SEISMIC ACCELERATION AMPLIFICATION MODELS FOR RC FRAME

STRUCTURES

Thesis submitted in partial fulfilment

for the Award of Degree

Doctor of Philosophy

by

RAVINDER KUMAR AGRAHARI

DEPARMENT OF CIVIL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY (BANARAS HINDU UNIVERSITY) VARANASI – 221 005

Roll Number: 17061005

CERTIFICATE

This is to certify that the revised thesis entitled "SEISMIC ACCELERATION AMPLIFICATION MODEL FOR RC FRAME STRUCTURES" is being submitted by Mr. RAVINDER KUMAR AGRAHARI (Registration No. 17061005) in partial fulfillment for the award of Ph.D. in Department of Civil Engineering of the Indian Institute of Technology (Banaras Hindu University) Varanasi is a record of bonafide work carried out by him.

Date of Submission: 08/12/2022

Dr. Krishna Kant Pathak

(Supervisor)Professor

Department of Civil Engineering

Indian Institute of Technology (Banaras Hindu University) Varanasi

Forwarded by:

Signature of Head of Department विभागाध्यक्ष/HEAD जानपद अभियांत्रिकी विभाग Department of Civil Engineering भारतीय प्रौद्योगिकी संस्थान (बी.एच.यू) Indian Institute of Technology (B.H.U.) वाराणसी—221005/Varanasi-221005

CERTIFICATE

It is certified that the work contained in the thesis titled "SEISMIC ACCELERATION AMPLIFICATION MODEL FOR RC FRAME STRUCTURES" by "RAVINDER KUMAR AGRAHARI" has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive

Examination, Candidacy and SOTA for the award of Ph.D. Degree.

Currenclaur

Supervisor

(Prof. Krishna Kant Pathak) Department of Civil Engineering Indian Institute of Technology (BHU)

Varanasi, Uttar Pradesh, India, 221005

DECLARATION BY THE CANDIDATE

I, Ravinder Kumar Agrahari (Roll Number 17061005), certify that the work embodied in this thesis is my own bona fide work and carried out by me under the supervision of **PROFESSOR KRISHNA KANT PATHAK** from 2017 to 2022, at the DEPARTMENT OF CIVIL ENGINEERING, Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not wilfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date: 08/12/22

Place: Varanasi

Signature of the Student

(Ravinder Kumar Agrahari)

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my knowledge.

CurhingCaur

Supervisor

(Prof. Krishna Kant Pathak)

Department of Civil Engineering

Indian Institute of Technology (BHU)

Varanasi, Uttar Pradesh, India, 221005

Signature of Head of Department विभागाध्यक्ष/HEAD जानपद अभियांत्रिकी विभाग Department of Civil Engineering भारतीय प्रौद्योगिकी संस्थान (बी.एच.यू.) Indian Institute of Technology (B.H.U.) वाराणसी-221005/Varanasi-221005

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis:	Seismic Acceleration	Amplification	Models	for	RC	Frame
	Structures					

Name of the Student: Ravinder Kumar Agrahari

Copyright Transfer

The undersigned hereby assigns to the Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the "DOCTOR OF PHILOSOPHY".

Date: 08/12/2022

Place: Varanasi

Signature of the Student

(Ravinder Kumar Agrhari)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

Acknowledgements

I am deeply indebted and grateful to my supervisor, '**Professor Krishna Kant Pathak**', for his enduring and constructive guidance, apt remarks, motivational advices and encouragement throughout my Ph.D. research work. With his generous support and guardianship, I could carry-out my research work in a smooth and sustained manner.

I would like to extend my appreciation and thanks to:

1. The RPEC committee members for their constructive and well-wishing remarks. Many of their constructive remarks lead to addition of new chapters to my Ph.D. research work. I feel greatly privileged to have them as my RPEC committee members.

2. The institute administration, Civil Engineering department and the office staff for their cooperation and help.

3. My friend and colleague Narayan for his support and encouraging appreciation.

I would also like to express my sincere gratitude to the Ministry of Education (India) for providing financial support in the form of Teaching Assistance Scholarship.

