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pressure 5.0 kbar, showing the effects of varying themolar 
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post-collisional stage owing to thermal relaxation and extension, 

melting of the previously generated TTG crust ensues resulting in 

generation of the K-granites.  
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Preface 
 

The Indian subcontinent is divided into two Archean cratonic blocks by the Central 

Indian Tectonic Zone (CITZ), which runs in the ENE–WSW direction; the northern and 

southern cratonic blocks. The southern Indian block includes Bastar, Dharwar, and 

Singhbhum cratons, while the northern Indian block includes the cratons of Bundelkhand and 

Aravalli. The Great Boundary Fault is the main boundary that divides the northern Indian 

block into two blocks. The eastern block is known as the Aravalli cratonic block, and the 

western block is known as the Bundelkhand cratonic block.  

The Bundelkhand Craton (BuC) is of semi-circular shape, having an area of about 

45,000 km2 of which only 26,000 km2 is exposed as an outcrop between 24°11' to 26°27'N 

and 78°10' to 81°24'E and the rest is covered by alluvium of the Ganga basin. In the west, the 

BuC is fringed by the Great Boundary Fault (GBF), trending NE–SW, in the north-west by 

the Gwalior Basin, in the south by the Sonarai Basin, and by the Bijawar marginal basins in 

the south-east. The Vindhyan Supergroup overlies the marginal basins and surrounds the BuC 

on three sides. The Gangetic alluvial plains cover the craton on the northern side but the 

southwestern part is hidden beneath the Deccan basalts. The BuC is divided into two large E-

W trending greenstone belts, the northern belt and the southern belt, which contain 

supracrustal units tectonically embedded with TTGs. The northern belt, also known as the 

Central Bundelkhand Greenstone belt (CBGB), runs through Mauranipur, Kuraicha, and is 

exposed in the middle of BuC. Metamorphosed basic rocks, felsic volcanic rocks, 

metasedimentary rocks (BIFs), pink granites and granodiorites are exposed here. The 

southern belt stretches from Madaura to Girar and contains a sequence of ultramafic-mafic 

volcanic rocks, quartzite, BIF, chlorite schist, and marble. 



xxx 
 

The study area around Mauranipur and Babina lies within the Central Bundelkhand 

Greenstone Belt. The investigated area falls between latitude 25º09'45" N to 25º15' N, and 

longitude 78º25' S to 78º35’S in Babina, as well as latitude 25º11'54" N to 25º14'48" N, and 

longitude 79º05' S to 79º09'35" S in Mauranipur of the BuC. The study area mainly covers 

the village of Kuraicha, the Saprar river section, and the Sukwa Dam area. The study area 

consist of TTGs, banded magnetite quartzite (BMQ), quartz reefs ultramafic rocks, 

amphibolites, granitoids, pelitic granulites, garnet-biotite gneiss, garnetiferous amphibolite, 

quartzite, granitic gneiss, and migmatite.   

Microscopic investigations of the studied rock samples have revealed distinct types of 

mineral assemblages in three rock types such as: Garnet-orthopyroxene-cordierite-biotite-

sillimanite-plagioclase-illmenite-quartz, Garnet-orthopyroxene-biotite-sillimanite-

plagioclase-illmenite-quartz, Garnet-biotite-sillimanite-plaioclase-illmenite-quartz, Garnet- 

cordierite-biotite-sillimanite-plagioclase-illmenite-quartz, in pelitic granulites; garnet-biotite-

plagioclase-quartz-k-feldspar in garnet-biotite gneisses and garnet-amphibole-plagioclase-

biotite-quartz-ilmenite, clinopyroxene-amphibole-plagioclase-epidote-rutile-ilmenite-quartz 

in amphibolites. 

