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2.1 Introduction 

Recently, the visible light-initiated reaction is a flourishing, potent approach for the synthesis 

of bioactive organic compounds and is an emerging area of research to increase efficacy and 

synthetic utility. The visible light-initiated organic reaction has received great devotion 

because visible light is a pure, inexpensive, benign, easily operational, inexhaustible, and 

eco-friendly fresh energy source1–14. Additionally, Photoinduced reactions are relatively 

accelerated because the reaction vessel catches light from all directions. 

Now a day, photoredox catalyst has been developed as an easy and powerful tool for 

activating organic molecules in visible light and has been used for many unique and valuable 

chemical reactions15–17. In many cases, visible-light-driven synthetic transformation usually 

focuses on the excited condition of photocatalysts as they are more reducing and oxidizing 

than their ground states. The visible light, with or without photocatalysts has established 

unbelievable revolutions in this 21st century and allowed various useful synthetic 

transformations, which were not approachable by traditional methods.18–26 The substrate 

could be activated by an excited photocatalyst by single electron transfer (SET) or through 

the transfer of energy, leading to several competent synthetic conversions.27–34 

Along with the above approach, a hydrogen-atom transfer (HAT) path is another 

photoactivation mode.35,36 In photocatalysis, there are usually three modes of the HAT 

process. The activated photocatalyst abstracts a hydrogen atom from the substrate in the first 

mode. The catalytic cycle is then turned over to a newly produced intermediate via a reverse 
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HAT (RHAT).37–41 Second, the excited photocatalyst activated one more catalyst. After 

activation, this catalyst stimulates the reaction through the Hydrogen atom transfer 

pathway.42,43 The subsequent (3rd) path is the proton-coupled electron transfer (PCET) 

process, which involves coordinating an electron transfer and proton transfer from the 

reagent. This mode generates a radical that might be engaged in many transformations.44,45 

Meanwhile, the indirect Hydrogen atom transfer and proton-coupled electron transfer paths 

are possible in the presence of some additional reagents; direct Hydrogen atom transfer 

catalysis among all these paths is the utmost proficient and economical procedure. Though, 

the main restriction in place of the wide exploitation of the Hydrogen atom transfer process 

is insufficient for recognized photocatalysts, for example, uranyl cations, 

polyoxometalates46, and aromatic ketone. Additionally, the photocatalyst above requires 

extra additives associated with unwanted side reactions. Hence, metal-free and sustainable 

catalysts that could support direct hydrogen atom transfer routes are needed. 

Due to its low cost, easy handling, and environmentally friendly nature, Eosin Y has been 

used as an economically and ecologically superior photocatalyst alternative to transition 

metal complexes in organic photochemistry.  

Recently, Eosin Y as a HAT photocatalyst has been exposed47 for C-H functionalization. 

Based on reported works, we proposed that Eosin Y possibly will be the best HAT 

photocatalyst and may abstract a proton from benzylic C-H from benzylamine. (Figure 2.1) 

 



Chapter-2 
 

Department of Chemistry, IIT (BHU), Varanasi. Page 52 

COOH

O O

Br

BrBr

HO

Br

COOH

O O

Br

BrBr

HO

Br

Eosin Y Eosin Y*

EY EY EY

3EY*

1EY*

+0.78 V -1.06 V

1.89eVlight

+0.83 V
-1.11 V

 

Figure 2.1 Photochemical and Electrochemical properties of Eosin Y 

Among the biologically active N-containing heterocyclic moieties, imidazo[1,2-a]pyridines 

attribute substantial devotion to pharmacological manufacturing because of their extensive 

bioactivity antifungal48,49, antiviral50,51, antitumor,  antiprotozoal, antibacterial52, 

antiinflammatory53, antipyretic, analgesic, antiapoptotic, enantioselective and 

hypnoselective, activities54. These compounds are not only of pharmaceutical importance, 

but they also have significant importance in material science. In recent times, imidazo [1,2-

a]pyridine moiety was joined with some commercially available drugs55,56 and used for the 

treatment of insomnia57 (zolpidem), anxiolytic agent (alpidem), an agent for the treatment of 

peptic ulcer58 (zolimidine) (Figure 2.2). As a result, hard work carries on just before the 

development of new approaches for the preparation of imidazo[1,2-a] pyridines. Several 

approaches were established to synthesize imidazo[1,2-a]pyridine, such as condensation59, 
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oxidative coupling reaction60, multicomponent reaction61, aminooxygenation62, 

hydroamination reaction63, and tandem reaction.64 

 

Figure 2.2 Some of the biologically active compounds containing imidazo[1,2-a]pyridine 

framework.  

