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Introduction 

As environmental concerns arise, organic chemists are challenged to develop eco-

friendly, efficient, selective, and high-yielding processes.1–4 The principle of Green 

Chemistry presents an alluring aspect within the field of chemistry, particularly about 

sustainable development. It encompasses a collection of principles aimed at minimizing 

the utilization or production of harmful substances during the process of designing, 

manufacturing, and employing chemical products.5 Over the past decade, research, 

implementation, education, and outreach advances have increased the 'state-of-the-art' in 

green chemistry.6 Such concepts include designing processes to maximize the amount of 

raw materials that become the product, using safe, environment-friendly substances like 

solvents, developing energy-efficient strategies, and minimizing waste products. 

1.1 Multicomponent Reactions 

A multicomponent reaction (MCR) is a reaction in which three or more reactants combine 

in a single reaction vessel to produce a new product containing components from all the 

reactants.7–10 (Figure 1.1) The appealing aspect of multicomponent reactions (MCRs) 

lies in their integrative nature, especially when there is a need for a swift expansion in 

molecular diversity. By adopting a combinatorial strategy, groups of components (such 

as amines, carboxylic acids, alcohols, etc.) can be methodically distributed across arrays 

of reactions, resulting in the generation of variations based on a shared multicomponent 

reaction (MCR) product framework. Multicomponent Reactions (MCRs) exhibit 

exceptional efficiency, attributable not only to intrinsic factors like superior atom 

economy, selectivity, and reduced by-product formation but also to extrinsic factors 
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related to the processing of the reaction. These extrinsic aspects encompass streamlined 

procedures and equipment, cost-effectiveness, time and energy savings, and adherence to 

environmentally friendly criteria.11–14 

 

Figure 1.1 A divergent one-component reaction and convergent two- and multi-

component reactions 

Multicomponent Reactions (MCRs) synthesize a product through a sequential series of 

elementary chemical reactions. As a result, a network of reaction equilibria converges 

into an irreversible step, ultimately forming the desired product. The challenge lies in 

effectively orchestrating MCRs to ensure the network of pre-equilibrated reactions 

efficiently converges into the desired main product while minimizing the formation of 

undesired side products. The outcome is contingent upon various reaction parameters, 

including the choice of solvent, temperature, catalyst, concentration, starting materials, 

and functional groups. These considerations hold significant importance, especially when 

it comes to the design and exploration of new MCRs. 
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Unlike the typical step-by-step formation of individual bonds in the desired molecule, 

Multicomponent Reactions (MCRs) possess a distinctive characteristic of simultaneously 

creating multiple bonds in a single operation without isolating intermediates, altering 

reaction conditions, or introducing additional reagents. This approach effectively 

minimizes waste production and reduces the labor involved. The products are generated 

by simply combining the appropriate set of starting materials. Since the resulting product 

structures incorporate components from all the reactants used, MCRs with high efficiency 

in bond formation enable significant advancements in molecular complexity and 

diversity. The wide array of starting materials offers versatile opportunities for 

synthesizing compound libraries. Achieving generalization across as many starting 

materials as possible is crucial for broad applicability. Multicomponent reactions thus 

address the requirements for efficient and rapid synthesis of compounds in a cost-

effective and time-efficient manner. These reactions, which simultaneously build C-C, 

C-N, and other carbon-heteroatom bonds while introducing heteroatom-containing 

functionalities, are particularly impressive for the swift construction of organic 

molecules. 

Multicomponent reactions (MCRs) inherently possess broad applicability across various 

fields of modern chemistry-based technology. Their versatility extends beyond 

pharmaceutical applications, finding utility in diverse areas such as EPR-spin labeling, 

the development of biocompatible materials like artificial eye lenses, novel polymer 

properties, chiral phases for HPLC, synthesis of natural products, peptide-nucleic acids, 

and agrochemicals. However, this dissertation primarily focuses on the application of 
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MCRs in heterocyclic synthesis, as it holds significant importance due to the prevalence 

of heterocycles in drugs and pharmaceutically substantial compounds. The utilization of 

multicomponent reactions (MCRs) for heterocycle synthesis has been observed since 

ancient times, even predating the existence of life on Earth. In nature, this process is 

harnessed to create essential biomolecules, including adenine, a fundamental building 

block of DNA and RNA. Adenine's prebiotic formation involved the condensation of five 

molecules of hydrogen cyanide (HCN), an abundant component of the early Earth's 

atmosphere, in a multicomponent reaction catalyzed by ammonia (NH3).
15 Similarly, 

multicomponent reactions involving HCN and H2O have generated other nucleic bases. 