Rayndson

Signature of the Student

(Ravinder Kumar Agrahari)

Date: 08/12/2022

Place: Varanasi

Table of Contents

Certificate		i
Declaration	a by the Candidate	ii
Copyright '	Transfer Certificate	iii
Acknowled	gement	iv
Table of Co	ontents	v
List of Figu	Ires	xii
List of Tab	les	xvi
Preface		xviii
CHAPTER 1	INTRODUCTION	1
1.1	INTRODUCTION	1
1.2	BASIC TERMINOLOGY OF EARTHQUAKE	1
1.2.1	Focus	1
1.2.2	Epicentre	1
1.2.3	Fault plane	1
1.2.4	Magnitude	2
1.2.5	Modified Mercalli scale	2
1.2.6	Seismology	2

	1.2.7	Aftershocks	2
	1.2.8	Foreshock	2
1.3	3	OVERVIEW OF INDIA SEISMIC ZONES	3
1.4	1	MAJOR EARTHQUAKE IN HISTORY	4
1.5	5	COMPONENTS OF STRUCTURES	13
1.6	5	PHYSICAL CHARACTERISTICS OF NSES	16
1.7	7	CLASSIFICATION OF NON-STRUCTURAL ELEMENTS (NSEs)	16
	1.7.1	Building Contents	16
	1.7.2	Appendages to buildings	17
	1.7.3	Services and utilities	17
1.8	3	PERFORMANCE OF NON-STRUCTURAL ELEMENTS DURING PA	ST
		EARTHQUAKES	19
1.9)	SOME DAMAGE TYPES	20
1.1	10	MAJOR CONCERNS	27
1.1	1	METHODS FOR THE ANALYSIS OF THE STRUCTURES	30
	1.11.1	Linear time history method	30
	1.11.2	Non-linear time history method	31
1.1	12	FEM BASED SOFTWARE	34
1.1	13	SUMMARY	35

CHAPTER 2 LITURATURE REVIEW

2.1	INTRODUCTION	36
2.2	DEVELOPMENT OF FRS	38
2.2.1	FRS based on SDOF models	39
2.2.2	FRS based on MDOF models	41
2.3	AMPLIFICATION FACTOR METHODS	43
2.4	ACCELERATION DEMANDS OF NSCS DEFINED IN SEISMIC DES	IGN
	CODES	44
2.5	CURRENT MODEL EQUATIONS	45
2.5.1	Uniform Building Code 1997 (UBC)	45
2.5.2	ASCE	46
2.5.3	IITK-GSDM	47
2.5.4	Akhlaghi And Moghadam	47
2.5.5	Fathali and Lizundia	48
2.5.6	Joseph Wiser	49
2.6	Need of the Research	50
2.7	OBJECTIVE OF THE RESEARCH	50
2.8	LAYOUT OF THESIS	51

CHAPTER 3 SEISMIC ACCELERATION AMPLIFICATION FACTOR MODEL FOR NON- STRUCTURAL COMPONENTS IN RC FRAME STRUCTURES 52

3.1	BUILDING MODELS	52
3.2	CONSIDERED GROUND MOTIONS	54
3.3	FLOOR SPECTRAL ACCELERATION	60
3.4	DYNAMIC ANALYSIS AND COMPARISON OF THE MODELS	63
3.5	PROPOSED MATHEMATICAL MODELS	71
3.6	CONCLUDING REMARKS	82
CHAPTER 4	NONLINEAR AMPLIFICATION MODEL IN RC FRAME	
	STRUCTURES: AN EXAMPLE OF CHI-CHI EARTHQUAKE	83
4.1	EXISTING MODELS	83
4.2	PROPOSED MATHEMATICAL MODEL	83
4.3	BUILDING CONFIGURATION	85
4.4	GROUND MOTION SELECTION	85
4.5	RESULTS AND DISCUSSION	91
4.5.1	Floor Spectral Acceleration	91
4.5.2	Comparison of Peak Floor Acceleration	93
4.5.3	Effect of Building Period on Amplification Factor	95
4.5.4	Comparison of the Amplification factor with different models	95
4.5.5	Comparison of Component Amplification Factors	103

