 
6.2 - 
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 LSE 6.7 1.11 
 MLM 6.13 1.109 
End centre 4 Analytically (Price, 

1976) 
7.2 - 

 LSE 7.6 1.05 
 MLM 7.9 1.03 
Mid length 
edge 2 

Analytically (Price, 
1976) 

9.7 - 

 LSE 9.3 1.04 
 MLM 10.02 1.04 
Mid length 
edge 3 

Analytically (Price, 
1976) 

6.8 - 

 LSE 5.77 1.01 
 MLM 6.9 0.99 
Mid length 
centre 2 

Analytically (Price, 
1976) 

4.6 - 

 LSE 4.45 1.06 
 MLM 5.7 1.04 
Mid length 
centre 3 

Analytically (Price, 
1976) 

8.3 - 

 LSE 8.12 1.05 
 MLM 9.7 1.05 

Tables show the evaluated parameters of two parameter Weibull distribution using Least 

Square method and Maximum Likelihood method. The parameters are calculated for all the 

four slabs including the edge and centre. These values are then compared with the results 

given in Price paper which is calculated analytically. By using the least square and 

maximum likelihood methods, both shape and scale parameters are estimated. While in 

Price paper, the values of slope parameter are only given. It is found that in both axial and 

radial orientation, the various values of Weibull modulus are nearly same with the referred 

paper results for all locations. By comparing these values, it can be said that modulus value 

is somewhat larger in case of MLM compared to LSE. The reason of larger value is that it 

determines the value accurately.  

It is seen that the modulus is more for the slabs 2 and 3 compared to slabs 1 and 4 for axial 

orientation. This means that modulus value is more for mid length than end. Moreover, 
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these values are larger in case of slab 2 than of slab 3. The maximum value is for the 

locations mid length edge 2 and mid length centre 2 and minimum for locations end centre 

1 and mid length centre 3. 

In case of radial orientation, minimum value of Weibull modulus is for mid length centre 2. 

This is the smallest value in both axial and radial orientations. The maximum value is in 

case of end edge 4. 

Then the values of scale parameter calculated from LSE and MLM are compared. In both 

axial and radial orientation case, these values are almost same and they are nearly equal to 

one.  

A.6 Conclusion  

A computer program has been developed to estimate the values of the modulus and scale 

parameter of Weibull model for tensile specimen nuclear graphite data using least square 

and maximum likelihood methods. These parameters have been compared with results 

given in referred paper and it is found that they are matched well. Following points can be 

concluded through the result:  

1. It has been found that parameters are accurately determined by maximum likelihood 

method among all methods.   

2. The value of shape parameter determined by maximum likelihood method is larger 

compared to analytical and least square estimation. 

3.  Scale parameter evaluated thorough maximum likelihood and least square methods 

are approximately same and its value is nearly equal to one. 

This procedure can be extended for future work.   
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