ASSESSING THE IMPACT OF PRODUCTION TEMPERATURES ON THE PERFORMANCE OF WARM MIX ASPHALT

वॉर्म मिक्स डामर के गुणों पर उत्पादन तापमान के प्रभाव का

आकलन

Thesis submitted in partial fulfillment for the Award of Degree

Doctor of Philosophy

By

MAYANK SUKHIJA मयंक सुखीजा

Department of Civil Engineering INDIAN INSTITUTE OF TECHNOLOGY (BANARAS HINDU UNIVERSITY) VARANASI – 221005

18061006

2022

CERTIFICATE

It is certified that the work contained in the thesis titled "ASSESSING THE IMPACT OF PRODUCTION TEMPERATURES ON THE PERFORMANCE OF WARM MIX ASPHALT" by "Mr. MAYANK SUKHIJA" has been carried out under our supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph.D. Degree.

Supervisor Dr. Agnivesh P Department of Civil Engineering Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh

Cimpuls

Co-Supervisor Dr. Nikhil Saboo Department of Civil Engineering Indian Institute of Technology Roorkee Roorkee, Uttarakhand

DECLARATION BY THE CANDIDATE

I, MAYANK SUKHIJA, certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of Dr. AGNIVESH P and Dr. NIKHIL SABOO from July 2018 to July 2022 at the Department of Civil Engineering, Indian Institute of Technology, (BHU) Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully lifted up any other's work, paragraphs, text, data, results, *etc.*, reported in journals, books, magazines, reports dissertations, thesis, *etc.*, or available at websites and included them in this thesis and cited as my own work.

Date: 30-7-2022

Place: Varanasi

(MAYANK SUKHIJA)

Signature of the Student

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of our

knowledge.

Supervisor Dr. Agnivesh P Department of Civil Engineering Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh

Co-Supervisor Dr. Nikhil Saboo Department of Civil Engineering Indian Institute of Technology Roorkee Roorkee, Uttarakhand

Signature of Mead of the Department

विभागाध्यक्ष / HEAD जानपद अभिांत्रिकी विभाग Department of Civil Engineering भारतीय प्रौरगोगिकी संस्थान (बी.एच.यू) Indian Institute of Technology (B.H.U.) बाराणसी-221005/Varanasi-221005

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Assessing the Impact of Production Temperatures on the

Performance of Warm Mix Asphalt

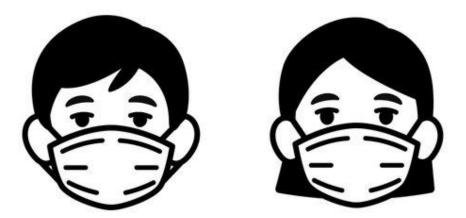
Name of the Student: Mayank Sukhija

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the DOCTOR OF PHILOSOPHY.

Pluse B

Date: 30-7-2022


Place: Varanasi

Signature of the Student

(MAYANK SUKHIJA)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

Dedicated to Frontline Corona Warriors and My Beloved Family...

Whenever I felt like giving up on this project, God's grace and my parents' belief in me would continually strengthen my intellect, encourage me to keep going, and offer new possibilities to explore. Countless people knowingly and unknowingly have supported my efforts in the research journey. I want to thank all the people who have helped me in the journey of completing this Ph.D. thesis and made my journey successful.

First and foremost, I wish to express my deep regards and sincere gratitude to **Dr. Nikhil Saboo**, Assistant Professor, Department of Civil Engineering, Indian Institute of Technology Roorkee, for his patience, inspiring guidance, valuable suggestions, constant encouragement, keen interest throughout the journey, and faith in me at every stage of this research. It has been an honor to be his first Ph.D. student. I am fortunate to work with a very compassionate and encouraging professor like him. I thank him for reminding me that I can do better, which enhanced my confidence and helped me improve my research methodologies. During my research, he helped me frame ideas by giving me intellectual freedom and demanding high-quality work. I've benefited immensely from his wealth of knowledge and efforts to improve my work. Not only through the Ph.D. research work, but he gave me opportunities to learn through various other projects and courses. I will be forever grateful for having him as my supervisor from the bottom of my heart.

I would like to express my appreciation and deepest gratitude to **Dr. Agnivesh P**, Assistant Professor, Department of Civil Engineering, Indian Institute of Technology (BHU), for his consistent support and suggestions in my research work and thesis writing. Though I got to work with him during the last phase of my Ph.D., his insightful comments and critical questions helped me to understand and enrich my research ideas. His motivational skills and inspirational stories taught me how to overcome negative thoughts and made me confident and comfortable during my presentations. Also, his consistent support in all the documentation work and finding great opportunities for me in the research world will always be the best part of my Ph.D.

A special thanks to **Dr. Ankit Gupta**, Associate Professor, and MoRTH Chair Professor, Department of Civil Engineering, Indian Institute of Technology (BHU), for continuously motivating me and encouraging me to do good quality work. His critical examination and unbiased suggestions during all my presentations led to tremendous improvement in the research work.

I express my heartfelt thanks and gratitude to **Dr. Abhisek Mudgal** and **Dr. Brind Kumar** for their technical guidance and elliptical suggestions during the research work. I am also thankful to all the other faculty members of the Department of Civil Engineering, Indian Institute of Technology (BHU), for their constant support during the research phase.

I wish to convey my sincere gratitude to **Prof. Promod Kumar Jain**, Director, Indian Institute of Technology (BHU), for all the institutional support during the course of this study. I would like to thank **Prof. Shyam Bihari Dwivedi**, Dean of Academic Affairs, for their support. I also express my thanks to **Dr. Prabhat Kumar Singh Dikshit**, Professor, and Head of the Department of Civil Engineering, Indian Institute of Technology (BHU), for making departmental facilities available for the research work even during the COVID times.

I would like to express my sincere appreciation to the research progress evaluation committee (RPEC) member **Dr. Chandana Rath**, Associate Professor, School of

Materials Science and Technology, Indian Institute of Technology (BHU), for their valuable input and brilliant suggestions during the progress presentations.