4.6	CONCLUDING REMARKS		
CHAPTER 5	SEISMIC ACCELERATION AMPLIFICATION FACTOR FOR FIXED		
	AND PIN SUPPORT IN RC FRAME STRUCTURES: COMPARA	ATIVE	
	STUDY FOR CHI-CHI EARTHQUAKE	105	
5.1	EXISTING MODELS	106	
5.2	BUILDING CONFIGURATION	106	
5.3	GROUND MOTION SELECTION	111	
5.4	RESULTS AND DISCUSSION	111	
5.4.1	Floor Response Spectra	111	
5.4.2	Acceleration Amplification Models	113	
5.5	COMPARISON AND DISCUSSION	113	
5.5.1	Comparison of Amplification models with fixed and pin support condit	ion113	
5.5.2	Comparison of amplification models with respect to Mean Plus Standar	d	
	deviation	121	
5.6	CONCLUDING REMARKS	124	
CHAPTER 6 S	SEISMIC ACCELERATION AMPLIFICATION FACTOR FO	R PIN	
S	SUPPORTED MOMENT RESISTING RC FRAME STRUCTURE	2S: AN	
1	EXAMPLE OF CHI-CHI EARTHQUAKE	126	
6.1	CURRENT MODEL EQUATIONS	126	
6.2	PROPOSED MATHEMATICAL MODEL	126	

6.3	CONFIGURATION OF BUILDINGS	128
6.4	SELECTION OF TIME HISTORY DATA	129
6.5	RESULTS AND DISCUSSION	129
6.5.1	Floor Spectra Curve	129
6.5.2	Compared to peak floor acceleration compared with respect to seismic	ground
	acceleration	131
6.5.3	Compared to the mean +sd acceleration amplification factor with previ	ous
	models	132
6.6	CONCLUDING REMARKS	137
0.0		
CHAPTER 7	FLOOR ACCELERATION AMPLIFICATION FACTOR FOR	NON-
CHAPTER 7	FLOOR ACCELERATION AMPLIFICATION FACTOR FOR LINEAR MOMENT RESISTING RC FRAME STRUCTURES	NON- 140
CHAPTER 7 7.1	FLOOR ACCELERATION AMPLIFICATION FACTOR FOR LINEAR MOMENT RESISTING RC FRAME STRUCTURES PROPOSED MODEL	NON- 140 140
7.1 7.2	FLOOR ACCELERATION AMPLIFICATION FACTOR FOR LINEAR MOMENT RESISTING RC FRAME STRUCTURES PROPOSED MODEL BUILDING CONFIGURATION	NON- 140 140 141
7.1 7.2 7.3	FLOOR ACCELERATION AMPLIFICATION FACTOR FOR LINEAR MOMENT RESISTING RC FRAME STRUCTURES PROPOSED MODEL BUILDING CONFIGURATION SELECTION OF GROUND MOTIONS	NON- 140 140 141 143
7.1 7.2 7.3 7.4	FLOOR ACCELERATION AMPLIFICATION FACTOR FOR LINEAR MOMENT RESISTING RC FRAME STRUCTURES PROPOSED MODEL BUILDING CONFIGURATION SELECTION OF GROUND MOTIONS INCREMENTAL DYNAMIC ANALYSIS	NON- 140 140 141 143 144
CHAPTER 7 7.1 7.2 7.3 7.4 7.5	FLOOR ACCELERATION AMPLIFICATION FACTOR FOR LINEAR MOMENT RESISTING RC FRAME STRUCTURES PROPOSED MODEL BUILDING CONFIGURATION SELECTION OF GROUND MOTIONS INCREMENTAL DYNAMIC ANALYSIS RESULTS AND DISCUSSION	NON- 140 140 141 143 144 145
CHAPTER 7 7.1 7.2 7.3 7.4 7.5 7.5.1	FLOOR ACCELERATION AMPLIFICATION FACTOR FOR LINEAR MOMENT RESISTING RC FRAME STRUCTURESPROPOSED MODELBUILDING CONFIGURATIONSELECTION OF GROUND MOTIONSINCREMENTAL DYNAMIC ANALYSISRESULTS AND DISCUSSIONFloor Response Spectra	NON- 140 140 141 143 144 145 145
CHAPTER 7 7.1 7.2 7.3 7.4 7.5 7.5.1 7.5.2	FLOOR ACCELERATION AMPLIFICATION FACTOR FOR LINEAR MOMENT RESISTING RC FRAME STRUCTURESPROPOSED MODELBUILDING CONFIGURATIONSELECTION OF GROUND MOTIONSINCREMENTAL DYNAMIC ANALYSISRESULTS AND DISCUSSIONFloor Response SpectraNature of peak floor acceleration with various seismic motion	NON- 140 140 141 143 144 145 145 145
CHAPTER 7 7.1 7.2 7.3 7.4 7.5 7.5.1 7.5.2 7.5.3	FLOOR ACCELERATION AMPLIFICATION FACTOR FOR LINEAR MOMENT RESISTING RC FRAME STRUCTURES PROPOSED MODEL BUILDING CONFIGURATION SELECTION OF GROUND MOTIONS INCREMENTAL DYNAMIC ANALYSIS RESULTS AND DISCUSSION Floor Response Spectra Nature of peak floor acceleration with various seismic motion Effect of natural period and effective period over the normalized build	NON- 140 140 141 143 144 145 145 145 146 ng