Despite the above methods, there is a need for the buildout of effective and viable visible-

light-prompted preparation of imidazo[1,2-a] pyridines using photoinitiator Eosin Y. As far 

as we are aware, the preparation of imidazo[1,2-a]pyridines from a multicomponent reaction 

of benzylamine, 2-aminopyridine, and t-butylisocyanide via photocatalysis has not been 

reported yet. In view of the above, and as a part of our continuing research interest in the 

establishment of green and sustainable approaches for the production of biologically active 

compounds65,66 herein, we report for the first time a visible light-promoted preparation of 3-

aminoimidazo [1,2-a]pyridines via one-pot multicomponent reaction of benzylamine (1), 2-

aminopyridine (2) and t-butylisocyanide (3)  (Scheme 2.1). 
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Scheme 2.1 Synthesis of 3-aminoimidazo[1,2-a]pyridines via one-pot multicomponent 
reaction 

2.2 Results and Discussion 

We started our observations using a visible-light-initiated multicomponent reaction of 2- 

aminopyridine (2a), benzylamine (1a), and tertiary butylisonitrile (3) as a model substrate 

under various reaction conditions. First of all, various solvents (green as well as conventional 

solvents), were examined for model reaction with 22 W white LED (light-emitting diode) 

under visible light in the presence of Eosin Y (2 mol %). Only a trace amount of product was 

obtained when the reaction was carried out with dichloromethane, CH3CN, DMF, and 

DMSO solvent for 12 h at RT(room temperature) in the presence of photocatalyst Eosin Y 

(Table 2.1, entries 1−4). Pleasingly, the desired product 4a was obtained in 45% and 51% 

yields with MeOH and EtOH, respectively (Table 2.1, entries 5 and 6). When the reaction 

was carried out in a mixture of a solvent such as EtOH/H2O (1:1) and MeOH/H2O (1:1), it 

led to a marginal increase in yield (81% and 63%, respectively) as well as the reduction in 

reaction time (6 h) (Table 2.1, entries 11 and 12 ). At this juncture, we thought of carrying 

out this reaction under the various ratio of ethanol and water solvent mixture. To our surprise, 

this led to a noticeable increase in yield (95%) when the ratio (EtOH: H2O) is 2:1 (Table 2.1, 
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entry 13). The control examination showed that the dye is inevitable for this transformation 

(Table 2.1, entry 10). 

Various organic photocatalysts such as rhodamine B, acridine red, and rose Bengal were 

screened, but none of them would match the catalytic efficacy of Eosin Y (Table 2.1, entries 

7–9). The desired product was not obtained when the reaction was carried out at room 

temperature in the dark (Table 2.1, entry 19). This result indicates that visible light is a 

critical feature for this transformation. The energy source and intensities of visible light for 

the reaction were also optimized, and it was concluded that blue and green light could not 

give the product's desired yield (Table 2.1, entries 15-18). 

Table 2.1 Optimization of the Reaction Conditionsa 
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aExperimental condition: 2- Aminopyridine (1 mmol ), Benzylamines (1 mmol ), tertiary 
butyl isonitrile (1 mmol ), solvent (3ml), room temperature, under visible light irradiation 

(22W, wavelength in range 380-780 nm) bIsolated yield cNR = no reaction dBlue light (455-

660 nm) eGreen light (520-525 nm) fThe reaction was carried out in 10 mmol scale.  
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Additionally, to confirm the synthetic efficacy of the reaction, a gram scale reaction was 

carried out (10 mmol scales), and it was found that the reaction proceeded smoothly with the 

same efficiency,  which emphasized the synthetic rewards of this procedure (Table 2.1, entry 

20). 

Now we carried out this experiment using light of different intensities (8W, 13W, 15W, 18W, 

22W, and 32W) to find the optimal intensity of visible light needed for this reaction. It was 

observed that the yields and reaction times were the same when 22 W and 32 W white-light-

emitting diodes (LED) were used. However, when LED of lower intensities was used, a 

marginal decrease in the yield and rate of the reaction was observed (Table 2.2, entries 1, 2, 

3, and 4). On the other hand, using an LED of higher wattage (32 W) did not substantially 

increase the product yield or the reaction time (Figure 2.3). 

 

 

 

 

 

 

 



Chapter-2 
 

Department of Chemistry, IIT (BHU), Varanasi. Page 58 

 

Table 2.2:  Effect of the visible light intensity on the reactiona 

 

 

aAll reaction was carried out using 1 (1 mmol ), 2 ( 1 mmol ), and 3 ( 1 mmol ) at room 
temperature under air. bIsolated yield 

entry visible light Intensity time (h) yield (%)b 

1 8 W 8 75 

2 13 W 6 82 

3 15 W 4.5 85 

4 18 W 4 89 

5 22 W 3 95 

6 32 W 3 95 
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Figure 2.3. Yield (%) vs visible light intensity for the preparation of  N-(tert-butyl)-2-                  
phenylimidazo[1,2-a]pyridin-3-amine 

 

Once ideal conditions for carrying out this reaction had been identified, the scope and 

limitations of the developed synthetic strategy were explored for the preparation of various 