I would also extend my acknowledgment to the technical staff, **Mr. Roshan Bhandari** and **Mr. Amit Singh**, of the Transportation Laboratory, for their consistent help and practical advice in one way or another. Special mention to **Mr. Suraj Kharwar** and **Mr. Om Prakash Badal** for always being readily available for their assistance during the laboratory work. The help and support from the administrative staff (especially **Mr. Amar** and **Mr. Nitin**) of the Department of Civil Engineering, IIT (BHU) is also greatly acknowledged.

I would like to acknowledge the assistance from my colleague **Mr. Mohit Chaudhary** who always stood beside me like a brother during my research tenure. Being inseparable, he has endured all my stupidity, fights, arguments, secrets, laughter, and technicality from the first day of my Ph.D. till the end. I'm indebted to my friend **Mr. Annadasu Nirmal Prasad Naidu**, for encouraging and building confidence in me at every stage. Despite his work and health issues, he helped me by providing critical insights and useful suggestions during the research work and thesis preparation. Special thanks to **Mr. Vivek Wagh** for his technical assistance while doing the experimental work. The timeless discussions and critical arguments he provided are the prominent parts that can never be overlooked. Appreciation is extended to my seniors **Dr. Jayvant Choudhary**, **Dr. Satyajit Mondal**, **Mr. Gaurav Verma**, **Dr. Arunabh Pandey**, and **Dr. Poonam Sharma** for their guidance and active discussions during the last four years.

I am grateful to other fellows at IIT BHU, including Ashish Kumar Chouksey, Amit Kumar Ram, Abhinav Kumar, Saroj Kanta Behera, Sadiya Shaikh, Parul Rawat, Amit Singh, Abhijeet Babar, Abhinav Thakur, Ashutosh Kumar, Vishal Kushwaha, Mayank Nishant, Aakash Singh, Gaurav Singh, Sukeerti Bansal, Amardeep Pandey, and Rohit Rodhia. They all deserve a lot of thanks from me for their inspiration, help, and cooperation. I'll always remember the time I spent at IIT Roorkee, where I met many new people who all helped me along the way. I offer special thanks to Mr. Harishbabu Jallu for his moral support and for enduring my nagging. I am very thankful to Dheeraj Mehta, Yashodhara Singh, Rashmi Choudhary, Surya Kant Sahdeo, Ankit Sharma, Priti Rai, Prakhar Aeron, Soumyadeep, Muskan Verma, Rishi Chhabra, Mohanshu, Bhavesh, Abhitesh, Sumit, Ayana, Sohel, Manish, Col. Avnish, and Major Amit for their extensive cooperation during my stay there. I also express my appreciation towards the lab staff (especially Mr. Rajeev Hooda, and Shahrukh) at IIT Roorkee for their support and assistance.

I would also like to mention my close friends **Prachi, Rushil, Sagar, Rahul, Vishant, Shivam, Adheesh, Akshita, Hitesh, Parvez, Hansvi-Vadhyani, Dipanshu, Himani, Deepansh, Avantika, Rinki, Swati,** and **Deepak** who helped me in one or another way during the difficult years.

Last but not least, I would like to thank "**My Joint Family**", especially my mother **Mrs. Geeta Sukhija**, father **Mr. Kishan Sukhija** and brother **Mr. Rajat Sukhija**, for their unparalleled love and timely encouragement. They selflessly motivated me and gave me time to seek my dreams. Appreciation is extended to **Mrs. Preeti Saboo** for making me feel at home during the lockdown and afterward like her own family member. I would dedicate my thesis to my family for their unconditional love and trust in me. As half of my research tenure was spent during COVID, I would also like to dedicate my research to frontline corona warriors.

I'm thankful for the financial assistance in the form of a research fellowship and contingency grants provided by the Ministry of Human Resource and Development (MHRD), Government of India, for carrying out my research work.

Mayank Sukhija

TABLE OF CONTENTS

Certificate	i
Declaration by the Candidate	ii
Copyright Transfer Certificate	iii
Dedication	iv
Acknowledgement	v-ix
Table of Contents	xi-xvi
List of Figures	xvii-xxiii
List of Tables	xxv-xxix
Abbreviations	xxxi-xxxiv
Abstract	xxxv-xxxix

1 INTRODUCTION	1	-2	3	,
----------------	---	----	---	---

1.1	Preface	1
1.2	History of WMA	4
1.3	Classification of WMA Technologies	6
1.3	.1 Foaming Technology	6
1.3	.2 Organic Additives	7
1.3	.3 Chemical Agents	8
1.4	Benefits and Drawbacks of WMA	9
1.5	Problem Statement and Gaps	11
1.6	Key Research Queries	13
1.7	Aim	14
1.8	Objectives and Tasks	14
1.9	Scope of the Present Study	16
1.10	Organization of the Thesis	20
2 LIT	ERATURE REVIEW	25-115

2.1	Preface	.25
2.2	Introduction to WMA	.32
2.3	Concept of Mix Design	.39

	2.3.	.1 Material Selection	
	2.3.2	.2 Aggregate Gradation	41
	2.3.	.3 Additional Additives	41
	2.3.4	.4 Curing and Conditioning Process	
	2.3.	.5 Mixing and Compaction Temperature	
		2.3.5.1 Review of Methodologies used for the Estimation of Production	
	Т	Гетреratures	
	2.4	Discussion on Mix Parameters	
	2.4.		
	2.4.	1	
	2.5	Morphological, Chemical, and Physical Characteristics	
	2.5.	.1 Morphology of WMA Binders	
	2.5.	.2 Chemical Characteristics of WMA Binders	
	2.5.	.3 Physical Properties of WMA Binders	
	2.6	Performance of WMA Binders and Mixtures	67
	2.6.	.1 Resistance to Rutting Potential	67
	2.6.	.2 Fatigue Resistance	76
	2.6.	.3 Resistance to Moisture Damage	
	2.7	Field Survey	92
	2.7.	.1 Summary of Field Survey	100
	2.8	Interaction of WMA with Different Materials	101
	2.9	Environmental and Economic Survey	105
	2.10	Life Cycle Assessment	105
	2.10	0.1 Greenhouse Gas Emissions	107
	2.11	Energy Consumption and Economic Benefits	110
	2.12	Summary	113
3		FERIALS AND METHODOLOGY11	[/-186
	3.1	Preface	117
	3.2	Materials Used	
	3.2		
	3.2. 3.2.	· · · ·	
	3.2.		
	3.2.		
	3.2.	-	
	3.	3.2.5.1 Ageing of Asphalt Binders	