7.5.4 Comparison of Acceleration amplification factor		149
7.5.5	Component Amplification Factor	151
7.6	CONCLUDING REMARKS	152
CHAPTER 8	CONCLUSIONS AND RECOMMENDATION	154
8.1	GENERAL	154
8.2	FUTURE SCOPE OF STUDY	156
REFERENCES		157
LIST OF PUBLICATIONS		176

LIST OF FIGURES

Figure No. Figure Caption	
Page No.	
Figure 1.1 Terminology of earthquake	3
Figure 1.2 Seismic zone of India	4
Figure 1.3 SEs create load path in each direction	14
Figure 1.4 Operational and structural components of a building	15
Figure 1.5 Example of the NSCs	18
Figure 1.6 Classification of non-structural elements: a) Acceleration Sensitive, b)	
Displacement-Sensitive	19
Figure 1.7 Poor earthquake performance of NSEs 1971 San Fernando Earthquake	21
Figure 1.8 Failure mechanism of infill wall due to (a and b) detachment; (c) tension stru	ıt;
and (d) crushing of wall caused by the Van earthquake	22
Figure 1.9 Seismic Consideration of NSCs	26
Figure 1.10 Evolution trends in costs of NSEs used in buildings over the last four decad	es:
in India and in countries with advanced seismic provisions for design of	
buildings and NSEs	29
Figure 1.11 Cost share of structure and NSEs in building projects implemented in USA	
and Japan: Major cost share is of NSEs	30
Figure 1.12 The MIDA procedure	33
Figure 2.1 Definition and development of FRS: concept and definition of FRS	37
Figure 2.2 FRS based on SDOF Model	39
Figure 2.3: FRS based on MDOF Model	39