3-Aminoimidazo-fused pyridines derivatives under the optimized condition by reacting a 

variety of benzylamine with 2-aminopyridine and 5-Bromo 2-aminopyridine and tertiary 

butyl isonitrile (Table 2.3). It has been indicated that the use of benzylamine containing an 

electron-withdrawing group (-NO2 and -F) led to higher yields and faster reaction, while an 

electron-donating group (-Me and –OMe) on benzylamine slowed down the reaction and led 

to a reduction in the yield of the product. 
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Table 2.3 Substrate scope and versatility of reaction 
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Experimental condition: 2- Aminopyridine (1 mmol ), Benzylamines (1 mmol ), tertiary 
butyl isonitrile (1 mmol ), solvent (3ml), room temperature, under visible light irradiation 
(22W, wavelength in range 380-780 nm) 

2.3 Control Experiment 

Scheme 2.2 Control experiments 

In order to recognize the mechanism, some control experiments were carried out with the 

help of radical scavenger TEMPO and BHT. (Scheme 2.2) There is an extreme reduction in 

the yield (9-11%) of the desired product 4a in the presence of a radical scavenger, confirming 

the involvement of the radical mechanism. Further, to examine the effect of O2 (oxygen), the 

reaction was carried out under an oxygen balloon. But there is no significant increase in the 

product yield, and a negligible amount of product was observed while the reaction was 

performed in the presence of argon, i.e., in the absence of oxygen. This result indicates that 

oxygen is necessary for this transformation. 
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Scheme 2.3 Control experiments 

To support the path of the reaction, a couple of control experiment was carried out. (Scheme 

2.3) Product 4a was produced by the multicomponent reaction of benzylamine (1mmol), 2-

aminopyridine (1mmol), and tertiary butyl isonitrile (1mmol) under standard reaction 

conditions (eq a). We suspected the intermediacy of imine; to confirm this, the reaction of 2-

aminopyridine (1.0 equiv) with benzylamine (1.0 equiv) was carried out, which produces 5 

(Scheme 2.3, eq b) under the optimized reaction conditions. This indicates imine to be a 

likely intermediate in the formation of product 4a. To check the formation of imine 

intermediate in the reaction, the benzylamine was irradiated with visible light in EtOH: H2O 
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(2:1) in the presence of EosinY at room temperature, which gave imine 6  in good yield. 

(Scheme 2.3, eq c) While a similar experiment was carried out under the same condition 

with 2,4-DNP, no orange precipitate was formed. (Scheme 2.3, eq d) This experiment omits 

the formation of benzaldehyde in the current procedure by using Eosin Y as photoredox 

catalyst. 

2.3.1 UV-Vis absorption experiment 

 

Figure 2.4 UV-Vis spectrum of 2-Amino Pyridine in chloroform (Conc. 1.0 x 10-4 mol/L) 

 

Figure 2.5 UV-Vis spectrum of 4-Methoxybenzyl amine in chloroform (Conc. 1.25 x 10-4 
mol/L) 
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2.4 Proposed Mechanism 

According to the previous reports67–75 and based on control experiments, a possible pathway 

for the overall process was proposed. (Scheme 2.5) From the value of its redox potential, it 

is clear that Eosin Y is not responsible for the oxidation of benzylamine because the SET 

mode for this reaction was not valid. Initially, excited Eosin Y (EY*) was formed from Eosin 

Y (EY) through excitation with visible light, which extracts the hydrogen atom from benzylic 

amine to generate intermediate A. Subsequently, the oxidation of intermediate A gives 

benzylimine intermediate B. Reaction of benzylimine B with 2-aminopyridine 2 leads to the 

formation of imine intermediate C with the liberation of ammonia, which was afterward 

attacked by the isocyanide 3 to provide intermediate D. This intermediate D influenced by 

visible light radiation to generate free radical which was further cyclized followed by a 1,3-

H shift to give the desired product. 
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Scheme 2.5 Plausible mechanism 

2.5 Conclusions 

In brief, an effective procedure to get various type of 3-aminoimidazo[1,2-a]pyridines 

through the visible-light-initiated multicomponent reaction of benzylamine, 2-

aminopyridine, and t-butylisocyanide have been developed using an economical HAT 

photocatalyst Eosin Y dye at room temperature. Strangely, this approach is practically 

simple, profitable, environment-friendly, additive-/metal-free, and also shows outstanding 

compatibility with both electron-donating and the electron-withdrawing functional group 

containing benzylamine. This approach presents a promising alternative to the existing 



Chapter-2 
 

Department of Chemistry, IIT (BHU), Varanasi. Page 66 

method, accordingly extending the scope of photocatalyzed reaction, which overcomes the 

problem associated with the environmentally notorious metal-catalyzed reaction.  