3.2.5.2	Ageing of Asphalt Mixtures			
3.3 Exper	imental Framework	131		
3.4 Meth	odology	134		
3.4.1 H	Basic Characterization of Asphalt Binder	134		
3.4.1.1	Scanning Electron Microscopy	134		
3.4.1.	1.1 Discussion on SEM Observations	136		
3.4.1.2	Fourier Transform Infrared Spectroscopy (FTIR)	143		
3.4.1.	2.1 Discussion on FTIR Spectral Analysis	146		
3.4.1.3	Penetration Value	151		
3.4.1.4	Softening Point	151		
3.4.1.5	Viscosity Value	151		
3.4.1.6	High-Temperature Performance Grade (PG)	152		
3.4.1.7	Discussion on the Basic Properties of Asphalt Binders	154		
3.4.1.	7.1 Effect of WMA Technologies on the Penetration Value	154		
3.4.1.	7.2 Effect of WMA Technologies on the Softening Point	155		
3.4.1.	7.3 Effect of WMA Technologies on the Viscosity Value	157		
3.4.1.	7.4 Effect of WMA technologies on the high temperature PG	158		
3.4.1.8	Correlations between the Basic Properties of Asphalt Binders	160		
3.4.2 I	Determination of Production Temperatures	163		
3.4.3 H	hase I – Characterization of Asphalt Binders	169		
3.4.3.1	Frequency Sweep	169		
3.4.3.2	Multiple Stress Creep and Recovery (MSCR)	170		
3.4.3.3	Linear Amplitude Sweep Test (LAST)	171		
3.4.3.4	Bond Strength and Bond Strength Ratio	172		
3.4.4 H	hase II – Characterization of Asphalt Mixtures	175		
3.4.4.1	Mix Design	175		
3.4.4.2	Cyclic Compression Test (CCT)	178		
3.4.4.3	Indirect Tensile Cracking Test			
3.4.4.4	Moisture Resistance			
3.4.4.	4.1 Boiling Water Test			
3.4.4.				
3.4.4.				
3.5 Sumr	nary			
4 MIXING	4 MIXING AND COMPACTION TEMPERATURES OF ASPHALT			
MIXTURE	5	187-234		

4.1 Preface	187
4.2 Experimental Plan	190
4.2.1 Different Approaches for Determining Mixing and Compaction Temperatur	es. 191
4.2.2 Background, Need, and Development of Workability Prototype	191
4.2.2.1 Estimation of Workability	195
4.2.2.2 Challenges and Refinement in the Workability Setup	198
4.2.2.3 Feasibility and Validation of Fabricated Workability Setup	199
4.2.2.4 Assessment of Production Temperatures	199
4.2.3 Mix Design	201
4.2.3.1 Validation of Production Temperatures	201
4.2.3.1.1 Coating Ability of Asphalt Mixtures	202
4.2.3.1.2 Compactability Test	206
4.3 Results and Discussion	207
4.3.1 RV Approach	207
4.3.2 DSR Approach	211
4.3.3 Discussion on Workability Characteristics	214
4.3.4 Production Temperatures from Workability Approach	221
4.3.5 Discussion on Coating Ability	226
4.3.6 Discussion on Compactability	228
4.3.7 Selection of Optimum WMA Additive Dosage	230
4.4 Summary	233

5 CHARACTERIZATION OF ASPHALT BINDERS 235-291

5.1	Preface	235
5.2	Ageing Behavior of WMA Binders	237
5.3	Discussion on the Master Curve	244
5.4	Rutting Performance	249
5.4	1 Application of Arrhenius Equation	258
5.5	Fatigue Performance	
5.5	1 Stress-Strain Response of Asphalt Binders	
5.5	2 Fatigue Life of Asphalt Binders	274
5.6	Moisture Resistance	
5.7	Summary	

6 CHARACTERIZATION OF ASPHALT MIXTURES 293-331

6.1	Preface	293
6.2	Rutting Performance	295
6.3	Fatigue Performance	
6.3	Discussion on FE and FI of WMA mixtures	
6.3	Discrepancies between FE and FI	
6.4	Moisture Resistance	
6.4	.1 Discussion on Boiling Water Test	
6.4	.2 Discussion on Retained Marshall Stability	
6.4	.3 Indirect Tensile Strength and Tensile Strength Ratio	
6.5	Correlation Analysis	
6.5	5.1 Correlating Rutting Performance	
(6.5.1.1 Limiting Values of Rutting Test Parameters	
6.5	Correlating Fatigue Performance	
(6.5.2.1 Limiting Values of Fatigue Test Parameters	
6.5	Correlating Moisture Performance	
(6.5.3.1 Limiting Value of BSR	
6.6	Summary	
	DNOMIC AND ENVIRONMENTAL IMPACT OF V	
7.1	Preface	
7.2	Experimental Approach	
7.2	2.1 Environmental Life Cycle Assessment (ELCA)	
7.2	2.2 Calculation of Energy Consumption and GHG Emissions	
7.3	Results and Discussion	
7.3	E.1 Energy Consumption and Cost Savings	
7.3		
7.3	3.3 Greenhouse Gas Emissions	
7.4	Summary	
8 RAI	NKING OF WARM MIX ASPHALT ADDITIVES	373-392
8.1	Preface	
8.2	Ranking Approach	