(Scheme 1.1) 

 

Scheme 1.1 Multicomponent synthesis of purine 

1.2 Nitrogen-Containing Organic Compound 

As the universal structural motif of all living things, nitrogen can be found in vitamins, 

hormones, amino acids, and nucleic acids. Consequently, they showcase diverse 

structural attributes, encompassing simplicity, functional groups, degrees of substitution, 

and heterocyclic systems. Many biologically, pharmaceutically, and synthetically active 

compounds contain nitrogen as a core skeleton or alone. In addition to their industrial and 

biological importance, N-heterocyclic organic compounds play an important role in many 

areas of human society. 
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Considering the vast number of nitrogen-containing compounds, the enormous diversity 

of their structures, and their very different fields of application, this chapter has covered 

some main classes of heterocyclic compounds. Nitrogen-containing five-membered 

heterocycles are pyrrole and pyrazoles; six-membered is pyridine; seven-membered are 

azepines ring; and fused heterocycles are benzimidazole, benzothiazole, benzoxazole, 

and Indole (Figure 1.2). 

 

Figure 1.2 N-Heterocyclic containing some main class of organic compounds 

1.2.1 Nitrogen-containing five-membered cyclic compounds 

1.2.1.1 Pyrrole 

Pyrrole, an essential chemical motif found in numerous drugs, natural products, catalysts, 

and advanced materials, is a heterocyclic compound with a five-membered ring.16,17 In 

1834, pyrrole was isolated from coal tar by Runge, and its correct structure was 

subsequently formulated by Baeyer in 1870. Pyrroles display activity in the presence of 

appropriate metal atoms, forming metal complex macrocycles encompassing heme 

porphyrins, chlorins, bacteriochlorins, chlorophyll, and porphyrinogens.18 They 

constitute a component of polymers, indigoid dyes, and sizable aromatic rings. (Figure 

1.3) 



CHAPTER-1 
 

Department of Chemistry, IIT (BHU), Varanasi. Page 6 
 

Pyrroles find application as a catalyst in polymerization, corrosion inhibitor, preservative, 

solvent for resins, and terpenes. They exhibit functionality in diverse areas, including 

metallurgical processes, luminescence chemistry, spectrochemical analysis, and serving 

as catalysts for uniform polymerization in transition metal complexes. Additionally, 

certain compounds serve as valuable intermediates in synthesizing biologically 

significant naturally occurring alkaloids and synthetic heterocyclic derivatives.19 

 

Figure 1.3 Few biologically active compounds containing pyrrole moiety 

Pyrroles can be synthesized through diverse approaches, including the reaction of a 1,4-

dicarbonyl compound with ammonia or aromatic/aliphatic amines (Paal-Knorr 

Synthesis)20, N-butyl-substituted alkynyl imine gave intramolecular cyclization21, by 

Knorr pyrrole synthesis in which α-amino-ketone react with ethyl acetoacetate22, ketones 

or secondary alcohols and β-amino alcohols23, α-halo ketones, and ammonia to give 

substituted pyrroles known as “Hantzsch pyrrole synthesis”,  by three component 
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condensation involving benzoyl chloride, hydrazine hydrate, and aldehyde “Piloty–

Robinson pyrrole synthesis”19, and most importantly from the reaction of oxime with 

alkynes “Trofimov reaction”.24 (Scheme 1.2) 

 

Scheme 1.2 Synthesis of pyrrole and its derivatives 

1.2.1.2 Triazoles 

Triazole, a significant group of heterocyclic compounds, demonstrates a wide range of 

pharmacological activities. These compounds, referred to as pyrrodiazoles, possess a 

five-membered ring consisting of two carbon and three nitrogen atoms. Notably, they 

serve as fundamental structural components in commercially available drugs like 

cefatrizine (an antibiotic) and fluconazole (an antifungal agent). Furthermore, their 

medicinal potential extends to exploring antiviral properties, including anti-HIV 

activity.25–27 (Figure 1.4) 
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Figure 1.4 Triazoles containing marketed drugs and pharmacologically active 

molecules 

Triazoles can be synthesized through various methods, including the reaction of an azide 

and a terminal alkyne in the presence of copper (I) metal or copper (II) salts. For instance, 

the use of copper sulfate pentahydrate facilitates this synthesis. Another approach 

involves a palladium-catalyzed reaction using alkenyl halides and sodium azides. 