2.6 Experimental Procedures 

2.6.1 General procedure for the preparation of compounds 4a-4t 

Benzylamine 1 (1 mmol), 2-aminoheterocycle 2 (1 mmol), isocyanide 3 (1 mmol), and Eosin 

Y (2 mol%) were taken with 2:1 EtOH/H2O (3 mL) in a 50 ml round bottom flask which was 

furnished with a magnetic stirrer bar. This mixture was agitated with 22 W white LEDs under 

visible light at room temperature. When the reaction was completed (monitored by TLC), 

water was added to stop the reaction. Subsequently, ethyl acetate was added to it to extract 

an aqueous layer. After that, it was dried over anhydrous MgSO4. The crude product was 

obtained by evaporation of the solvent under reduced pressure. The crude product was 

purified using column chromatography over silica gel (100-200 mesh) (ethyl 

acetate/hexane:20/80) to provide pure product 4 in excellent yields. 
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2.7 Characterization of products 

N-(tert-butyl)-2-phenylimidazo[1,2-a]pyridin-3-amine (4a)  

White solid (95%), mp 160– 162°C. IR (KBr, cm-1): 3310 (NH), 2966 

(sp2-CH), 2934 (sp3-CH), 1610, 1506, 1441, 1350, 1321, 1216, 1037, 

756. 1H NMR (500 MHz, CDCl3) δ 8.23 (d, J = 6.9 Hz, 1H), 7.90 (d, 

J = 7.1 Hz, 2H), 7.56 (d, J = 9.0 Hz, 1H), 7.41 (t, J = 7.7 Hz, 2H), 7.30 (t, J = 6.2 Hz, 1H), 

7.16 – 7.09 (m, 1H), 6.77 (t, J = 6.8 Hz, 1H), 3.16 (s, 1H), 1.02 (s, 9H). 13C NMR (126 MHz, 

CDCl3) δ 141.81, 139.13, 134.91, 129.74, 128.29, 128.18, 127.47, 124.32, 123.54, 117.14, 

111.48, 56.44, 30.29. Anal. calcd for  C17H19N3:  C, 76.95; H, 7.22; N, 15.84; found: C,76.93; 

H,7.20; N, 15.80 

N-(tert-butyl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-3-amine (4b) 

White solid (97%), mp 163-165°C. IR (KBr, cm-1): 3296 (N-H), 

2966 (sp2-CH), 2934 (sp3-CH), 1610, 1506, 1441, 1350, 1321, 

1216, 1037, 756. 1H NMR (500 MHz, CDCl3) δ 8.24 (d, J = 6.9 Hz, 

1H), 7.94 (dd, J = 8.3, 6.1 Hz, 2H), 7.57 (d, J = 9.0 Hz, 1H), 7.20 – 7.15 (m, 1H), 7.13 (t, J 

= 7.7 Hz, 2H), 6.84 – 6.79 (m, 1H), 3.12 (s, 1H), 1.05 (s, 9H). 13C NMR (126 MHz, CDCl3) 

δ 163.25, 141.71, 138.12, 129.88, 129.82, 124.58, 123.42, 117.03, 115.34, 115.17, 111.71, 

56.43, 30.35. Anal. Calcd for C17H18FN3; C, 72.06; H, 6.40; N, 14.83 found: C, 72.03; H, 

6.37; N, 14.80. 
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N-(tert-butyl)-2-(4-methoxyphenyl)imidazo[1,2-a]pyridin-3-amine (4c) 

Off-white solid (92%), mp 142°C. IR (KBr, cm-1): 3315 (NH), 

2968 (sp2-CH), 2925 (sp3-CH), 1630, 1513, 1433, 1366, 1339, 

1206, 1027, 716. 1H NMR (500 MHz, CDCl3) δ 8.22 (d, J = 6.9 

Hz, 1H), 7.87 (d, J = 8.8 Hz, 2H), 7.54 (d, J = 9.0 Hz, 1H), 7.15 – 7.10 (m, 1H), 6.97 (d, J = 

8.8 Hz, 2H), 6.77 (t, J = 6.8 Hz, 1H), 3.85 (s, 3H), 3.12 (s, 1H), 1.05 (s, 9H).13C NMR (126 

MHz, CDCl3) δ 159.09, 141.77, 139.13, 129.35, 127.57, 124.04, 123.41, 122.91, 116.97, 

113.70, 111.30, 56.30, 55.23, 30.34. Anal. Calcd for C18H21N3O; C, 73.19; H, 7.17; N, 14.23 

found: C, 73.16; H, 7.14; N, 14.21. 

 N-(tert-butyl)-2-(4-nitrophenyl)imidazo[1,2-a]pyridin-3-amine (4d) 

 Reddish brown solid (97%), mp 205°C. IR (KBr, cm-1): 3303 

(NH), 2935 (sp2-CH), 2907 (sp3-CH), 1584, 1476, 1424, 1343 

(CN), 1315, 1191, 1007, 763. 1H NMR (500 MHz, CDCl3) δ 8.27 

(s, 4H), 8.22 (d, J = 6.9 Hz, 1H), 7.59 (d, J = 9.0 Hz, 1H), 7.26 – 7.20 (m, 1H), 6.86 (t, J = 

7.2 Hz, 1H), 3.15 (s, 1H), 1.10 (s, 9H). 13C NMR (126 MHz, CDCl3) δ 146.74, 142.27, 

141.48, 136.67, 128.46, 125.41, 124.92, 123.59, 123.49, 117.51, 112.26, 56.85, 30.50. Anal. 