0.2	Kanking Approach	
8.3	Results and Discussion	378
8.4	Summary	391

9.1	Prefa	nce	
9.2	Conc	clusions	
9.2.	1 1	Material Characterization	
9.2.	2 1	Production Temperatures of Asphalt Mixtures	
9.2.	3 I	Performance of Asphalt Binders	
9.2.	4 I	Performance of Asphalt Mixtures	
9.2.	5 I	Economic and Environmental Burdens	
9.2.	6 l	Ranking of WMA Additives	
9.3	Cont	ribution of the Study	400
9.4	Limi	tations of the Study	401
9.5	Appl	ications of the Research Output	401
9.6	Futu	re Recommendations	
LIST	OF P	UBLICATIONS	403-405
REFE	REN	CES	407-464

LIST OF FIGURES

<u>Figure No.</u>	<u>Title</u> <u>Page</u>	<u>No.</u>
Figure 1.1.	Year-wise variation of GHG emissions in India	3
Figure 1.2.	Classification of asphalt mixtures	3
Figure 1.3.	WMA field trials in India	5
Figure 1.4.	Direct method of foaming technology	7
Figure 1.5.	Examples of WMA technologies	9
Figure 2.1	Four pillars (steps) of systematic literature review (SLR)	26
Figure 2.2	Systematic literature review based on different aspects	31
Figure 2.3	Classification of asphalt mixtures	33
Figure 2.4.	% Reduction in production temperature in comparison to HMA	49
Figure 2.5.	Reduction in production temperature corresponding to base bind	ler 49
Figure 2.6.	Variation in Mix Parameters	59
Figure 2.7.	Review on rutting behavior of WMA mixtures	75
Figure 2.8.	Review on fatigue behavior of WMA mixtures	84
Figure 2.9.	Percent improvement in different environmental exposures	107
Figure 2.10.	Percent reduction in fumes and air contaminants	108
Figure 2.11.	Reduction in energy consumption based on past studies	111
Figure 3.1.	WMA additives	121
Figure 3.2.	Stepwise preparation of WMA binder and mixtures	125
Figure 3.3.	STA and LTA of asphalt binders	128
Figure 3.4.	Simulation of ageing in laboratory using forced draft oven	130
Figure 3.5.	Complete process indicating STA and LTA of asphalt mixtures	130

Figure 3.6.	Outline of the research work	132
Figure 3.7.	Experimental framework	133
Figure 3.8.	SEM principle	135
Figure 3.9.	Process of Scanning electron microscopy	136
Figure 3.10.	SEM images	141
Figure 3.11.	SEM images of WMA binders prepared with VG30	142
Figure 3.12.	SEM images of WMA binders prepared with PMB40	143
Figure 3.13.	FTIR principle	145
Figure 3.14.	Process of FTIR	146
Figure 3.15.	FTIR spectrums	150
Figure 3.16.	Test setup	152
Figure 3.17.	Dynamic shear rheometer and its components and accessories	153
Figure 3.18.	Penetration value of different WMA binders	155
Figure 3.19.	Softening point of different WMA binders	156
Figure 3.20.	Viscosity values of different WMA binders	158
Figure 3.21.	PG and True fail temperature of different WMA binders	160
Figure 3.22.	Correlations between different test parameters	162
Figure 3.23.	Rotational viscometer used in the present research work	164
Figure 3.24.	Viscosity-Temperature plot for determining mixing and compare temperatures	ction 164
Figure 3.25.	Typical representation of C-Y model curve	166
Figure 3.26.	Line diagram of developed workability prototype	168
Figure 3.27.	Validation checks	168
Figure 3.28.	Example of master curve (G*/Sinδ) at reference temperature of 60°C	170
Figure 3.29.	Schematic representation of creep and recovery	171

Figure 3.30.	Pneumatic piston setup with different testing components	174
Figure 3.31.	Stepwise procedure to determine BS and BSR	174
Figure 3.32.	Designed aggregate gradation for both the aggregate source	176
Figure 3.33.	Form of distresses	177
Figure 3.34.	Cyclic compression test	179
Figure 3.35.	Ideal CT test	181
Figure 3.36.	Boiling water test	182
Figure 3.37.	Retained Marshall stability test	183
Figure 3.38.	Modified Lottman test	185
Figure 4.1.	Research framework followed in chapter 4	190
Figure 4.2.	Workability apparatus fabricated in this study	194
Figure 4.3.	Stepwise measurement of workability of asphalt mixtures	197
Figure 4.4.	Deposition of material	198
Figure 4.5.	Example of the raw data obtained from workability test along we the average trend	vith 199
Figure 4.6.	Components of coating apparatus	203
Figure 4.7.	Details of software	205
Figure 4.8.	Image captured	206
Figure 4.9.	Mixing and compaction temperatures using PAM	213
Figure 4.10.	Phase angle master curve of PMB40	213
Figure 4.11.	Variation of torque with temperature for conventional HMA mixtures	214
Figure 4.12.	Torque values for different asphalt mixtures prepared with VG30	217
Figure 4.13.	Torque values for different asphalt mixtures prepared with PMB40	219