Additionally, when terminal alkynes are combined with a mixture of benzyl or alkyl 

halides and sodium azide, in the presence of copper immobilized on 3-aminopropyl 

functionalized silica gel and ethanol, it leads to the formation of 1, 4-disubstituted 1, 2, 

3-triazole compounds. A highly efficient method has been reported for the one-pot 

synthesis of triazole-linked glycoconjugates, employing 1,3-dipolar cycloaddition in the 

presence of Cu(I) as a catalyst. Under suitable reaction conditions, primary aliphatic 

amines can undergo diazo transfer to yield azides, which can further be transformed into 

triazoles. Condensed triazoles can be synthesized by oxidizing aryl azo heterocycles 

containing an amino group in the ortho position.28–30 (Scheme 1.3) 
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Scheme 1.3 Synthesis of Triazole and its derivatives 

1.2.2 Nitrogen-containing six-membered cyclic compounds  

1.2.2.1 Pyridine 

Heterocyclic chemistry containing nitrogen atoms encompasses half of organic 

chemistry. Pyridine, a significant heteroaromatic compound, possesses a wide range of 

potent biological properties, making it a compound of great importance.31,32 Abundant 

quantities of pyridine were acquired through the distillation of coal tar, which served as 

a valuable natural source of this compound. Pyridines also occur in many significant 

compounds, e.g., pyridoxine (vitamin B6), vitamin niacin (vitamin B3)
33, and several 

alkaloids, including quinine, nicotine, etc. Pyridine structure forms many 

pharmaceuticals, e.g., anti-HIV, anticancer, antidiabetic, proton pump inhibitor, etc.34 

Pyridine derivatives are also incorporated into polymers, such as polyvinyl pyridine 

(PVP), which are utilized in light-emitting devices (LEDs).35 (Figure 1.5) 
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Figure 1.5 Representative compounds containing pyridine substructure 

The synthesis of pyridine was initially achieved in 1876 by combining acetylene and 

hydrogen cyanide.36 The Chichibabin pyridine synthesis can synthesize pyridine and is 

still used in industry.37 Through the Knoevenagel condensation reaction, aldehyde and 

formaldehyde undergo a reaction that yields acrolein. Subsequently, acrolein undergoes 

condensation with acetaldehyde and ammonia, resulting in the formation of 

dihydropyridine. The dihydropyridine is then subjected to oxidation using a solid-state 

catalyst, leading to the production of pyridine.38 The Hantzsch pyridine synthesis 

involves a multicomponent organic reaction that includes an aldehyde, β-keto ester (2 

equivalents), and a nitrogen donor (ammonium acetate or ammonia).39 Cycloaddition of 

alkynenitriles and alkynes gives pyridine.40 (Scheme 1.4) 
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Scheme 1.4 Synthesis of pyridine and its derivatives 

1.2.3 Nitrogen-containing seven-membered cyclic compounds  

1.2.3.1 Azepines 

Azepines are heterocyclic compounds consisting of unsaturated seven-membered rings 

with a nitrogen atom replacing a carbon atom. Benzoazepines, which are azepines fused 

with a benzene ring, have proven effective in treating a range of disorders, including 

hypertension (1) and congestive heart failure (2). Additionally, they are recognized for 

their neuroprotective properties (3) and their potential as agents against tuberculosis 

(4).41–44 (Figure 1.6) 
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Figure 1.6 Benzoazepines based potent molecules 

In due course of time, several methods have been developed for synthesizing seven-

membered heterocyclic compounds. Bou-Hamdan et al. successfully synthesized 

substituted azepine compounds at room temperature (298K) through the photolysis of 

aryl azide.45 (Scheme 1.5.1) Lautens and co-workers employed allyl acetates and 

carbonates in a microwave-assisted intramolecular coupling reaction with aryl iodides to 

synthesize seven-membered N-containing heterocycles.46 (Scheme 1.5.2) Liu and co-

workers reported the synthesis of functionalized Azepine derivatives by using methyl 

coumalate and glycine-derived imine ester in the presence of  Et3N as the base in 

CH2Cl2.
47 (Scheme 1.5.3) 
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Scheme 1.5 Synthesis of azepines and their derivatives 

1.2.4 Nitrogen-containing fused heterocyclic compounds 

1.2.4.1 Benzimidazole 

Benzimidazole is a heterocyclic structure containing nitrogen consisting of a fused six-

membered benzene ring and a five-membered imidazole ring.  