Calcd for C17H18N4O2; C, 65.79; H, 5.85; N, 18.05 found: C, 65.77; H, 5.83; N, 18.03. 

N-(tert-butyl)-2-(4-chlorophenyl)imidazo[1,2-a]pyridin-3-amine (4e) 

Light orange solid (96%), mp 160-163°C. IR (KBr, cm-1): 3320 

(NH), 2962 (sp2-CH), 2924 (sp3-CH), 1600, 1506, 1441, 1360 

(CN), 1331, 1206, 1027, 746. 1H NMR (500 MHz, CDCl3) δ 
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8.21 (d, J = 8.0 Hz, 1H), 7.93 (d, J = 8.6 Hz, 2H), 7.55 (d, J = 10.0 Hz, 1H), 7.39 (d, J = 11.2 

Hz, 2H), 7.19 – 7.14 (m, 1H), 6.80 (t, J = 6.8 Hz, 1H), 3.10 (s, 1H), 1.06 (s, 9H). 13C NMR 

(126 MHz, CDCl3) δ 141.89, 138.03, 133.42, 133.22, 131.05, 129.29, 129.04, 128.40, 

124.59, 123.53, 123.45, 117.15, 111.67, 56.51, 30.28. Anal. Calcd for C17H18ClN3; C, 68.11; 

H, 6.05; N, 14.02 found: C, 68.08; H, 6.01; N, 14.00. 

N-(tert-butyl)-2-(p-tolyl)imidazo[1,2-a]pyridin-3-amine (4f) 

White solid (92%), mp 170°C. IR (KBr, cm-1): 3320 (NH), 2962 

(sp2-CH), 2924 (sp3-CH), 1600, 1506, 1441, 1360 (CN), 1331, 

1206, 1027, 746.  1H NMR (500 MHz, CDCl3) δ 8.22 (d, J = 7.8 

Hz, 1H), 7.81 (d, J = 8.1 Hz, 2H), 7.55 (d, J = 9.0 Hz, 1H), 7.25 (t, J = 14.3 Hz, 2H), 7.12 (t, 

J = 7.8 Hz, 1H), 6.75 (t, J = 6.7 Hz, 1H), 3.15 (s, 1H), 2.39 (s, 3H), 1.04 (s, 9H).  13C NMR 

(126 MHz, CDCl3) δ 141.84, 139.35, 136.98, 132.16, 129.00, 127.99, 124.01, 123.47, 

123.28, 117.09, 111.27, 56.19, 30.07, 21.43. Anal. Calcd for C18H21N3; C, 77.38; H, 7.58; 

N, 15.04 found: C, 77.35; H, 7.55; N, 15.01. 

N-(tert-butyl)-2-(3-chlorophenyl)imidazo[1,2-a]pyridin-3-amine (4g) 

Orange solid (95%), mp 148°C. IR (KBr, cm-1): 3313 (NH), 2955 

(sp2-CH), 2917 (sp3-CH), 1607, 1499, 1434, 1363 (CN), 1324, 1213, 

1020, 752. 1H NMR (500 MHz, CDCl3) δ 8.22 (d, J = 6.9 Hz, 1H), 

8.03 (t, J = 1.8 Hz, 1H), 7.86 (d, J = 7.7 Hz, 1H), 7.56 (d, J = 9.0 Hz, 1H), 7.36 (t, J = 7.8 

Hz, 1H), 7.29 (d, J = 7.8 Hz, 1H), 7.19 – 7.14 (m, 1H), 6.80 (t, J = 6.3 Hz, 1H), 2.98 (s, 1H), 

1.07 (s, 9H). 13C NMR (126 MHz, CDCl3) δ 142.01, 137.84, 136.84, 134.20, 129.51, 128.10, 



Chapter-2 
 

Department of Chemistry, IIT (BHU), Varanasi. Page 70 

127.42, 126.12, 124.61, 123.46, 117.31, 111.70, 56.51, 30.42. Anal. Calcd for C17H18ClN3; 

C, 68.11; H, 6.05; N, 14.02 found: C, 68.09; H, 6.02; N, 14.01. 

2-(4-bromophenyl)-N-(tert-butyl)imidazo[1,2-a]pyridin-3-amine (4h) 

Yellow solid (95%), mp 143-148°C. IR (KBr, cm-1): 3313 (NH), 

2955 (sp2-CH), 2924 (sp3-CH), 1600, 1506, 1441, 1360 (CN), 

1331, 1206, 1027, 746.   1H NMR (500 MHz, CDCl3) δ 8.20 (d, J 

= 6.9 Hz, 1H), 7.87 (d, J = 8.6 Hz, 2H), 7.55 (d, J = 8.5 Hz, 3H), 7.19 – 7.13 (m, 1H), 6.80 

(t, J = 7.2 Hz, 1H), 3.07 (s, 1H), 1.06 (s, 9H). 13C NMR (126 MHz, CDCl3) δ 142.00, 138.17, 

134.01, 131.40, 129.58, 124.52, 123.54, 123.44, 121.45, 117.25, 111.64, 55.91, 30.41. Anal. 

