LIST OF CONTENTS

ACKNOWLEDGEMENT	V
LIST OF TITLES	ix
LIST OF SCHEMES	xiv
LIST OF FIGURES	xviii
LIST OF TABLES	xxi
LIST OF NOTATIONS, SYMBOLS AND ABBREVIATIONS	xxiii
GENERAL EXPERIMENTAL CONSIDERATIONS	xxvii
PREFACE	xxviii

CHAPTER-1

BORONIC ACIDS: SYNTHESIS AND THEIR APPLICATIONS IN CHEMISTRY AND BIOLOGY

Title No.		LIST OF TITLES	Page No.
1.1	BRIEF	HISTORY OF BORONIC ACID	1
1.2	PREPA	RATION OF BORONIC ACIDS	2
	1.2.1	Synthesis of arylboronic acids using organometallic intermediates	3
	1.2.2	Synthesis of arylboronic acids from arylsilanes <i>via trans</i> - metallation	4
	1.2.3	Palladium and Nickel catalyzed borylation of aryl halides and triflates with diboronyl esters	5
	1.2.4	Synthesis of aryboronic acids from anilines	6

	1.2.5	Transition metal-catalyzed direct boronylation of arenes	7
	1.2.6	Synthesis of heteroarylboronic acids	8
	1.2.7	Synthesis of Alkenylboronic Acids	8
	1.2.8	Synthesis of Alkynylboronic Acids	9
	1.2.9	Synthesis of alkylboronic acids	9
	1.2.10	Synthesis of benzylboronic acids	10
1.3	BORON	NIC ACID SURROGATES	10
	1.3.1	Boroxines	11
	1.3.2	Boronic esters	12
	1.3.3	Potassium trifluoroborate salts	12
	1.3.4	N-Methyliminodiacetic acid (MIDA) boronate esters	13
1.4	APPLIC	CATIONS OF BORONIC ACIDS IN ORGANIC SYNTHESIS	14
	1.4.1	Transition metal catalyzed cross-coupling reactions: C-C and C-	
		heteroatom bond formation	14
	1.4.2	Suzuki-Miyaura cross-coupling reaction	16
	1.4.3	Reaction mechanism of Suzuki-Miyaura cross-coupling reaction	18
	1.4.4	Other C-C bond forming reactions using arylboronic acids	19
	1.4.5	Chan-Evans-Lam cross-coupling reaction	21
	1.4.6	Proposed mechanism for Chan-Evans-Lam cross-coupling	23
		reaction	
	1.4.7	Petasis reaction or Petasis Borono-Mannich reaction	24
	1.4.8	A proposed mechanism for Petasis reaction	26
1.5	ipso-FU	INCTIONALIZATION OF BORONIC ACIDS	27
1.6	BORON	NIC ACIDS AS REAGENTS AND CATALYSTS IN ORGANIC	
	TRANS	SFORMATIONS	28
1.7	APPLIC	CATIONS OF BORONIC ACIDS IN BIOLOGICAL AND	
	MEDIC	INAL CHEMISTRY	32

	1.7.1	Applications of boronic acids as sensors	34
	1.7.2	Applications of boronic acids as therapeutic agents	35
1.8	OBJEC	TIVES OF THE THESIS WORK	37
1.9	REFER	ENCES	38

ipso-HYDROXYLATION OF ARYLBORONIC ACIDS UNDER CATALYST-FREE CONDITION

2.1	INTRO	DUCTION	46
2.2	DIFFEI	RENT APPROACHES FOR THE SYNTHESIS OF PHENOLS	49
2.3	LIMITA	ATIONS OF PREVIOUS REPORTS	51
2.4	RESUL	TS AND DISCUSSION	51
	2.4.1	Optimization of reaction condition	51
	2.4.2	Substrates scope	54
2.5	PLAUS	IBLE REACTION MECHANISM	57
2.6	SUMM	ARY OF THE WORK	58
2.7	REQUI	REMENT OF CERTAIN MODIFICATIONS	59
	2.7.1	Optimization of reaction condition with urea-hydrogen peroxide	61
	2.7.2	Substrate scope with urea-hydrogen peroxide	63
2.8	PLAUS	IBLE REACTION MECHANISM	69
2.9	CONCI	LUSION	69
2.10	EXPER	IMENTAL SECTION	70
	2.10.1	Experimental procedure for the oxidation of boronic acids using	
		aqueous hydrogen peroxide	70
	2.10.2	Experimental procedure for oxidation of boronic acids with urea-	
		hydrogen peroxide (UHP)	71
2.11	ANAL	YTICAL DATA FOR THE PRODUCTS	72
2.12	SPECT	RAL DATA FOR FEW PRODUCTS	85
2.13	REFER	ENCES	88