Benzimidazoles and their derivatives play a crucial role in numerous biologically active 

compounds and find extensive application as antihypertensive, anti-inflammatory, 

antibacterial, antiviral, antifungal, antihelmintic, anticancer, antiulcer, antioxidant, 

psychoactive drugs, anticoagulants, proton pump inhibitors, immunomodulators, 

hormone modulators, antidepressants, antidiabetics, and more.48 Benzimidazole 

derivatives engage with essential biological targets such as DNA minor grooves, 

histamine receptors, β-tubulin, and serotonin receptors.49,50 (Figure 1.7) 
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Figure 1.7 Few biologically active compounds containing imidazole moiety 

Various methods have been employed to synthesize benzimidazole and its derivatives, 

including condensation reactions of o-phenylenediamine with carbonyls51, oxidative 

condensation reactions of alcohols, methyl arene derivatives with o-

phenylenediamine52,53, oxidative cyclization of N-aryl amidine intermediates formed by 

the addition of aniline to a nitrile54,55, one-pot intermolecular cross-coupling of o-

haloacetoanilide with guanidines56,  intramolecular C(sp3)–H imination57, and 

thermolysis of benzotriazole derivatives.58 (Scheme 1.6) 
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Scheme 1.6 Synthesis of benzimidazole and its derivatives 

1.2.4.2 Benzothiazole 

Benzothiazole has garnered significant interest due to its diverse range of biological, 

pharmaceutical, and intriguing chemical applications.59 2-Substituted benzothiazole 

derivatives exhibit promising potential for a wide range of applications, including 

antidiabetic, anti-inflammatory, antitumor, antifungal, antiviral, antipsychotic, 

antiarrhythmic, neurodegenerative, mosquitocidal properties60 and serve as imaging 

agents for Ca2þ channel antagonists. Furthermore, they also demonstrate activities such 

as anti-HIV, antituberculosis, analgesic, and diuretic effects, among others.61 (Figure 

1.8) 
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Figure 1.8 Few biologically active compounds containing Benzothiazole moiety 

Benzothiazole can be synthesized through various methods, including the reaction of 1,2-

aminothiophenol with carbonyl compounds62, 2-halogen-substituted anilines, and 

dithiocarbamates in the presence of t-BuOK.63 Other methods involve the oxidative 

cyclization of thiobenzanilinide using potassium cyanohexaferrate64, oxidative 

cyclization of Schiff's base65, a three-component reaction involving cyclohexenone 

oximes, aldehydes, and elemental sulfur66, as well as the utilization of tetramethylthiuram 

disulfide (TMTD) and o-aminothiophenol.67 Additionally, arylthioureas can undergo 

intermolecular oxidative C-H bond functionalization in the presence of pyridine to yield 

benzothiazole.68 (Scheme 1.7) 
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Scheme 1.7 Synthesis of benzothiazole and its derivatives 

1.2.4.3 Benzoxazole 

Benzoxazoles and their derivatives are aromatic heterocyclic compounds incorporating 

nitrogen and oxygen atoms. These compounds are prevalent in various natural products 

and are recognized as valuable pharmacophores in the field of drug discovery.  

Moreover, numerous benzoxazole derivatives have been identified and utilized as drugs 

in various therapeutic areas. These derivatives possess diverse properties, serving as 

antimycobacterial agents, peroxisome proliferators activated receptor γ antagonists, 

natural cytotoxic products, cathepsin S inhibitors, 5-HT3 receptor antagonists, non-

nucleoside reverse transcriptase inhibitors, elastase inhibitors, estrogen receptor-β 

agonists, and exhibit activities such as antidiabetic, antimicrobial, anticancer, anti-HIV, 
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anticonvulsant, anti-inflammatory, antinuclear, and antitumor effects, among others.69–71 

(Figure 1.9) 

 

Figure 1.9 Few biologically active compounds containing benzoxazoles moiety 

Benzoxazole and its derivatives have been synthesized using various methods. These 

include the reaction of aldehyde/carboxylic acid derivatives with 2-aminophenol under 

different conditions,72,73, oxidative condensation reactions involving toluene/, benzyl 

alcohols/, benzyl amines/, styrene with 2-aminophenol.74,75 Additionally, one-pot 

intermolecular C-heteroatom coupling of N-(2-bromophenyl) benzamide,76 

intermolecular cross-coupling of 1,2-dihaloarenes with amide77,  intramolecular C-N 

cross-coupling of 2-haloanilines with acyl halides/thioacyl halides78, hydroamination of 

alkynes with 2-aminophenols79 benzotriazole rings cleavage of N-acyl benzotriazole80 

have been employed as synthetic routes for benzoxazole derivatives. (Scheme 1.8) 
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Scheme 1.8 Synthesis of Benzoxazoles and their Derivatives 

1.2.4.4 Indole 

Indole derivatives exhibit a wide range of biological activities and are commonly found 

in various natural products. The exploration of indole chemistry emerged alongside the 

investigation of indigo dye. The conversion of indigo to isatin, followed by the formation 

of oxindole derivatives, is a possible pathway. Indole derivatives possess a multitude of 

biological properties, including but not limited to anti-inflammatory, anticonvulsant, 

cardiovascular, and antibacterial effects. In particular, 3-substituted indole derivatives 

have a crucial significance in synthesizing biologically active compounds.81–83 Figure 