Calcd for C17H18BrN3; C, 59.31; H, 5.27; N, 12.21 found: C, 59.28; H, 5.24; N, 12.18. 

N-(tert-butyl)-2-(2-nitrophenyl)imidazo[1,2-a]pyridin-3-amine (4i) 

Brown solid (97%), mp 183-185°C. IR (KBr, cm-1): 3312 (NH), 2954 

(sp2-CH), 2916 (sp3-CH), 1592, 1498, 1449, 1352, 1323, 1199, 1019, 

738. 1H NMR (500 MHz, CDCl3) δ 8.19 (d, J = 6.9 Hz, 1H), 7.92 (d, 

J = 8.1 Hz, 1H), 7.82 (d, J = 7.7 Hz, 1H), 7.66 (t, J = 7.6 Hz, 1H), 7.53 

(d, J = 9.0 Hz, 1H), 7.49 (t, J = 7.8 Hz, 1H), 7.20 – 7.13 (m, 1H), 6.81 (t, J = 6.8 Hz, 1H), 

2.75 (s, 1H), 0.95 (s, 9H). 13C NMR (126 MHz, CDCl3) δ 149.46 (s), 142.40 (s), 136.16 (s), 

132.82 (s), 130.21 (s), 128.40 (s), 124.67 (s), 124.34 (d, J = 17.5 Hz), 123.34 (s), 117.70 (s), 

111.79 (s), 30.04 (s). Anal. Calcd for C17H18N4O2; C, 65.79; H, 5.85; N, 18.05 found: C, 

65.76; H, 5.82; N, 18.02. 
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N-(tert-butyl)-2-(3-nitrophenyl)imidazo[1,2-a]pyridin-3-amine (4j) 

White solid (96%), mp 171°C. IR (KBr, cm-1): 3311 (NH), 2953 

(sp2-CH), 2915 (sp3-CH), 1591, 1506, 1441, 1360, 1331, 1206, 

1018, 737. 1H NMR (500 MHz, CDCl3) δ 9.03 (s, 1H), 8.44 (d, J = 

7.7 Hz, 1H), 8.20 (d, J = 6.9 Hz, 1H), 8.15 (d, J = 8.2 Hz, 1H), 7.58 

(dd, J = 20.1, 8.6 Hz, 2H), 7.19 (t, J = 7.8 Hz, 1H), 6.83 (t, J = 6.5 Hz, 1H), 3.05 (s, 1H), 

1.11 (s, 9H). 13C NMR (126 MHz, CDCl3) δ 148.17 (s), 142.39 (s), 137.00 (d, J = 5.7 Hz), 

133.75 (s), 129.20 (s), 124.85 (s), 124.07 (s), 123.37 (s), 122.63 (s), 121.95 (s), 117.62 (s), 

111.94 (s), 30.56 (s). Anal. Calcd for C17H18N4O2; C, 65.79; H, 5.85; N, 18.05 found: C, 

65.75; H, 5.81; N, 18.01. 

6-bromo-N-(tert-butyl)-2-(p-tolyl)imidazo[1,2-a]pyridin-3-amine (4k) 

 Off-white solid (93%), mp 128-130°C. IR (KBr, cm-1): 3280 

(N-H), 2946 (sp2-CH), 2914 (sp3-CH), 1610, 1501, 1461, 1363, 

1341, 1231, 1067, 716.  1H NMR (500 MHz, CDCl3) δ 8.33 (s, 

1H), 7.77 (d, J = 8.1 Hz, 2H), 7.42 (d, J = 9.4 Hz, 1H), 7.23 (d, J = 7.9 Hz, 2H), 7.17 (d, J = 

9.4 Hz, 1H), 3.15 (s, 1H), 2.39 (s, 3H), 1.04 (s, 9H). 13C NMR (126 MHz, CDCl3) δ 140.44, 

140.24, 137.44, 131.72, 129.08, 127.96, 127.29, 123.67, 123.63, 117.85, 106.23, 56.53, 

30.31, 21.34. Anal. Calcd for C18H20BrN3; C, 60.34; H, 5.63; N, 11.73 found: C, 60.32; H, 

5.61; N, 11.71. 
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6-bromo-N-(tert-butyl)-2-(4-nitrophenyl)imidazo[1,2-a]pyridin-3-amine (4l) 

Brown solid (97%), mp 203°C. IR (KBr, cm-1): 3300 (N-H), 

3010 (sp2-CH), 2990 (sp3-CH), 1590, 1490, 1432, 1328, 1317, 

1206, 1007, 766.  1H NMR (500 MHz, CDCl3) δ 8.32 (s, 1H), 

8.29 (d, J = 8.9 Hz, 2H), 8.22 (d, J = 8.9 Hz, 2H), 7.46 (d, J = 9.4 Hz, 1H), 7.26 (d, J = 9.4 

Hz, 1H), 3.08 (s, 1H), 1.10 (s, 9H). 13C NMR (126 MHz, CDCl3) δ 146.91, 141.28, 140.80, 

140.71, 137.87, 128.57, 128.49, 125.03, 123.65, 118.37, 107.18, 56.77, 30.49. Anal. Calcd 

for C17H17BrN4O2; C, 52.46; H, 4.40; N, 14.39 found: C, 52.43; H, 4.37; N, 14.36. 