COPPER PROMOTED *N*-ALKYLATION OF SULFOXIMINES WITH ALKYLBORONIC ACID UNDER MILD CONDITION

3.1	INTRO	DUCTION	93
3.2	RESUL	TS AND DISCUSSION	97
	3.2.1	Optimization of reaction condition	97
	3.2.2	Substrates scope	99
3.3	PLAUS	IBLE REACTION MECHANISM	105
3.4	CONCI	LUSION	105
3.5	EXPER	IMENTAL SECTION	106
	3.5.1	Experimental procedure for the synthesis of sulfides	106
	3.5.2	Experimental procedure for the synthesis of sulfoxides	107
	3.5.3	Experimental procedure for the synthesis of NH-Sulfoximines	108
	3.5.4	Experimental procedure for the synthesis of protected L-	
		methionine sulfoximine (4)	109
	3.5.5	Experimental procedure for the N-methylation/alkylation of	
		sulfoximines using methyl/alkylboronic acid	111
	3.5.6	Experimental procedure for the synthesis of N-methyl-S-phenyl-S-	
		(2-phenylethyl)sulfoximine (5a)	112
3.6	ANAL	YTICAL DATA FOR SULFOXIMINES	113
3.7	ANALY	YTICAL DATA FOR N-ALKYLSULFOXIMINE	123
3.8	SPECT	RAL DATA FOR FEW PRODUCTS	139
3.9	REFER	ENCES	143

COPPER-CATALYZED *N*-ARYLATION OF SULFOXIMINES WITH ARYLBORONIC ACID UNDER MILD CONDITION

4.1	INTRO	DUCTION	146
4.2	RESUL	TS AND DISCUSSION	148
	4.2.1	Optimization of reaction condition	148
	4.2.2	Substrates scope	151
4.3	PLAUS	IBLE REACTION MECHANISM	160
4.4	CONCI	LUSION	162
4.5	EXPER	IMENTAL SECTION	163
	4.5.1	Experimental procedure for N-arylation of sulfoximines with	
		arylboronic acids	163
	4.5.2	Experimental procedure for N-arylation of sulfoximine with	
		boronic acid surrogates	163
	4.5.3	Experimental procedure for N-arylation of L-methionine	
		sulfoximine derivative with arylboronic acids	164
4.6	ANALY	TICAL DATA FOR N-ARYLSULFOXIMINES	165
4.7	SPECT	RAL DATA FOR FEW PRODUCTS	192
4.8	REFER	ENCES	196

CHAPTER-5

DEOXYGENATION OF *TERTIARY* AMINE *N*-OXIDES UNDER METAL-FREE CONDITION USING PHENYLBORONIC ACID

5.1	INTRO	DUCTION					199
5.2	RESUL	TS AND DISCU	SSION				201
	5.2.1	Optimization of	reaction condition	n			201
	5.2.2	Substrates scope	2				205
5.3	DETEC	TION OF <i>TER</i>	RTIARY AMINE	N-OXIDES	USING	UV-VIS	

	SPECT	ROMETRY	210
5.4	PLAUS	SIBLE REACTION MECHANISM	216
5.5	CONC	LUSION	216
5.6	EXPER	IMENTAL SECTION	217
	5.6.1	Experimental procedure for the preparation of <i>tertiary</i> amines	217
	5.6.2	Experimental procedure for the preparation of amine N-oxides	218
	5.6.3	Experimental procedure for deoxygenation of amine N-oxides	218
5.7	ANAL	YTICAL DATA FOR THE N-OXIDES	219
5.8	ANAL	YTICAL DATA FOR THE PRODUCTS	222
5.9	PROCE	EDURE FOR UV-VIS EXPERIMENTS	234
5.10	SPECT	RAL DATA FOR FEW PRODUCTS	236
5.11	REFER	ENCES	239