Figure 4.14.	Effect of different variables on the torque values of asphalt mixtures	221
Figure 4.15.	Production temperatures obtained from workability approach	224
Figure 4.16.	CI _N for all the asphalt mixtures	227
Figure 4.17.	Air Voids for different asphalt mixtures	229
Figure 5.1.	Nomenclature of sample with different base asphalt binder, aggregate source, and WMA technology	237
Figure 5.2.	Ageing indices for different groups	243
Figure 5.3.	G*/Sinδ master curves at 60°C for different sample groups	248
Figure 5.4.	G*.Sino master curves at 20°C for different sample groups	249
Figure 5.5.	Percent recovery of WMA binders for GVG group at different temperatures	252
Figure 5.6.	Percent recovery of WMA binders for DVG group at different temperatures	253
Figure 5.7.	Percent recovery of WMA binders for GP/DP group at different temperatures	254
Figure 5.8.	Non-recoverable creep compliance of WMA binders for GVG group at different temperatures	255
Figure 5.9.	Non-recoverable creep compliance of WMA binders for DVG group at different temperatures	256
Figure 5.10.	Non-recoverable creep compliance of WMA binders for GP/DP group at different temperatures	2 57
Figure 5.11.	Comparison between all the considered asphalt binders based of MSCR parameters	n 258
Figure 5.12.	Validation of Arrhenius model for variation of Jnr versus 1/T for GVG group	or 260
Figure 5.13.	Validation of Arrhenius model for variation of J_{nr} versus 1/T for DVG group	r 261
Figure 5.14.	Validation of Arrhenius model for variation of J_{nr} versus 1/T for GP/DP group	r 262

Figure 5.15.	Rutting parameter and modification index for different sample groups	265
Figure 5.16.	Variation in shear stress and shear strain with change in temperature	269
Figure 5.17.	Shear stress amplitude of samples in GVG group as a function shear strain	of 270
Figure 5.18.	Shear stress amplitude of samples in DVG group as a function shear strain	of 271
Figure 5.19.	Shear stress amplitude of samples in GP/DP group as a function shear strain	on of 272
Figure 5.20.	Comparison between all the considered asphalt binders based of their stress-strain response	on 274
Figure 5.21.	Schematic representation of N_F with strain amplitudes at differ temperatures	ent 277
Figure 5.22.	Fatigue life of samples in GVG group as a function of strain amplitude	278
Figure 5.23.	Fatigue life of samples in DVG group as a function of strain amplitude	279
Figure 5.24.	Fatigue life of samples in GP/DP group as a function of strain amplitude	280
Figure 5.25.	Bond strength mechanism	282
Figure 5.26.	Bond strength values of WMA	285
Figure 5.27.	Variation in BSR with the addition of WMA additives in different base asphalt binders	rent 286
Figure 6.1.	Strain response with change in loading cycles for different gro of asphalt mixtures	ups 298
Figure 6.2.	Creep modulus for different WMA mixtures	300
Figure 6.3.	Representative example showing the inadequacy of FE parame	eter 302
Figure 6.4.	Variation in fatigue performance with the inclusion of WMA additives in different asphalt mixtures	306

Figure 6.5.	Comparison between FE and FI	307
Figure 6.6.	Correlation between fatigue parameters	308
Figure 6.7.	Variation in coating over the aggregates with the addition of V additives in different base asphalt binders	WMA 310
Figure 6.8.	Variation in MS for WMA mixtures prepared using different asphalt binders	base 312
Figure 6.9.	Variation in ITS for WMA mixtures prepared using different asphalt binders	base 315
Figure 6.10.	Correlation between J_{nr} at different stress levels and CM of as mixtures	phalt 317
Figure 6.11.	Variation in R^2 (CM-J _{nr}) with the change in stress levels	318
Figure 6.12.	Correlation between RP and CM	318
Figure 6.13.	Correlation between J _{nr} and RP	319
Figure 6.14.	Establishment of limiting values of CM	320
Figure 6.15.	Correlation between the fatigue response of asphalt binders ar mixtures	nd 321
Figure 6.16.	R^2 value (N _F -FI) corresponding to different strain levels	322
Figure 6.17.	Correlation between N_F and FI at 10% strain value	323
Figure 6.18.	Projection of N_F from 2.5% to 10% strain values	324
Figure 6.19.	Correlation between N_F and FI for establishing the limiting FI value	[325
Figure 6.20.	Correlation analysis between moisture test parameters	328
Figure 6.21.	Correlation between BSR-TSR for establishing the limiting B value	SR 329
Figure 7.1.	Mixing temperatures of different WMA combinations at their optimum dosage	343
Figure 7.2.	Heat energy consumption for HMA and WMA mixtures with different combinations of aggregate and asphalt binder	345
Figure 7.3.	Reduction in heat energy for WMA mixtures	346

Figure 7.4.	Cost savings for WMA mixtures using various fuel type for	
	different groups	353
Figure 7.5.	Total GHG emissions in kgCO ₂ for HMA and WMA mixtures prepared using different combinations of aggregate and asphal binder	t 367
	omder	507

LIST OF TABLES

<u>Figure No.</u>	<u>Title</u> <u>Page</u>	<u>No.</u>
Table 1.1.	Chapter-wise layout of the thesis	20
Table 2.1	Brief history of WMA technologies	35
Table 2.2.	Overview of WMA technologies	36
Table 2.3.	Representative list of proposed methods for the prediction of production temperatures	45
Table 2.4.	A brief history of workability devices	52
Table 2.5.	Common functional group detected in asphalt binder	63
Table 2.6.	Form of alkanes that influences the rheological performance	65
Table 2.7.	Physical characteristics of WMA binders	66
Table 2.8.	Inferences of past literatures on rutting behaviour of WMA binders	68
Table 2.9.	Observations of previous studies on fatigue potential of WMA binders	77
Table 2.10.	Variation in TSR of WMA corresponding to HMA	90
Table 2.11.	Summary of field survey	94
Table 2.12.	Summary of WMA interaction	103
Table 2.13.	Results of industrial hygiene tests	109
Table 2.14.	Supplementary cost for WMA technologies	112
Table 2.15.	Overall impact of WMA technology	115
Table 3.1.	Physical properties of asphalt binders and aggregates	119
Table 3.2.	Description of warm mix additives adopted in this study	121