6-bromo-N-(tert-butyl)-2-(4-chlorophenyl)imidazo[1,2-a]pyridin-3-amine (4m) 

White solid (96%), mp 191°C. IR (KBr, cm-1): 3301 (N-H), 

3001 (sp2-CH), 2984 (sp3-CH), 1598, 1498, 1424, 1326, 1317, 

1210, 1012, 748.  1H NMR (500 MHz, CDCl3) δ 8.27 (s, 1H), 

7.86 (d, J = 8.5 Hz, 2H), 7.37 (t, J = 9.0 Hz, 3H), 7.16 (d, J = 9.4 Hz, 1H), 3.07 (s, 1H), 1.02 

(s, 9H). 13C NMR (126 MHz, CDCl3) δ 140.33, 139.28, 133.31, 129.30, 128.49, 127.67, 

123.82, 123.60, 117.95, 106.49, 56.49, 30.28. Anal. Calcd for C17H17BrClN3; C, 53.92; H, 

4.52; N, 11.10 found: C, 53.91; H, 4.51; N, 11.09. 

6-bromo-N-(tert-butyl)-2-phenylimidazo[1,2-a]pyridin-3-amine (4n) 

White solid (95%), mp 230°C. IR (KBr, cm-1): 3290 (N-H), 3052 

(sp2-CH), 2961 (sp3-CH), 1601, 1506, 1436, 1357, 1321, 1226, 

1037, 775. 1H NMR (500 MHz, CDCl3) δ 8.37 (s, 1H), 7.88 (d, J = 

9.4 Hz, 2H), 7.47 – 7.42 (m, 3H), 7.34 (t, J = 6.8 Hz, 1H), 7.20 (dd, J = 9.4, 1.9 Hz, 1H), 
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3.18 (s, 1H), 1.04 (s, 9H). 13C NMR (126 MHz, CDCl3) δ 140.24, 134.53, 129.75, 128.39, 

128.15, 127.76, 127.61, 127.45, 123.89, 123.75, 117.91, 56.58, 30.28. Anal. Calcd for 

C17H18BrN3; C, 59.31; H, 5.27; N, 12.21 found: C, 59.29; H, 5.25; N, 12.19. 

6-bromo-N-(tert-butyl)-2-(4-fluorophenyl)imidazo[1,2-a]pyridin-3-amine (4o) 

White solid (97%), mp 215°C. IR (KBr, cm-1): 3280 (N-H), 

2976 (sp2-CH), 2940 (sp3-CH), 1600, 1505, 1438, 1358, 1291, 

1206, 1029, 776.  1H NMR (500 MHz, CDCl3) δ 8.34 (d, J = 2.4 

Hz, 1H), 7.89 (dd, J = 8.8, 5.5 Hz, 2H), 7.44 (d, J = 9.8 Hz, 1H), 7.22 (d, J = 9.4 Hz, 1H), 

7.13 (t, J = 8.7 Hz, 2H), 3.09 (s, 1H), 1.05 (s, 9H). 13C NMR (126 MHz, CDCl3) δ 161.46, 

140.21, 139.41, 129.82, 127.70, 123.67, 123.59, 117.85, 115.45, 115.28, 106.60, 56.54, 

30.35. Anal. Calcd for C17H17BrFN3; C, 56.37; H, 4.73; N, 11.60 found: C, 56.33; H, 4.69; 

N, 11.56. 

6-bromo-2-(4-bromophenyl)-N-(tert-butyl)imidazo[1,2-a]pyridin-3-amine (4p) 

White solid (93%), mp 185°C. IR (KBr, cm-1): 3313 (N-H), 

2914 (sp2-CH), 2910 (sp3-CH), 1627, 1549, 1493, 1347, 1321, 

1229, 1119, 753. 1H NMR (500 MHz, CDCl3) δ 8.30 (s, 1H), 

7.81 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 9.4 Hz, 1H), 7.20 (d, J = 9.4 

Hz, 1H), 3.04 (s, 1H), 1.05 (s, 9H). 13C NMR (126 MHz, CDCl3) δ 140.46, 139.35, 133.71, 

131.49, 129.62, 127.74, 123.81, 123.62, 121.75, 118.04, 106.55, 56.63, 30.40. Anal. Calcd 

for C17H17Br2N3; C, 48.25; H, 4.05; N, 9.93 found: C, 48.22; H, 4.02; N, 9.90. 
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6-bromo-N-(tert-butyl)-2-(2-nitrophenyl)imidazo[1,2-a]pyridin-3-amine (4q) 