Figure 3.1 Moment resisting frame models (a) 2 (b) 4 (c) 6 (d) 8 and (e) 10 stories	54
Figure 3.2 T_t and Tp for Time history data of Bhuj Earthquake	59
Figure 3.3 Mean floor spectral acceleration in the ground motion range 0.2g to 0.3g (a) 2	2
(b) 4 (c) 6 (d) 8 and (e) 10 stories.	62
Figure 3.4 Comparison between PFA/PGA with respect to normalize height when groun	d
motion range 0.01g to 0.1g (a) 2 (b) 4 (c) 6 (d) 8 and (e) 10 stories	65
Figure 3.5 Comparisons between PFA/PGA with respect to normalised height when	
ground motion ranges are 0.1g to 0.2g (a) 2 (b) 4 (c) 6 (d) 8 and (e) 10 stories	\$68
Figure 3.6 Comparisons between PFA/PGA with respect to normalised height when	
ground motion ranges are 0.2g to 0.31g (a) 2 (b) 4 (c) 6 (d) 8 and (e) 10 stories	es
	71
Figure 3.7 Comparison between PFA/PGA with respect to normalize height when groun	d
motion range 0.01g to 0.1g (a) 2 (b) 4 (c) 6 (d) 8 and (e) 10 stories	75
Figure 3.8 Comparisons between PFA/PGA with respect to normalised height when	
ground motion ranges are 0.2g to 0.31g (a) 2 (b) 4 (c) 6 (d) 8 and (e) 10 stories	es
	78
Figure 3.9 Comparisons between PFA/PGA with respect to normalised height when	
ground motion ranges are 0.2g to 0.31g (a) 2 (b) 4 (c) 6 (d) 8 and (e) 10 stories	es
	80
Figure 3.10 Percentage increases of Ω values with respect to actual Ω values	81
Figure 4.1 Mean floor spectral acceleration for ground motion range 0.2g to 0.31g (a) 2	
storey (b) 4 storey (c) 6 storey (d) 8 storey (e) 10 storey	93

Figure 4.2	Behaviour of floor acceleration for ground motion 0.06g (a) 2 (b) 4 (c) 6 (d) 8	3
	and (e) 10 storey	93
Figure 4.3	Behaviour of floor acceleration for ground motion 0.16g (a) 2 (b) 4 (c) 6 (d) 8	3
	and (e) 10 stories	93
Figure 4.4	Behaviour of floor acceleration for ground motion 0.32g (a) 2 (b) 4 (c) 6 (d) 8	3
	and (e) 10 stories	94
Figure 4.5	Comparison of building period to PFA/PGA with different models	95
Figure 4.6	Comparisons between acceleration amplification factor to normalized height	
	when ground motion ranges less than 0.067g (a) 2 (b) 4 (c) 6 (d) 8 and (e) 10	
	stories	97
Figure 4.7	Comparisons between acceleration amplification factor to normalized height	
	when ground motion ranges are 0.067g to 0.2g (a) 2 (b) 4 (c) 6 (d) 8 and (e)	10
	stories	00
Figure 4.8	Comparisons between acceleration amplification factor to normalised height	
	when ground motion ranges are 0.2g to 0.32g (a) 2 (b) 4 (c) 6 (d) 8 and (e) 10)
	stories	02
Figure 4.9	Comparison of actual and ASCE ap spectra based on 30 floor acceleration	
	histories recorded in 4 Storey building under earthquakes with $PGA > 0.2 \text{ g.}$	03
Figure 5.1	Fixed supported Moment resisting frame models (a) 2 (b) 4 (c) 6 (d) 8 and (e))
	10 stories	08
Figure 5.2	Pin supported Moment resisting frame models (a) 2 (b) 4 (c) 6 (d) 8 and (e) 1	0
	stories	10

 Figure 5.3 Floor response spectra of the different models for fixed and pin support
 113

Figure 5.4	Comparison	of the models	for fixed	and pin	support of	condition	with	acceleration	1
	0.01g to 0.0	67g having 2,4	4,6,8 and	10 storie	es.			11	6

- Figure 5.5 Comparison of the models for fixed and pin support condition with acceleration0.067g to 0.2g having 2,4,6,8 and 10 stories.118
- Figure 5.6 Comparison of the models for fixed and pin support condition with acceleration0.2g to 0.31g having 2,4,6,8 and 10 stories.120
- Figure 6.1 Floor Spectral Acceleration of different model for hinge support condition 130
- Figure 6.2 Behaviour of peak floor acceleration with respect to normalised hight when the chi-chi earthquake 0.06g for (a) 2 Storey (b) 4 Storey (c) 6 Storey (d) 8 Storey (e) 10 Storey