Electron microprobe analyses (EPMA) of minerals from the different mineral 

assemblages are used to observe the characteristics of mineral phases. The pyrope content of 

garnet from the different rock types indicates the following trend: pelitic granulites>garnet-

biotite gneisses > amphibolites. The XMg values range between 0.40 and 0.47 and correspond 

to hypersthenes in pelitic granulites. The XMg value of cordierite varies between 0.61 and 0.69 

in pelitic granulites. The XMg in biotites shows the following trend: pelitic granulites (0.38 to 

0.61) > amphibolites (0.45 to 0.49) >garnet-biotite gneisses (0.31 to 0.44) >. The 

clinopyroxenes of amphibolites are plotted in the diopside field. The XMg value of 

clinopyroxene ranges from 0.59 to 0.65. The amphiboles from amphibolites seize a place in 
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the Tschermakite domain. They have XMg values from 0.69-0.89. The amphibole contains 

(p.f.u) Na = 0.276–0.497, K = 0.022–0.062, and Ti = 0.031–0.054. 

Geochemical analysis of pelitic granulites reveals much about the protoliths and their 

geodynamic settings. The total alkali-silica diagrams of pelitic granulites show diorite, 

granodiorite, and quartz–monzonite fields, showing that the protolith of pelitic granulites 

came from a variety of sedimentary provenances. In the primitive-mantle-normalized trace-

element spider diagram, positive anomalies are detected for Ba, K, Pb, Nd, Sm, Gd, and Y, 

but significant negative anomalies are detected for high field strength elements (HFSEs) such 

as Nb, Ta, and Ti, indicating a characteristic feature of subduction orogeny. A decrease in Nb 

and Ti concentrations confirmed an island arc setting. All samples have positive Eu 

anomalies in the chondrite-normalized REE patterns. The pelitic granulites acquire the 

domain of felsic igneous provenance when plotted in the discrimination function diagram. 

The TiO2 versus Zr plot confirms this as all the pelitic granulite samples are again plotted in 

the felsic igneous rocks field. The Zr against Nb/Zr curve suggests that the protolith of pelitic 

granulites was exposed to a subduction-related tectonic setting. The Y vs Nb plot suggests 

that the pelitic granulite protolith came from volcanic arc granite (VAG) and a syn-collisional 

tectonic environment. The TAS diagram for Grt-Bt gneisses displays a contracting protolithic 

nature varying from diorite, granodiorite, and granite. The primitive mantle normalized spider 

diagram of Grt-Bt gneisses reveals depletion of Mo, Ho, Tm, Ba, K, Nb, Sr, Hf, Ti, and an 

abundance of Rb, Th, U, La, Ce, Nd, and Gd. The REE chondrite normalized patterns show 

enriched LREE and depletion in HREE with high to moderate (La/Yb)N. The negative 

anomaly of Nb and Ti indicates that a subduction tectonic setting has occurred in the BuC. 

The Grt-Bt gneisses have high SiO2 and low Cr and Ni concentrations, interpreted as 

protoliths derived from the hydrous thickened lower crust or may be due to crustal 

contamination with ascending partial melt. The Y vs Nb and (Y+Nb) vs Rb tectonic 
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discrimination diagrams show that the protolith of most Grt-Bt gneisses had an affinity 

towards the volcanic arc granite (VAG), whereas the M-1C sample shows within plate granite 

(WPG) affinity. Total alkali versus silica (TAS) plot used to classify the amphibolites reveals 

that all of the garnet-bearing amphibolites are plotted in the basalt region; three garnet-absent 

amphibolites are projected into the basaltic field, and three are projected into the basaltic 

andesitic field. The Zr/Ti vs Nb/Y diagram reveals that all garnet-bearing amphibolites plot in 

the basaltic andesite field, and garnet-absent amphibolites plot in the sub-alkaline basalt field. 