Brown solid (97%), mp 180°C. IR (KBr, cm-1): 3290 (N-H), 2967 

(sp2-CH), 2930 (sp3-CH), 1618, 1523, 1451, 1330, 1331, 1286, 

1047, 760.  1H NMR (500 MHz, CDCl3) δ 8.30 (s, 1H), 7.92 (d, J 

= 8.1 Hz, 1H), 7.75 (d, J = 7.7 Hz, 1H), 7.65 (t, J = 7.1 Hz, 1H), 

7.50 (t, J = 8.3 Hz, 1H), 7.41 (d, J = 9.4 Hz, 1H), 7.21 (d, J = 9.4 Hz, 1H), 2.75 (s, 1H), 0.94 

(s, 9H). 13C NMR (126 MHz, CDCl3) δ 149.37, 140.69, 137.08, 132.72, 132.54, 129.77, 

128.73, 127.92, 125.03, 124.37, 123.58, 118.40, 106.95, 55.75, 30.04. Anal. Calcd for 

C17H17BrN4O2; C, 52.46; H, 4.40; N, 14.39 found: C, 52.42; H, 4.36; N, 14.35. 

6-bromo-N-(tert-butyl)-2-(3-nitrophenyl)imidazo[1,2-a]pyridin-3-amine (4r)  

White solid (94%), mp 195°C. IR (KBr, cm-1): 3310 (N-H), 

2950 (sp2-CH), 2890 (sp3-CH), 1626, 1536, 1421, 1320, 1311, 

1296, 1017, 756. 1H NMR (500 MHz, CDCl3) δ 8.55 (d, J = 

8.8 Hz, 1H), 8.53 – 8.47 (m, 1H), 7.99 (d, J = 9.4 Hz, 2H), 7.45 

(t, J = 7.6 Hz, 2H), 7.36 (d, J = 6.4 Hz, 1H), 3.23 (s, 1H), 1.05 (s, 9H). 13C NMR (126 MHz, 

CDCl3) δ 149.40, 145.07, 141.06, 134.44, 131.09, 129.69, 128.79, 128.66, 128.42, 128.33, 

127.90, 121.88, 107.85, 56.49, 30.28. Anal. Calcd for C17H17BrN4O2; C, 52.46; H, 4.40; N, 

14.39 found: C, 52.45; H, 4.39; N, 14.38. 
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6-bromo-N-(tert-butyl)-2-(4-methoxyphenyl)imidazo[1,2-a]pyridin-3-amine (4s) 

White solid (92%), mp 178°C. IR (KBr, cm-1): 3321 (NH), 

2961 (sp2-CH), 2921 (sp3-CH), 1601, 1501, 1441, 1351, 

1311, 1201, 1021, 741. 1H NMR (500 MHz, CDCl3) δ 8.27 

(d, J = 1.7 Hz, 1H), 7.81 (d, J = 8.8 Hz, 2H), 7.38 (d, J = 9.4 Hz, 1H), 7.13 (d, J = 9.4 Hz, 

1H), 6.93 (d, J = 8.8 Hz, 2H), 3.82 (s, 3H), 3.09 (s, 1H), 1.01 (s, 9H). 13C NMR (126 MHz, 

CDCl3) δ 159.16, 140.32, 140.20, 129.29, 127.22, 127.12, 123.54, 123.24, 117.69, 113.72, 

106.09, 56.38, 55.21, 30.33. Anal. Calcd for C18H20BrN3O; C, 57.76; H, 5.39; N, 11.23 

found: C, 57.72; H, 5.34; N, 11.20. 

6-bromo-N-(tert-butyl)-2-(3-chlorophenyl)imidazo[1,2-a]pyridin-3-amine (4t) 

White solid (94%), mp 197-199°C. IR (KBr, cm-1): 3281 (N-H), 

2951 (sp2-CH), 2921 (sp3-CH), 1609, 1491, 1431, 1341, 1311, 

1209, 1037, 716.  1H NMR (500 MHz, CDCl3) δ 8.33 (d, J = 1.7 

Hz, 1H), 7.99 (t, J = 1.6 Hz, 1H), 7.82 (d, J = 7.7 Hz, 1H), 7.44 (d, 

J = 9.4 Hz, 1H), 7.40 – 7.26 (m, 2H), 7.22 (d, J = 9.4 Hz, 1H), 3.08 (s, 1H), 1.07 (s, 9H). 13C 

NMR (126 MHz, CDCl3) δ 140.35, 138.85, 136.37, 134.30, 129.50, 128.08, 127.95, 127.72, 

126.09, 124.04, 123.67, 118.05, 106.71, 56.63, 30.41. Anal. Calcd for C17H17BrClN3; C, 

53.92; H, 4.52; N, 11.10 found: C, 53.90; H, 4.50; N, 11.08. 
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2.8 Spectral Data of few products 

 

Figure 2.6 1H NMR of product 4a 
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Figure 2.7 13C NMR of product 4a 
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Figure 2.8 D2O exchange 1H NMR of product 4a 
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2.9 FT-IR Spectra  

 

 

 

 

 

 

 

 

 

Figure 2.9 FT-IR spectrum of compound 4p 
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