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Preface 

A structure consists of two components as primary components, also called main 

components, and secondary components or non-structural components (NSCSs). The main 

components are designed to resist different types of loads. The NSCSs are connected to the 

main components, but they do not transfer vertical or lateral loads. However, the seismic 

load is similar to the primary component's nature. Examples of non-structural components 

are cladding panels, furniture, transformers, partition walls, etc. Initially, it was assumed that 

the NSCSs do not affect the stiffness and the seismic effect of the building, but recent 

experimental studies found that during the seismic action, the NSCSs also influence the 

stiffness and the seismic response of the structures. Over the previous four decades in the 

world, the cost of non-structural elements (NSEs) has risen as a percentage of the project's 

total construction cost. With high expectations of functional performance of buildings and 

higher maintenance costs, the cost of NSEs soared from a paltry 5% in the 1970s to a 

dominating 70% in the 2000s. Because changes in building performance are projected to be 

minimal, NSEs costs are expected to saturate during the next decade. Furthermore, many 

NSEs (used in modern buildings) have not been tested to show that they can withstand 

substantial earthquake motion. Over the previous three decades, the average economic loss 

due to earthquake-related NSEs failure in the United States has been estimated to be roughly 

US$2-0-4.5 billion per year. 

NSE can be divided based on acceleration sensitive subsystem and storey drift sensitive 

subsystem. Several studies have been done proposing some guidelines to investigate the 

behaviour of storey drift and acceleration-sensitive non-structural components. Based on the 

minimum equivalent force method for a new building and the improvement of the existing 

building, some code provisions are discussed in the literature for the designing of non-

structural components. These provisions were partially based on the analytical studies and 

partly based on the data recorded by instrumental building.  

The inertia force acting on the NSEs is determined with the help of the acceleration 

amplification factor. A limited study has been done to determine the acceleration 

amplification factor. Some of the codes observed that the amplification factor only depends 

on the height of the buildings. However, some researchers observed that it depends on the 
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building's natural time periods. UBC code marks that the amplification factor is only 

dependent on the normalised height of the building and its maximum value is 4. However, 

ASCE code provides the maximum value of the amplification factor as 3, and the IITK model 

remarks the maximum acceleration amplification value for RC structure is two and is 

dependent on the normalising height of the building. Some researchers presented the 

acceleration amplification factor formula based on structures' height and fundamental period. 

However, it was observed that the amplification factor depends not only on the fundamental 

period of the structures but also on the range of the ground motion. 

Since the amplification factor also depends on other factors such as ductility ratio, building 

support conditions, types of structures, etc., this research work aimed to determine the 

amplification value of the structures using FEM based software. For this, five different 

heights of the building models have been considered. These models were analysed using 

linear and nonlinear time history methods with a varied range of ground motion considering 

the rock-type soil. For obtaining the amplification values, two different support conditions 

were considered. In the first case, the base of the structures was fixed to obtain the 

amplification values. These amplification values were compared with the previously 

proposed models. It was observed that the previous amplification models produced 

conservative results as the natural period of the structures increased. The researchers consider 

the fundamental natural period but account for the maximum structural period as 2.5 sec, 

which is not always true. The values of structural period are not constant for all types of 

ground motion. It varies between 2.5 to 5.5 sec. with the range of the ground motion. The 

amplification models for low to moderate hazards were proposed, which performed better 

than the other models. Furthermore, it was also observed that as the height of the building 

increases, the nature of the amplification factor is nonlinear. So non-linear mathematical 

amplification models are proposed to determine the amplification factors. 

For incremental dynamic analysis, the amplification factor is affected by the height of the 

building, the natural period of the building, and the ductility ratio. Based on these factors, 

the amplification formula has been proposed, which gave satisfactory results compared to 

the previous models. The second case considered as the base of the structures is pinned 

supported with a low to moderate range of the ground motion and obtained the amplification 
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values. These amplification values are compared with the previous proposed models and also 

compared with the amplification values with fixed support conditions. It was found that no 

single model performed satisfactory results so that to developed the new mathematical 

amplification models, based on some factors (ductility ratio, effective time periods etc.), 

which gave better results compared to the previous models. 

  