1.10 illustrates several indole compounds that exhibit biological activity. 
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Figure 1.10 Representatives of substituted indoles 

Indoles and their derivatives have been synthesized using various methods. These 

methods include the "Fischer indole synthesis," which involves the reaction of 

phenylhydrazine and carbonyls (aldehyde or ketone) under acidic conditions.84 The 

"Bischler-Möhlau indole synthesis" utilizes α-bromo-acetophenone and excess aniline to 

yield 2-aryl-indole. The potassium tertiary butoxide-promoted dehydrogenation of 

indoline,85 the reaction of 2‐fluorotoluenes and benzonitriles in the presence of a base,86  

and the addition of aniline and a ketone bearing a thioether substituent are also employed 

for indole synthesis, known as the "Gassman indole synthesis".87 Furthermore, the 

"Larock indole synthesis" involves using a palladium catalyst to react ortho-iodoaniline 

and a disubstituted alkyne.88 The thermal decomposition of 3-aryl-2-azido-propenoic 

ester into an indole-2-carboxylic ester, referred to as the "Hemetsberger indole 

synthesis",89 and the "Baeyer-Emmerling indole synthesis" using substituted ortho-nitro 
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cinnamic acid and iron powder in a strongly basic solution are additional methods 

employed for indole synthesis.90 (Scheme 1.9) 

 

Scheme 1.9 Synthesis of Indole and its derivatives 

1.3 Multicomponent Synthesis of N-containing Compounds  

1.3.1 Microwave-Assisted Reactions  

1.3.2 Ultrasound-Assisted Reactions 

1.3.3 Mechanochemical Method 

1.3.4 Photochemical Synthesis 

1.3.5 Transition Metal Catalyzed  

1.3.6 Nanoparticle Catalyzed  

1.3.1 Microwave-Assisted Reaction 

The use of microwave irradiation as an innovative energy source to initiate reactions has 

gained significant popularity and value in the field of organic chemistry. The efficient 
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heating capabilities of microwaves often result in a noticeable enhancement of reaction 

rates and a substantial reduction in reaction time. Recent investigations into organic 

synthesis using microwave irradiation have revealed that these effects are primarily 

attributed to the dielectric heating properties of microwaves. Concurrently, certain studies 

have proposed that the non-thermal effects of microwaves have the potential to alter 

reaction dynamics and lower the activation energy of organic reactions.91–95 

Under the influence of microwave irradiation, Kumar et al. devised a rapid methodology 

to synthesize phenanthrene-fused tetrahydrodibenzoacridinones.96 (Scheme 1.10)  

 

Scheme 1.10 Synthesis of phenanthrene-fused tetrahydrodibenzoacridinones 

Under the influence of microwave irradiation in ethanol, Abdel-Hamid and colleagues 

introduced a novel class of pyridine derivatives utilizing p-formylphenyl-4-

toluenesulfonate, ethyl cyanoacetate, acetophenone, and ammonium acetate.97 (Scheme 

1.11) 

 

Scheme 1.11 Synthesis of Pyridines derivatives 
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Under the influence of microwave irradiation, Hui Ng and colleagues developed a new 

method for the synthesis of pyrazolo[3,4-d]pyrimidine.98 (Scheme 1.12) 

 

Scheme 1.12 Synthesis of Pyrazolo pyrimidine derivatives 

1.3.2 Ultrasound-Assisted Reactions 

In recent years, researchers have shown great interest in the rapid synthesis facilitated by 

ultrasound, as it addresses the societal need to produce numerous environmentally 

friendly and ecologically benign biologically and industrially active compounds.99–103 

Ultrasound-assisted chemistry has emerged as a comprehensive discipline that aligns 

with the principles of green chemistry. By leveraging ultrasound's cavitation properties, 

ultrasonic activation enhances mass transfer, dramatically reducing reaction times from 

hours to minutes. This technique also mitigates side reactions, improves reproducibility, 

and increases yields compared to traditional thermal heating methods. Ultrasound 

induces specific activation in chemical reactions through a physical phenomenon called 

acoustic cavitation. Cavitation disrupts the attractive forces among molecules in the 

liquid phase, generating a unique reaction environment within the vessel through bubbles' 

formation, growth, and implosive collapse. This environment accelerates reactions 

significantly.104,105 

Gui et al. devised an innovative approach using the ultrasound-assisted tandem one-pot 

synthesis of polysubstituted pyrroles focusing on green and sustainable chemistry 
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principles under solvent-free conditions using iodine as both the catalyst and oxidant.106 

(Scheme 1.13) 

 