 131
- Figure 6.3 Behaviour of peak floor acceleration with respect to normalised hight when the
chi-chi earthquake 0.17g for (a) 2 Storey (b) 4 Storey (c) 6 Storey (d) 8 Storey
(e) 10 Storey131
- Figure 6.4 Behaviour of peak floor acceleration with respect to normalised hight when the chi-chi earthquake 0.26g for (a) 2 Storey (b) 4 Storey (c) 6 Storey (d) 8 Storey (e) 10 Storey

 132
- Figure 6.5 Comparison of the models with the seismic range 0.01g to 0.067g (a) 2 (b) 4 (c)6 (d) 8 and (e) 10 Stories.133
- Figure 6.6 Comparison of the models with the seismic range 0.067g to 0.2g (a) 2 (b) 4 (c)6 (d) 8 and (e) 10 Stories.135

Figure 6.7	Comparison of the models with the seismic range 0.2g to 0.31g (a) 2 (b) 4 (c)) 6
	(d) 8 and (e) 10 Stories.	137
Figure 7.1	Moment resisting frame models (a) 4 (b) 6 (c) 8 and (d) 10 stories	142
Figure 7.2	Nature of Spectral acceleration of 4,6,8 and 10 storey	145
Figure 7.3	Behaviour of PFA over the normalize height for Northridge earthquake	146
Figure 7.4	Behaviour of PFA over the normalize height for Kobe earthquake	146
Figure 7.5	Comparison of peak roof acceleration amplification with respect to building	
	period	147
Figure 7.6	Comparison of the acceleration amplification model with respect to normalis	ed
	height of the building	149
Figure 7.7	Comparison of the mean +sd component amplification factor to ASCE mode	1

LIST OF TABLES

Table No.	Table CaptionPa	age No.
Table 1.1 Sei	smic Zone in India Based on Intensity on M.M. Scale	3
Table 1.2 Sei	smic events in the world and the effected of human life	4
Table 1.3 Evo	olution of NSEs used in building over the last four decades in INDIA	27
Table 1.4 Eco	onomic losses due to failure of NSEs [16]	28
Table 2.1 Val	lue of α is suggested for the seismic design of newly constructed NSCs	3 49
Table 2.2 Val	lue of β is suggested for the seismic design of newly constructed NSCs	s 49
Table 3.1 Siz	e of beams and columns	52
Table 3.2 Tin	ne History Data for Peak Ground Acceleration between 0.01g to 0.1g	55
Table 3.3 Tin	ne History Data for Peak Ground Acceleration between 0.1g to 0.2g	56
Table 3.4 Tin	ne History Data for Peak Ground Acceleration between 0.2g to 0.3g	58
Table 3.5 Nu	mber of Ω data exceed the actual Ω data given by different mathematic	cal
mo	dels	81
Table 4.1 Val	lues of "a" based on ground motion range and period of supporting stru	ıcture
		84
Table 4.2 Red	corded ground motion data having ranges 0.01g to 0.67g	86
Table 4.3 Red	corded ground motion data having ranges 0.067g to 0.2g	88
Table 4.4 Red	corded ground motion data having ranges 0.2g to 0.32g	89
Table 5.1 Am	aplification factor (in %) for different models at pin support with respe	ct to
actu	al results when the ground motion range 0.01g to 0.067g	122

Table 5.2	Amplification	factor (in %) fo	r different	models at p	in support v	vith respect to	1
	actual results v	when the ground	l motion ra	nge 0.067g	to 0.2g		122

Table 5.3 Amplification factor (in %) for different models at pin support with	respect to
actual results when the ground motion range 0.2g to 0.30g	123

Table 5.4	Amplification	factor (in	%) for	different	models	at fixed	support	with respect	to
	actual results v	when the	ground	motion ra	nge 0.0	1g to 0.0	67g		123

- **Table 5.5** Amplification factor (in %) for different models at fixed support with respect toactual results when the ground motion range 0.067g to 0.2g124
- **Table 5.6** Amplification factor (in %) for different models at fixed support with respect toactual results when the ground motion range 0.2g to 0.30g124

Table 6.1 Values of "a" based on ground motion range and period of supporting structure

