- CLPT Classical Laminated Plate Theory
- CZM- Cohesive Zone Model
- DOF- Degree of Freedom
- ERR- Energy Release Rate
- FE- Finite Element
- FEA- Finite Element Analysis
- FEM- Finite Element Method
- FG- Functionally Graded
- FGA- Functionally Graded Adhesive
- FMGB- Functionally Modulus Graded Bondline
- FRP- Fiber Reinforced Polymer
- FSDT First-order Shear Deformation Theory
- HSDT Higher-order Shear Deformation Theory
- LEFM- Linear Elastic Fracture Mechanics
- LSE- Least Square Estimation
- MCCI- Modified Crack Closure Integral
- MLM- Maximum Likelihood Method
- NA- Neutral Axis
- PMCE- Principle of Minimum Complementary Energy
- SERR- Strain Energy Released Rate
- VCCT- Virtual Crack Closure Technique

- a_{ii} Diagonal elastic compliance
- $a_{ii}(i \ j)$ Off-diagonal compliance
- A Crack surface created by the delamination opening
- c_E Specific heat capacity
- C Suffix for the notation of compression behaviour under bimodularity
- Ciikl Elastic stiffness
- D Constant
- E_C Modulus of elasticity for compression
- E_T Modulus of elasticity for tension
- EI Flexural rigidity of the beam
- $E_1(I)$ Lower bound Young Modulus
- $E_2(I)$ Upper bound Young Modulus
- f(x) Probability density function of Weibull distribution
- f_i Body force
- F Sum of axial forces
- F_i Force at delamination tip for the fracture mode i
- GI- First mode of SERR
- G_{II}- Second mode of SERR
- G_{III}- Third mode of SERR
- G_T- Total strain energy release rate
- G_c Critical value of the energy release rate

 G_M, G_{MT} , and G_{TH} - SERR components due to mechanical, superposition of individual

effects thermo-mechanical loading and only thermal loading, respectively

- Gr/E- Graphite/Epoxy
- h_C Height of the beam above neutral axis in compression region
- h_T Height of the beam below neutral axis in tension region

- h Total height of the beam
- *I* Hydrostatic stress
- k_{ii} Thermal conductivity coefficient
- *l*-Length of the projection of the deformed beam on x-axis
- L Length of the beam without deformation
- L_b Length of bond
- L_s Length of substrate
- m Shape Parameter
- M(x) Bending moment
- ne Total number of elements
- N Ratio of length of bond and substrate
- N Shape function for displacement
- N Shape function for temperature
- P_f Failure distribution of Weibull parameter
- q_i Heat flux
- \overline{Q} Flux
- R Bimodular ratio
- s Distance measured along the bond length
- t Width of the beam
- *T* Temperature change
- T Suffix for the notation of tension behaviour under bimodularity
- T_0 Reference temperature
- $\overline{T_i}$ Surface traction
- u(x, z) In-plane displacement
- u_i Opening displacement for the fracture mode *i*
- $_{C}$ Poisson's ratio for compression
- $_T$ Poisson's ratio for tension
- w Lateral deflection

- W- Energy released by the propagation of a crack
- x_0 Scale parameter
- x Location parameter
- z Global coordinate
 - , and Principal stress directions
- *ij* Thermal constant
- Fiber orientation
 - Coefficient of thermal expansion
- i Temperature gradient
- $_{b}(x)$ Deflection of the beam due to bending stresses only
- $_{m}$ Maximum deflection of the beam due to bending stresses
- $(x \quad a)$ Crack opening displacement between the upper and lower delaminated surfaces
- (x) Stress at the crack front required to close the delaminated area
- u_z , u_x , u_y Relative opening, sliding and tearing displacements, respectively
- Strain
- x_{Z} Transverse shear strain
- Stress
- $_{xx}$, $_{yy}$ and $_{zz}$ Normal stresses components of any stress tensor
- $\begin{bmatrix} zz & zx & zy \end{bmatrix}$ Interlaminar stress
 - Mass density
 - Entropy density