Table 3.3.	Qualitative and quantitative assessment of selected warm minadditives	x 122
Table 3.4.	Terminology used in the present study	124
Table 3.5.	Different types of conditioning as per AASHTO R30	129
Table 3.6.	Representative list of proposed methods for the prediction of production temperatures	165
Table 3.7.	Mix design attributes of conventional HMA mixtures	177
Table 4.1.	Operational details of workability prototype	194
Table 4.2.	Mixing temperature using different methods for VG30 base a binder	asphalt 209
Table 4.3.	Compaction temperature using different methods for VG30 b asphalt binder	base 210
Table 4.4.	Mixing temperature using different methods for PMB40 base asphalt binder	e 210
Table 4.5.	Compaction temperature using different methods for PMB40 asphalt binder) base 211
Table 4.6.	Reference torque values of conventional VG30 asphalt mixtu	ires 222
Table 4.7.	Ranking of different asphalt mixtures based on production temperatures	225
Table 4.8.	Optimum dosage of different WMA additives	232
Table 5.1.	Expected percent improvement in ageing resistance for differ combinations of asphalt mixtures	rent 244
Table 5.2.	Peak stress and failure strain for different asphalt binders at different test temperatures	273
Table 5.3.	Fatigue parameters and fatigue life equation for all the tested asphalt binders at different test temperatures	276
Table 5.4.	Failure patterns and interpretation criteria	287
Table 5.5.	Failure patterns when base asphalt binder is VG30	287
Table 5.6.	Failure patterns when base asphalt binder is PMB40	288

Table 6.1.	Percent change in FE and FI of WMA mixtures with respect to respective HMA mixtures	their 306
Table 6.2.	Overview of the popular test methods used for assessing the moisture susceptibility	309
Table 6.3.	Limiting values for RP, CM, and corresponding traffic grade	320
Table 6.4.	Traffic volume and designated traffic grade	324
Table 6.5.	Limiting values for N_{F} , FI, and corresponding traffic grade	325
Table 7.1.	Equations used for the evaluation of heat energy and fuel consumption	338
Table 7.2.	Values of variables used for the evaluation of heat energy	338
Table 7.3.	Value of constant parameters for the evaluation of fuel consumption	339
Table 7.4.	Energy emission factors for different fuels	341
Table 7.5.	Amount and price of fuel to produce 1000 kg HMA and WMA mixtures with granite and VG30	348
Table 7.6.	Amount and price of fuel to produce 1000 kg HMA and WMA mixtures with dolomite and VG30	349
Table 7.7.	Amount and price of fuel to produce 1000 kg HMA and WMA mixtures with granite and PMB40	349
Table 7.8.	Amount and price of fuel to produce 1000 kg HMA and WMA mixtures with dolomite and PMB40	350
Table 7.9.	Unit price of different fuels	351
Table 7.10.	Required amount and price of WMA additives for 1000 kg asp mixtures	halt 356
Table 7.11.	Maximum bearable cost for different WMA additives prepared with granite and VG30 based on fuel type	l 357
Table 7.12.	Maximum bearable cost for different WMA additives prepared with dolomite and VG30 based on fuel type	l 357
Table 7.13.	Maximum bearable cost for different WMA additives prepared with granite and PMB40 based on fuel type	l 358

Table 7.14.	Maximum bearable cost for different WMA additives prepared with dolomite and PMB40 based on fuel type	358
Table 7.15.	GHG Emissions for HMA and WMA mixtures prepared with granite and VG30	360
Table 7.16.	GHG Emissions for HMA and WMA mixtures prepared with dolomite and VG30	361
Table 7.17.	GHG Emissions for HMA and WMA mixtures prepared with granite and PMB40	363
Table 7.18.	GHG Emissions for HMA and WMA mixtures prepared with dolomite and PMB40	364
Table 7.19.	Improvement in environmental burden in terms of GHG emiss	ion 368
Table 8.1.	Format of the ranking methodology	375
Table 8.2.	Format for global average ranking	377
Table 8.3.	Selected test parameters for ranking	378
Table 8.4.	Asphalt binder testing results and corresponding normalized a rank values for GVG group	nd 379
Table 8.5.	Asphalt binder testing results and corresponding normalized a rank values for DVG group	nd 380
Table 8.6.	Asphalt binder testing results and corresponding normalized a rank values for GP group	nd 381
Table 8.7.	Asphalt binder testing results and corresponding normalized a rank values for DP group	nd 381
Table 8.8.	Asphalt mixture testing results and corresponding normalized rank values for GVG group	and 383
Table 8.9.	Asphalt mixture testing results and corresponding normalized rank values for DVG group	and 384
Table 8.10.	Asphalt mixture testing results and corresponding normalized rank values for GP group	and 385
Table 8.11.	Asphalt mixture testing results and corresponding normalized rank values for DP group	and 385

Table 8.12.	Global average ranking for GVG group	388
Table 8.13.	Global average ranking for DVG group	389
Table 8.14.	Global average ranking for GP group	389
Table 8.15.	Global average ranking for DP group	390

ABBREVIATIONS

AASHTO	American Association of State Highway and Transportation Officials
AC	Asphalt Concrete
AI	Ageing Index
Am	Aspha-Min
ARV	Average Rank Value
ASA	Antistripping Agent
ASCE	American Society of Civil Engineers
ASTM	American Society of Testing and Material
AV	Air Voids
BC	Bituminous Concrete
BIS	Bureau of Indian Standards
BS	Bond Strength
BSR	Bond Strength Ratio
BWT	Boiling Water Test
С	Cecabase
CCT	Cyclic Compression Test
CI	Coating Index
CI _N	Normalized Coating Index
СМ	Creep Modulus
СМА	Cold Mix Asphalt
CO_2	Carbon dioxide
СО	Carbon Monoxide
CRMB	Crumb Rubber Modified Binder
СТ	Compaction Temperature
C-Y	Carreau-Yasuda
DAm	Dolomite + VG30 + Aspha-Min
DC	Dolomite + VG30 + Cecabase
DP	Dolomite + PMB40
DPAm	Dolomite + PMB40 + Aspha-Min
DPC	Dolomite + PMB40 + Cecabase
DPR	Dolomite + PMB40 + Rediset
DPS	Dolomite + PMB40 + Sasobit
DPSR	Dolomite + PMB40 + Sasobit Redux
DR	Dolomite + VG30 + Rediset
DS	Dolomite + VG30 + Sasobit
DSR	Dolomite + VG30 + Sasobit Redux
DVG	Dolomite + VG30
Е	Emissions from Energy Consumption