Scheme 1.13 Synthesis of polysubstituted pyrroles 

Chudasama et al. have provided ultrasound-promoted convenient and ionic liquid 

[BMIM]BF4 assisted green synthesis of diversely functionalized pyrazolo quinolone 

using 1,3-dicarbonyl compound i.e., 4-hydroxycoumarin or dimedone, 

benzaldehyde, and 5-amino indazole.107 (Scheme 1.14)  

Scheme 1.14 Synthesis of pyrazolo quinolone 

In 2018, our research group developed a facile and efficient multicomponent ultrasound-

assisted “on water” synthesis of benzodiazepine ring using isatin, 1, 2-phenylenediamine, 

and 5,5-dimethylcyclohexane-1,3-dione.108 (Scheme 1.15) 
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Scheme 1.15 Synthesis of benzodiazepine 

1.3.3 Mechanochemical Synthesis of N-Heterocyclic Compounds 

Over the past twenty years, the concept of mechanochemistry, which involves chemical 

transformations driven by mechanical energy, has gained significant popularity.109,110  

According to IUPAC, they have been recognized as one of the top ten transformative 

technologies with global impact.111 The transformations are facilitated by the mechanical 

energy generated through processes such as shearing, kneading, grinding, or milling.112 

This technique encompasses various principles of green chemistry, including the 

reduction or elimination of solvents, environmentally friendly conditions, fast reaction 

kinetics, and the elimination of lengthy workup procedures.113 Mechanochemistry’s 

attractive potential is not confined to traditional organic synthesis or organometallics,114 

but also includes fields such as biocatalysis,115 API synthesis,116 polymer chemistry,117 

supramolecular chemistry,118 and material chemistry.119 In the latter, Mechanochemical 

applications have greatly aided multicomponent reactions120–125 for the preparation of 

sulphur-containing126–128 and nitrogen-containing heterocycles.29,129–132 

In 2020, our research team devised a highly efficient and novel approach for synthesizing 

indoloindolpyrimidine derivatives via multicomponent reaction utilizing isatin 
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derivatives, 1,3 diketones (barbituric acid), and enaminones under the grinding 

condition.133 (Scheme 1.16) 

Scheme 1.16 Synthesis of indoloindolpyrimidine 

Leonardi et al. reported a mechanochemical multicomponent synthesis of 

Pyrrolo[2,1-a]isoquinolines using ketones, 2,2-dimethoxyethylamine, and active 

methylene compounds.124 (Scheme 1.17) 
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Scheme 1.17 Mechanochemical multicomponent synthesis of 

Pyrrolo[2,1-a]isoquinolines 

Raj and co-workers reported multicomponent reactions for synthesizing pyrimidine 

derivatives with ZnO NPs using 2-aminobenzimidazole, ethyl acetoacetate, and 

benzaldehyde under a solvent-free ball milling technique.134 (Scheme 1.18) 

 

Scheme 1.18 Synthesis of pyrimidine derivatives 
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Sen et al. described a successful solvent-free mechanochemical multicomponent reaction 

that employed pyridine/isoquinoline derivatives, phenyl iodonium dimethyl malonate, 

and a variety of 1,4-quinones using catalyst copper acetate.135 (Scheme 1.19) 

Scheme 1.19 Mechanochemical synthesis of indolizines 

1.3.4 Visible Light-Mediated Synthesis of N-Heterocyclic Compounds 

The significance of green chemistry has become increasingly evident to chemists due to 

the growing concerns over pollution and waste produced during chemical processes in 

industrial and laboratory settings. Consequently, their focus has shifted towards 

substituting conventional approaches with economically viable and eco-friendly 

alternatives, such as green catalysts, environmentally benign solvents, and conditions that 

eliminate the need for solvents or catalysts.136–138 Most chemical reactions necessitate an 

appropriate catalyst to facilitate the formation of desired products. While the utilization 

of stimuli can alleviate certain drawbacks associated with chemical processes, the 

absence of catalysts remains particularly enticing, particularly in industry and 

pharmaceuticals. Nonetheless, achieving reaction outcomes without catalysts demands 

the exploration of more efficient and economically viable alternatives. Furthermore, in 

certain instances, the indispensable role played by a catalyst renders its omission 

impractical. 
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In recent times, the utilization of visible light as an initiating source in chemical reactions 

has gained significant traction as a robust method for synthesizing bioactive organic 

compounds. This emerging research field holds promise in enhancing efficacy and 

synthetic versatility. The organic reaction initiated by visible light has garnered 

significant attention due to its utilization of pure, cost-effective, environmentally benign, 

user-friendly, renewable, and sustainable energy sources.139–141 Photo-induced reactions 

exhibit enhanced kinetics due to light absorption from multiple directions within the 

reaction vessel. 