Table 7.1 β Value based on the ground motion and the natural period of the building	141
Table 7.2 Recorded ground motion data having ranges 0.01g to 0.67g	143

Preface

A structure consists of two components as primary components, also called main components, and secondary components or non-structural components (NSCSs). The main components are designed to resist different types of loads. The NSCSs are connected to the main components, but they do not transfer vertical or lateral loads. However, the seismic load is similar to the primary component's nature. Examples of non-structural components are cladding panels, furniture, transformers, partition walls, etc. Initially, it was assumed that the NSCSs do not affect the stiffness and the seismic effect of the building, but recent experimental studies found that during the seismic action, the NSCSs also influence the stiffness and the seismic response of the structures. Over the previous four decades in the world, the cost of non-structural elements (NSEs) has risen as a percentage of the project's total construction cost. With high expectations of functional performance of buildings and higher maintenance costs, the cost of NSEs soared from a paltry 5% in the 1970s to a dominating 70% in the 2000s. Because changes in building performance are projected to be minimal, NSEs costs are expected to saturate during the next decade. Furthermore, many NSEs (used in modern buildings) have not been tested to show that they can withstand substantial earthquake motion. Over the previous three decades, the average economic loss due to earthquake-related NSEs failure in the United States has been estimated to be roughly US\$2-0-4.5 billion per year.

NSE can be divided based on acceleration sensitive subsystem and storey drift sensitive subsystem. Several studies have been done proposing some guidelines to investigate the behaviour of storey drift and acceleration-sensitive non-structural components. Based on the minimum equivalent force method for a new building and the improvement of the existing building, some code provisions are discussed in the literature for the designing of non-structural components. These provisions were partially based on the analytical studies and partly based on the data recorded by instrumental building.

The inertia force acting on the NSEs is determined with the help of the acceleration amplification factor. A limited study has been done to determine the acceleration amplification factor. Some of the codes observed that the amplification factor only depends on the height of the buildings. However, some researchers observed that it depends on the building's natural time periods. UBC code marks that the amplification factor is only dependent on the normalised height of the building and its maximum value is 4. However, ASCE code provides the maximum value of the amplification factor as 3, and the IITK model remarks the maximum acceleration amplification value for RC structure is two and is dependent on the normalising height of the building. Some researchers presented the acceleration amplification factor formula based on structures' height and fundamental period. However, it was observed that the amplification factor depends not only on the fundamental period of the structures but also on the range of the ground motion.

Since the amplification factor also depends on other factors such as ductility ratio, building support conditions, types of structures, etc., this research work aimed to determine the amplification value of the structures using FEM based software. For this, five different heights of the building models have been considered. These models were analysed using linear and nonlinear time history methods with a varied range of ground motion considering the rock-type soil. For obtaining the amplification values, two different support conditions were considered. In the first case, the base of the structures was fixed to obtain the amplification values. These amplification values were compared with the previously proposed models. It was observed that the previous amplification models produced conservative results as the natural period of the structures increased. The researchers consider the fundamental natural period but account for the maximum structural period as 2.5 sec, which is not always true. The values of structural period are not constant for all types of ground motion. It varies between 2.5 to 5.5 sec. with the range of the ground motion. The amplification models for low to moderate hazards were proposed, which performed better than the other models. Furthermore, it was also observed that as the height of the building increases, the nature of the amplification factor is nonlinear. So non-linear mathematical amplification models are proposed to determine the amplification factors.

For incremental dynamic analysis, the amplification factor is affected by the height of the building, the natural period of the building, and the ductility ratio. Based on these factors, the amplification formula has been proposed, which gave satisfactory results compared to the previous models. The second case considered as the base of the structures is pinned supported with a low to moderate range of the ground motion and obtained the amplification

values. These amplification values are compared with the previous proposed models and also compared with the amplification values with fixed support conditions. It was found that no single model performed satisfactory results so that to developed the new mathematical amplification models, based on some factors (ductility ratio, effective time periods etc.), which gave better results compared to the previous models.