A decrease in Nb and Ti concentrations has validated an island arc setting. Light rare earth 

element (LREE) enrichment is higher in garnet-bearing amphibolites than heavy rare earth 

element (HREE) enrichment (LaN/LuN = 2.85–7.21), with a little negative Eu anomaly 

(EuN/EuN* = 0.76–0.86). However, garnet-absent amphibolites have a slight enrichment of 

LREE relative to HREE (LaN/LuN = 1.20–2.13) with a slight positive Eu anomaly (EuN/EuN* 

= 1.00–1.13). The sub-parallel REE patterns show that a phase of compositional variation 

dominated crystal fractionation. The studied amphibolites have moderately enriched LREE 

and LILEs (Ba, Rb, Th, U, and K) but negative Nb, Ta, Zr, and Ti anomalies. Garnet-bearing 

amphibolites show 4.45–5.04 ppm, and garnet-absent amphibolites have low Th (0.65–1.25 

ppm), indicating little crustal contamination or no Th addition in amphibolites. The Th/Nb vs 

Ba/Nb discrimination diagram shows a clear influence of the shallow subduction component 

on garnet-bearing and garnet-absence amphibolites, but no sign of deeper subduction 

component influence. The Nb/Th vs Zr/Nb tectonic discrimination diagram suggests an arc-

like setting for the amphibolites from the Babina and Mauranipur regions; whereas the Zr vs 

Zr/Y plot suggests an island arc setting.  

The various conventional geothermobarometry pairs have been used for evaluating 

the temperature and pressure conditions for pelitic granulites. the Grt-Bt thermometry 

provides prograde temperatures of 640ºC–692ºC for garnet core and biotite included in garnet 
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and 605ºC–660ºC for garnet and matrix biotite, whereas pressure of 5.79 kbar at 650ºC using 

the garnet-biotite-plagioclase-quartz geobarometer (GBPQ). Similarly, Grt-Opx thermometry 

provides peak temperatures of 762ºC–845ºC for core values and 712ºC–825ºC for rim values 

of garnet and orthopyroxene and peak pressure has been observed as 6.49–7.49kbar at 800ºC 

using the garnet–orthopyroxene–plagioclase-quartz (GOPQ) barometer. However, the garnet-

cordierite geothermometer provides the retrograde temperature of 508ºC–604ºC for garnet 

core and cordierite included in garnet and 489ºC–588ºC for garnet and matrix cordierite, 

whereas garnet-cordierite-sillimanite-quartz geobarometer was used to estimate the pressure 

and it ranges from 4.24 to 4.89kbar. For the Grt-Bt gneiss, the garnet–biotite exchange 

geothermometer was applied to inclusion and matrix biotite. It provides 595ºC–656ºC from 

biotite present as inclusion in garnet and 578ºC–618ºC from matrix biotite and pressure of 5.0 

kbar at 600ºC using the garnet-biotite-plagioclase-quartz geobarometer (GBPQ). In the 

garnet-bearing amphibolites, the garnet-biotite pair was used to define a temperature of the 

pre-peak stage from garnet and biotite rim compositions, where biotite exists as inclusion 

within the garnet; it shows 539 to 597°C at 5.5 kbar. The Grt–Cpx geothermometer can 

measure the temperature of the peak metamorphic stage as 834ºC and 760ºC at 7.0 kbar 

pressure. Simultaneously, GCPQ (Grt-Cpx-Pl-Qz) geobarometry calculated 7.42 and 6.46 

kbar pressures at a constant temperature of 800ºC. The post-peak temperature condition is 

556ºC at 4.5 kbar pressure, as measured by an Amp-Pl geobarometer. The pressure condition 

for post-peak metamorphism is estimated to be 5.04 kbar at 550ºC using an Amp-Pl-

Qzgeobarometer model. P–T conditions in garnet-absent amphibolites are 517ºC and 685ºC 

from the rim and core compositions, respectively, and model of the Amp-Pl-Qzgeobarometer 

predicts 5.21 and 6.78 kbar pressure from the rim and core portions.  