In general, the application of light irradiation provides sufficient energy for the reaction 

to occur, eliminating the drawbacks associated with thermal activation, such as elevated 

temperatures or severe conditions. In order to achieve success in photochemical reactions, 

the reaction needs to involve the presence of light-absorbing species (such as 

photocatalysts or photoactive substrates). 

1.3.4.1 Catalyst-free Multicomponent Synthesis under Visible Light 

In general, catalyst-free reactions driven by visible light can progress through two 

pathways. Firstly, when at least one of the substrates can absorb light, it can undergo a 

single-electron transfer (SET) process, forming radical intermediates. Secondly, a 

complex can be formed between an electron-rich component and an electron-deficient 

component, known as an Electron Donor-Acceptor (EDA) complex, without needing a 

photocatalyst. (Figure 1.11) The presence of the EDA complex can be verified by the 

emergence of a distinct charge-transfer band associated with the complex in the UV-Vis 
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absorption spectrum. This results in an intense coloration in the visible-light range, 

shifting towards longer wavelengths. 

 

Figure 1.11 Photocatalytic pathway via EDA complex 

A photo-driven method for synthesizing C6-polyfunctionalized phenanthridines through 

a radical cascade reaction was reported by Miao, Wang, and their colleagues in 2018.  

The reaction initiation involved the photosensitization of Electron Donor-Acceptor 

(EDA) complexes formed by arylsulfinate anions and biaryl isocyanides. Notably, the 

reaction exhibited high region- and stereoselectivity, yielding E-products under blue light 

irradiation and Z-products under UV light irradiation.142 (Scheme 1.20) 

 

Scheme 1.20 Synthesis of phenanthridines 

Zhang et al. successfully utilized visible light to synthesize numerous 5-substituted indole 

chromeno[2,3-b]pyridines at room temperature without needing a photocatalyst. The 

most favorable reaction conditions were achieved using EL/H2O (ethyl lactate/ water) 

and green light irradiation.143 (Scheme 1.21) 
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Scheme 1.21 Synthesis of 5-substituted indole chromeno[2,3-b]pyridines 

Ansari et al. introduced a remarkably efficient one-pot approach mediated by visible light 

for synthesizing highly functionalized 4-oxo-tetrahydroindoles without a catalyst.144 

(Scheme 1.22) 

Scheme 1.22 Synthesis of 4-oxo-tetrahydroindoles 

1.3.4.2 Visible-light Photo-redox Catalyzed Organic Synthesis 

At first glance, photocatalysis can be deceiving since light (photons) is employed as a 

reagent, often in excessive amounts rather than in a catalytic manner. Photocatalysis 

refers to transformations that necessitate light as an energy source to advance, utilizing 

small quantities of light-absorbing photocatalysts such as metal complexes or organic 

dyes.145 The excited photocatalyst can activate the substrate through various mechanisms, 

including single electron transfer (SET), energy transfer (ET), or hydrogen atom transfer 

(HAT).146,147 



CHAPTER-1 
 

Department of Chemistry, IIT (BHU), Varanasi. Page 32 
 

Geng and co-workers reported a synthesis of pyrimido[1,2-b]indazole from 

bromodifluoroacetic acid derivatives, enaminones, and 3-aminoindazoles via SET in the 

presence of fac-Ir(ppy)3 as a photo-redox catalyst.148 (Scheme 1.23) 

 

Scheme 1.23 Synthesis of pyrimidoindazole 

In 2020, our research group synthesized 3- aminoimidazo[1,2-a]pyridines using 

benzylamine, 2-aminopyridine, and t-butylisocyanide under visible-light-irradiation via 

HAT process in the presence of eosin Y  as a photo-redox catalyst.149 (Scheme 1.24) 

Scheme 1.24 Synthesized 3- aminoimidazo[1,2-a]pyridines 

In 2021, our research group also reported the synthesis of  3-aminoimidazoheterocycles 

under solvent-free conditions via SET process using styrene, 2-aminoheterocycles, and 

tertiary butylisocyanide.150 (Scheme 1.25) 

 

Scheme 1.25 Synthesis of  3-aminoimidazoheterocycles 
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1.3.5 Transition Metal-Catalyzed Synthesis of N-Heterocyclic Compounds 

The introduction of the preamble to transition metal-catalyzed reactions in organic 

synthesis has unlocked the potential to functionalize traditionally unreactive C–H bonds, 

as well as achieve other extraordinary transformations. The exceptional characteristics of 

transition metal-catalyzed reactions have played a significant role in the growing 

popularity of transition metal-catalyzed multicomponent reactions (MCRs).151 These 