E&E	Energy Requirement and Environmental Burdens	
EEF	Energy Emission Factors	
ELCA	Environmental Life Cycle Assessment	
EQ	Equi-Viscous	
F	Fuel Consumption	
FE	Fracture Energy	
FI	Fatigue Index	
FS	Frequency Sweep	
FTIR	Fourier Transform Infrared Spectroscopy	
GAm	Granite + VG30 + Aspha-Min	
GAR	Global Average Rank	
GC	Granite + VG30 + Cecabase	
GHG	Greenhouse Gas	
GP	Granite +PMB40	
GPAm	Granite + PMB40 + Aspha-Min	
GPC	Granite + PMB40 + Cecabase	
GPR	Granite + PMB40 + Rediset	
GPS	Granite + PMB40 + Sasobit	
GPSR	Granite + PMB40 + Sasobit Redux	
GR	Granite + VG30 + Rediset	
GS	Granite + VG30 + Sasobit	
GSR	Granite + VG30 + Sasobit Redux	
GVG	Granite + VG30	
GWP	Global Warming Potential	
Н	Heat Energy	
HMA	Hot Mix Asphalt	
HSR-E	Higher Shear Rate Evolution Approach	
HSR-O	High Shear Rate Method	
HWMA	Half Warm Mix Asphalt	
Hz	Hertz	
Ideal CT	Indirect Tensile Cracking Test	
IIT	Indian Institute of Technology	
IIT (BHU)	Indian Institute of Technology (Banaras Hindu University)	
INR	Indian Rupee	
IPCC	Intergovernmental Panel on Climatic Change	
IRC	Indian Road Congress	
IS	Indian Standards	
ITS	Indirect Tensile Strength	
LAST	Linear Amplitude Sweep Test	
LCA	Life Cycle Assessment	
LDO	Light Diesel Oil	
LSHF	Low Sulphur Heavy Stock	
LTA	Long-Term Ageing	
LVE	Linear Viscoelastic	

MI	Modification Index
MoRTH	Ministry of Road Transport and Highways
MS	Marshall Stability
MSCR	Multiple Stress Creep and Recovery
MT	Mixing Temperature
NCHRP	National Cooperative Highways Research Program
NMAS	Nominal Maximum Aggregate Size
NO _x	Nitrogen Oxide
OBC	Optimum Binder Content
PAM	Phase Angle Method
PAT	Pneumatic Adhesion Test
PATTI	Pneumatic Adhesion Tensile Testing Instrument
PAV	Pressure Ageing Vessel
PG	Performance Grade
PMB	Polymer Modified Binder
Q	Quantity of Fuel
R	Rediset
RAPM	Recycled Asphalt Pavement Material
RGB	Red-Green-Blue
RMS	Retained Marshall Stability
RP	Rutting Parameter
RPM	Rotation Per Minute
RV	Rotational Viscometer
S	Sasobit
SEM	Scanning Electron Microscopy
SLR	Systematic Literature Review
SO_2	Sulphur dioxide
SP	Special Publication
SR	Sasobit Redux
SSF	Steady Shear Flow
STA	Short-Term Ageing
S-ZSV	Simplified Zero Shear Viscosity
TSR	Tensile Strength Ratio
TTSP	Time Temperature Superposition Principle
UA	Unaged
USAT	Universal Simple Ageing Test
VECD	Viscoelastic Continuum Damage
VFB	Voids Filled with Bitumen
VG	Viscosity Grade
VMA	Voids in Mineral Aggregate
VOC	Volatile Organic Compounds
ZSV	Zero Shear Viscosity
ω	Angular Frequency
G_{mb}	Bulk Specific Gravity of Mix

Φ	Calorific Value of the Fuel
I _{C=O}	Carbonyl Index
G*	Complex Shear Modulus
ρ	Density of Fuel
N _F	Fatigue Life
J _{nr}	Non-Recoverable Creep Compliance
α	Oxidation/Combustion Rate of Fuel
%R	Percent Recovery
δ	Phase Angle
I _{S=O}	Sulfoxide Index
G*.Sinð	Superpave Fatigue Parameter
G*/Sinð	Superpave Rutting Parameter
G _{mm}	Theoretical Specific Gravity of Mix
ΣE	Total GHG Emissions

ABSTRACT

WMA is a rapidly growing innovative technology that allows the mixing and compaction of asphalt mixtures at lower production temperatures compared to conventional HMA. The existing WMA additives can be divided into three broad categories depending on their working mechanism. These are organic, chemical, and foaming-based technologies. Although the working mechanism of these technologies may be different, the primary aim is to lower the production temperatures of asphalt mixtures. Several concerns have been raised regarding the determination of mixing and compaction temperatures (also termed as production temperatures) for WMA mixtures. Thus, more exploration is required in this direction for developing a rational approach to evaluate the production temperatures of asphalt mixtures, and to assess the impact of production temperatures on the performance of WMA.

Two base asphalt binders, viz. viscosity graded (VG), VG30, and polymer modified binder (PMB), PMB40, were taken in the present study. Two different aggregate sources (granite and dolomite) were incorporated to assess the effect of aggregate mineralogy on the behaviour of WMA technologies. Five different WMA additives, including two organic-based (Sasobit and Sasobit Redux), two chemical-based (Rediset and Cecabase) additives, and one foaming-based technology (Aspha-min) were incorporated to understand the influence of different WMA technologies.

This study revolved around the determination of production temperatures and their impact on the behavior of asphalt mixtures. Six objectives were defined in this direction. These objectives along with the obtained results are briefly discussed in the following paragraphs.