Pseudosection modeling of the pelitic granulites in the NCKFMASHTO system with 

the help of Perple_X ver.6.9.0 software shows that the P–T condition of pre-peak 
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metamorphism is found in the range of 4.00–5.12 kbar and 560–600°C. The peak assemblage 

has a P–T stability field ranging from 6.40–6.62 kbar and 700–730°C. The retrograde 

metamorphic assemblage is stable in the range of 4.20–4.40 kbar pressure and 670–692°C 

temperature. The P–T pseudosection for the garnet-biotite gneisses represented a peak 

metamorphic assemblage and occupied a field in the P–T range of 6.35–6.75 kbar and 755–

780ºC. Similar mineral assemblage has been observed under lower pressure and temperature 

conditions. The melt phase does not exist here, whereas H2O is available as a component. 

Their P–T condition is comparatively low, between 4.80–5.28 kbar and 718–735ºC. The 

assumed value of H2O and O2 has been defined by the constructed T-X(H2O) and T-X(O2) 

pseudosection at a fixed pressure of 5.0 kbar for sample B-6. The value of H2O was 

determined based on the variation of H2O in the bulk rock composition ranging from 0.0 to 

6.0 mol%, whereas O2 was calculated based on the variation of O2 in the bulk rock 

composition ranging from 0.0 to 1.0 mol%. The meta-stable, pre-peak, and post-peak mineral 

assemblages are depicted in the T-X(H2O) diagram with the appropriate amount of X(H2O) = 

4.89 mol%. Similarly, the T-X(O2) diagram reveals that a 0.50 mol% amount is appropriate, 

denoted by a large black dashed line. Therefore, 4.89 mol% of H2O and 0.50 mol% of O2 are 

reliable amounts for further P–T pseudosection calculation. The P–T pseudosection for 

garnet-bearing amphibolites in the NCKFMASHTO system shows a meta-stable mineral 

assemblage that may have formed before pre-peak metamorphism and is dominated by 

chlorite. This acquired phase is stable in the P–T range 3.2–6.2 kbar/420–550ºC, and 

amphibole and chlorite isopleths further narrow the P–T range to 4.35–4.1 kbar/515–475ºC. 

The pre-peak metamorphic assemblages are defined as Grt-Amp-Chl-Bt-Pl-Qz-Ilm-H2O and 

are stable in the P–T conditions of 6.2–7.5 kbar and 570–595ºC. The P–T conditions for 

garnet-bearing amphibolite's peak metamorphic stage are 7.4–6.8 kbar/805–760ºC. The post-

peak metamorphic assemblage is stable at a P–T range of 6.15–4.0 kbar and 750–580ºC. The 
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P–T pseudosection plotted for the garnet-absent amphibolites in the NCFMASHTO system 

shows that the pre-peak metamorphism occurs in the P–T range of 4.0–6.4 kbar/400–450ºC. 

Peak metamorphic assemblage is stable at 7.4–7.0 kbar/810–785ºC. The post-peak 

assemblage is denoted as Amp-Pl-Qz-Ilm-H2O, and amphibole and plagioclase isopleths are 

used to define the P–T conditions of 4.0–3.1 kbar/710–620ºC.  

The clockwise P-T-t path has been obtained from orthopyroxene-bearing pelitic 

granulites by thermodynamic calculation and pseudosection modelling. The pre-peak 

metamorphic stage was recorded between 4.00–5.12 kbar and 560–600°C. This rock 

undergoes further burial depth, and with a significant change in temperature conditions, this 

situation indicates an increase in pressure; hence it demarcated the peak metamorphic stage. 