MCRs involving transition metals have been integrated into various reaction sequences, 

resulting in an impressive diversity of molecular ensembles. While palladium-catalyzed 

processes have rightfully taken a central position, other transition-metal complexes are 

also gaining ground, implying the involvement of organometallic elementary steps that 

extend beyond cross-coupling and carbometallation. In addition to domino MCRs solely 

based on organometallic catalysis, the chronological and sequential combination of 

condensation, addition, and cycloaddition steps offers a vast playground for developing 

new sequences in heterocyclic synthesis. Some important transition metal-catalyzed 

multicomponent reactions are briefly described below: 

Meshram et al. utilized a Cu(OTf)2 catalyst and performed reactions of methyl ketones, 

O-tosylhydroxylamine, and either pyridin-2(1H)-one or thiazo/benzo[d]thiazol-2(3H)-

ones in an ionic liquid medium [bmim]BF4, leading to the successful synthesis of 

imidazole fused heterocycles.152 (Scheme 1.26) 
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Scheme 1.26 Multicomponent synthesis of fused N-heterocycles 

A three-component protocol for synthesizing 3-(diarylmethylene)oxindoles was reported 

in 2007 by Zhu and co-workers. The desired products were obtained through subsequent 

Sonogashira coupling and carbopalladation, which initiated aryl C–H vinylation.153 

(Scheme 1.27) 

 

Scheme 1.27 Three-component synthesis of 3-(diarylmethylene)oxindoles 

Balaraman et al. accomplished the tandem synthesis of quinolines by employing 

[Rh(cod)Cl]2 as a catalyst. This process involved the formation of new C─C and C═N 

bonds through reactions between anilines, an electron-withdrawing group (EWG) 

functionalized alkynes, and a CO surrogate (CO or HCHO).154 (Scheme 1.28) 
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Scheme 1.28 Three-component synthesis of quinolones 

Xu et al. recently reported the successful utilization of Copper catalysts in three-

component and four-component cascade reactions involving cyanamides, dirayliodonium 

triflates, and propargylamine. This innovative approach enables the efficient synthesis of 

polysubstituted 2-aminoimidazoles and 2-iminoimidazoles, employing K2CO3 and 

pyridine as the base under an N2 atmosphere.155 (Scheme 1.29) 

Scheme 1.29 Multicomponent synthesis of 2-aminoimidazoles and 2-iminoimidazoles 

1.3.6 Nanoparticle Catalyzed Synthesis of N-Heterocyclic Compounds 

In recent decades, nanostructured materials have emerged as appealing candidates for 

heterogeneous catalysts in a variety of organic transformations. These materials align 

well with the principles of green and sustainable chemistry.156–158 Notably, significant 

progress has been achieved by scientists and researchers in synthesizing well-defined 

nanostructured materials.159 Within these advancements, novel approaches have allowed 
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for the deliberate design and synthesis of highly active and selective nanostructured 

catalysts through precise control of the structure and composition of the active 

nanoparticles.160 Furthermore, the ease of separating, recovering, and reusing these 

nanoparticles further enhances their appeal as green and sustainable catalysts.161,162 

Maleki et al. employed a green and heterogeneous catalyst, Fe3O4@chitosan, to 

synthesize 1,4-dihydropyridine derivatives in a convenient single-step reaction.163 

(Scheme 1.30) 

 

Scheme 1.30 One-pot synthesis of 1, 4-dihydropyridine derivatives 

A highly efficient, rapid, and environmentally friendly Hantzsch synthesis of 1,4-

dihydropyridines (DHPs) was developed by Naik and co-workers164 using ZnFe2O4 NPs 

as a bimetallic nanocatalyst. (Scheme 1.31) 

 

Scheme 1.31 Synthesis of 1,4-dihydropyridine 

Remaily et al. reported the synthesis of 1,2,4,5-tetrasubstituted imidazoles through the 

reaction of benzil, aldehyde, propargylamine, and ammonium acetate using an 

heterogeneous magnetic nano-catalyst, CuFe2O4.
165 (Scheme 1.32) 
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Scheme 1.32 Synthesis of 1,2,4,5-tetrasubstituted imidazoles 

In view of the importance of multicomponent synthesis of nitrogen containing 

heterocyclic compounds, our interest is to explore the chemistry (synthesis and structural 

characterization) of 3-Aminoimidazo[1,2-a]Pyridines, 1,4-dihydropyridines, N-

heterocyclic Pyrimido [4,5-b] Quinolines and Pyrido [2,3-d] Pyrimidines under visible 

light irradiation, and mechanochemical approach etc. The studies have been described in 

subsequent chapters 2-5. 
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