Objective 1

The first objective focused on the effect of WMA technologies on the morphological, chemical, and physical properties of asphalt binders. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and a series of empirical and fundamental tests were carried out for the characterization. SEM and FTIR confirmed that the adopted blending technique is appropriate for obtaining uniform/homogeneous blend with pure physical interaction between WMA additives and asphalt binders. All the WMA binders, prepared either using VG30 or PMB40, displayed similar to better physical characteristics than the base asphalt binders.

Objective 2

Though a considerable amount of researches have been done on assessing the performance of WMA technologies, no standard approach is available for estimating their appropriate production temperatures. The EQ method was found to be suitable only for VG30. The second objective involved the development of a novel workability-based prototype that can evaluate the workability of asphalt mixtures. A new procedure, based on workability, was proposed and validated for rational evaluation of production temperatures. Additionally, coating ability and compactability tests were carried out to validate the obtained mixing and compaction temperatures, respectively. Further, the optimum dosage of WMA additives, pertaining to different technologies, were assessed based on the coating and compactability checks. About 5 °C-25 °C and 5 °C-37 °C reduction in mixing and compaction temperatures, respectively, were obtained for different WMA technologies. Despite being produced at lower production temperatures, WMA showed a consistent aggregate coating and density range as conventional HMA mixtures. It was found that the optimum dosage of WMA additives varies with the change in aggregate source and base asphalt binder.

Objective 3

The third objective envisioned to compare the performance of WMA binders (prepared at the optimum dosage) with their respective conventional asphalt binders (with no additives, i.e., VG30 and PMB40). The comparison was made based on the laboratory results concerning ageing, rutting, fatigue, and moisture characteristics at the binder level.

Carbonyl (C=O) and Sulfoxide (S=O) indices, determined through FTIR spectrums, were used to explicate the ageing behavior of WMA binders. Among different WMA additives, Chemical agents displayed lower values of $I_{C=O}$ and $I_{S=O}$, regardless of ageing condition.

A series of experiments were carried out using DSR to assess the rutting and fatigue performance. These test methods included the traditional Superpave rutting and fatigue parameters determined through frequency sweep (FS), multiple stress creep and recovery (MSCR) for rutting, and linear amplitude sweep test (LAST) for fatigue. MSCR test was performed at four different temperatures (40-70°C) and four different stress levels (0.1, 3.2, 5, and 10 kPa). A rutting parameter based on the Arrhenius equation (activation energy concept) was used in the present study to conceptualize the effect of multiple stresses and test temperatures. On the other hand, LAST was conducted at three temperatures ranging from 10-30°C, and the fatigue life of asphalt binders was determined. Despite the lower ageing temperature, Sasobit-modified asphalt binder exhibited higher rutting resistance in VG30, while its influence was found to be insignificant in the case of PMB40. The failure strain obtained by analyzing LAST results was found to be under a comparable range i.e. 6-11%, irrespective of the base asphalt binder. The fatigue life of WMA binders was comparable with the results of base asphalt binders, over a wide range of strain values at all the test temperatures. Chemical-based WMA agents showed higher fatigue life as compared to organic-based WMA agents.

Bond strength (BS) between asphalt binder and aggregates was used to ascertain the suitability of WMA binders against moisture damage. Bond strength ratio (BSR) was evaluated for assessing the moisture resistance of asphalt mixtures. Chemical-based WMA agents exhibited antistripping characteristics that restrict moisture's effect, as indicated by higher BSR for Cecabase and Rediset.

Objective 4

The performance of HMA and WMA mixtures were evaluated and compared under the fourth objective of this study. Possible correlations between the test results of asphalt binders and mixtures were analyzed and the limiting values for different performance predictors were proposed. All the test parameters, except the mixing and compaction temperatures, were kept constant throughout the study for analyzing HMA and WMA mixtures. The mixing and compaction temperatures required for the preparation of WMA mixtures were obtained based on the proposed workability approach. A series of performance-based test methods including the Cyclic compression test (CCT) for rutting performance at 60°C and Indirect tensile cracking test (Ideal CT) for fatigue performance at 20°C, were carried out. A check against moisture damage was also ascertained by evaluating % stripping/coating using a boiling water test (BWT), Retained Marshall stability (RMS), and Tensile strength ratio (TSR).

Creep modulus (CM), determined by analyzing CCT test results, showed slightly lower performance of WMA mixtures, particularly for PMB40-based asphalt mixtures. Overall, Sasobit, an organic-based WMA additive, displayed higher rutting resistance among all the WMA. Fatigue resistance was evaluated using a proposed fatigue index (FI). Based on the FI values, irrespective of base asphalt binder and aggregate source, WMA mixtures prepared with chemical agents showed better fatigue performance followed by foaming and organic technologies. Despite lower production temperature, the application of WMA technology seemed to facilitate moisture repellent characteristics, regardless of any test method. Rediset, combined with dolomite aggregates, can be considered as a potent combination for preparing moisture-resistant asphalt mixtures. The overall results also demonstrated appreciable correlations between the performance parameters of asphalt binders and mixtures.

Objective 5

The idea behind the fifth objective was to outline the energy-related cost and amount of GHG emissions imparted by producing WMA mixtures based on a theoretical approach. Different factors such as fuel type and type of WMA additive were varied during the analysis. Results displayed a reduction in heat energy with the addition of WMA additives ranging from 5-13% relative to conventional HMA mixtures. Rediset and Cecabase in VG30 with granite and dolomite aggregates, respectively, resulted in the lowest cost reduction, whereas in PMB40, the incorporation of Sasobit with any aggregate type, showed the lowest cost savings, irrespective of fuel type. The implementation of WMA technologies exhibits a pronounced reduction in GHG emissions relative to conventional HMA.

Objective 6

In the last objective (sixth), a simple ranking protocol was used to select the best WMA additive, relative to other WMA, based on their overall performance. WMA showed either similar/improved performance and therefore similar/higher rank than the reference HMA. Based on the global average ranking (*GAR*), Rediset, a chemical-based WMA agent, was found to be the best WMA additive.