The P–T conditions of this stage reached a high-pressure condition with a range of 6.40–6.62 

kbar and 700–730°C, following a nearly isothermal decompression (ISD) path to achieve the 

post-peak stage. The post-peak stage was documented by the appearance of Crd, and Grt, and 

P–T conditions were reached at 4.20–4.40 kbar and 670–692°C. The geodynamic 

significance of the peak (high-pressure) metamorphism from the Mauranipur region of the 

CBGB suggests subduction and exhumation in a single cycle as a complete clockwise P-T-t 

path. The garnet-biotite gneisses are characterized by the mineral assemblage garnet + biotite 

+ plagioclase + k-feldspar + ilmenite + quartz + melt. P–T pseudosection modelling shows 

mineral assemblage Grt-Bt-Pl-Kfs-melt-Ilm-Qz to be stable at the P–T range of 6.35–6.75 

kbar and 755–780ºC. The clockwise P–T path is constrained by the P–T pseudosection of garnet-

bearing amphibolite. This P–T path generates three prominent metamorphic assemblages, as well as a 

previously developed meta-stable mineral assemblage. The meta-stable mineral assemblage Amp-

Chl-Bt-Pl-Qz-Ilm appears at the 4.35–4.1 kbar/515–475ºC P–T condition, suggesting a primitive 

mineral assemblage. Garnet was not visible at this temperature, but as it rises, it formed a unique 

mineral assemblage Grt-Amp-Chl-Bt-Pl-Qz-Ilm, which is stable in a narrow region with a P–T range 
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of 6.5–6.25 kbar/590–580ºC. This assemblage forms under amphibolite facies conditions during the 

pre-peak metamorphic stage. Later, the Babina region experienced the burial tectonism, which was 

characterized by a continuous increase in pressure and temperature, and the amphibolites underwent 

peak metamorphism until the granulite facies metamorphism, characterized by the mineral 

paragenesis Grt-Amp-Cpx-Bt-Pl-Qz-Ilm-H2O, and this field is stable at 7.4–6.8 kbar/805–

760ºC. The mineral assemblage of the post-peak metamorphic stage Amp-Bt-Pl-Qz-Ilm, is 

stable at a P–T range of 4.75–4.45 kbar/615–585ºC, which acquires a Cpx and Grt free field. 

This post-peak stage occurred after the peak stage as a result of a decompression process that 

resulted in a decrease in pressure conditions, also known as isothermal cooling, implying that 

this stage may have developed as a result of decompression and subsequent exhumation of 

amphibolites on the surface. 

The present study proposes a geodynamic model of the BuC based on the P–T 

conditions, geochemical analysis and geochronology of the pelitic granulites, garnet-biotite 

gneisses and amphibolites from the BuC. Both amphibolites register a clockwise path with 

peak metamorphism, followed by prograde and then retrograde metamorphism, showing 

three distinct compositions in the three stages of amphiboles. The protoliths of both 

amphibolites from the Mauranipur and Babina regions were formed by subduction-related 

tectonic settings and further affected by various thermal and collisional events. The studied 

amphibolites exist as enclaves and intrusive bodies and have undergone various metamorphic 

events, which are schematically represented as a plausible geodynamic model for three 

different stages. Ur is the oldest known Archean supercontinent, having formed 3.0 Ga ago 

by joining the Indian subcontinent's Dharwar and Singbhum cratons, South Africa's Kaapvaal 

craton, and Western Australia's Pilbara. Based on the age data and geodynamic settings of the 

Archean rocks reported from these cratons, it seems that the Bundelkhand, the Aravalli, and 

the Western and Eastern Dharwar Cratons appear to have been portions of the Kenorland 

Supercontinent in Archean times. In the Meso-Neoarchean period (2.9–2.7 Ga), subduction-



xxxvii 
 

accretion processes gave birth to the active expansion of the continental crust in the northern 

portion of the Kenorland supercontinent, whilst plume processes and subduction processes 

prevailed in the southern section. This evidence supported that the Mesoarchean subduction-

accretion processes in the BuC were similar to those of the Karelian Craton and the Superior 

Province in the northern half of the Kenorland supercontinent. In the Neoarchean (ca. 2.6 

Ga), the core of the supercontinent was formed, and until then, the crust of the southern part 

of the supercontinent continued to grow during subduction and accretion processes in the 

Bundelkhand, Aravalli and Western and Eastern Dharwar Cratons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxxviii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxxix 
 

 