SUMMARY AND CONCLUSIONS

LIST OF PUBLICATIONS

Scheme No.	LIST OF SCHEMES	Page No.
1.1	Structures of different organoboron compounds	1
1.2	Preperation of ethylboronic acid	2
1.3	Synthesis of arylboronic acid using organometallic compounds [DMG] =	
	Directing metalation group	3
1.4	Synthesis of arylboronic acid using arylsilane and boron tribromide	4
1.5	Palladium catalyzed synthesis of arylboronic acids	5
1.6	Examples of Ni-catalyzed borylation of aryl halides. [dppp] = 1,3-	6
	bis(diphenylphosphino)propane	

1.7	Metal-free synthesis of arylboronates. [BPO] = Benzoyl peroxide	7
1.8	Iridium catalyzed direct borylation of arenes. [dppe] = 1,3-	7
	bis(diphenylphosphino)ethane	
1.9	Synthesis of different heterocyclic boronic acids	8
1.10	Synthesis of alkenylboronic acids from vinylhalides	8
1.11	Synthesis of alkynylboronic acids from Mg or Li acetylides	9
1.12	Synthesis of alkylboronic acids from alkyllithium and magnesium	
	compounds	9
1.13	Pd-catalyzed C-H activation/borylation of benzylic positions	10
1.14	Mg-catalyzed borylation of benzyl halides	10
1.15	Synthesis of boroxines from arylboronic acid	11
1.16	Synthesis of boronic esters from boronic acids	12
1.17	Synthesis of potassium trifluoroborate salts from boronic acids	13
1.18	Synthesis of MIDA-boronate esters from boronic acids	13
1.19	Common Pd-catalyzed cross-coupling reactions	14
1.20	C-heteroatom bond formation reactions	15
1.21	Synthesis of symmetrical biaryl compounds by traditional methods	16
1.22	Suzuki-Miyaura cross-coupling reaction	16
1.23	Suzuki-Miyaura cross-coupling reaction of unactivated and sterically	
	hindered aryl halides	17
1.24	Proposed mechanism for the Suzuki-Miyaura cross-coupling reaction	19
1.25	Synthesis of diarylketones from arylboronic acids	19
1.26	Synthesis of diaryl sulfones from arylboronic acids	20
1.27	Synthesis of diaryl methanol from arylboronic acids	20
1.28	Rhodium-catalyzed asymmetric conjugate addition of boronic acids to	
	enones	20
1.29	Buchwald-Hartwig and Chan-Evans-Lam cross-coupling reactions	21
1.30	Synthesis of aryl ether 3 under Chan-Evans-Lam reaction condition	22
1.31	Synthesis of anthranilic acid-based MMP inhibitor 4	22
1.32	Synthesis of macrocyclic MMP inhibitor 5	23

nthesis of Factor Xa inhibitor oposed mechanism for <i>Chan-Evans-Lam</i> cross-coupling reaction ulti-component <i>Petasis Borono-Mannich</i> reaction nthesis of Naftifine and other antifungal agents	23 24 25
ulti-component Petasis Borono-Mannich reaction	25
-	
nthesis of Naftifine and other antifungal agents	
	26
nthesis of antiplatelet agent Clopidogrel using Petasis reaction	26
oposed mechanism for Petasis Borono-Mannich reaction	26
nversion of boronic acids into different functionalities	27
e of boronic acid as a template for the Diels-Alder reactions	28
pronic acid-mediated ortho-α-hydroxyalkylation of phenol with	
lehyde	28
inolin-8-ylboronic acid catalyzed hydrolysis chlorine-functionalized	
phatic alcohols	29
ylboronic acids catalyzed direct amidation of carboxylic acids	30
echanism arylboronic acids catalyzed direct amidation of carboxylic	30
ds	
ylboronic acids catalyzed Diels-Alder reactions	31
ylboronic acids catalyzed [3+2] dipolar cycloaddition reactions	32
ylboronic acids catalyzed Friedel-Crafts alkylation reaction	32
eraction of boronic acid with diols in different pH	34
fferent approaches for the preparation of phenolic compounds	49
oduction of lactic acid from biomass	53
ctic acid as a green solvent for multi-component reactions (MCR)	54
cidation of phenylboronic acid pinacol ester and potassium	
enyltrifluoroborate in lactic acid	57
idation of alkylboronic acids with hydrogen peroxide in lactic acid	57
vo different mechanistic pathways (A and B) for the oxidation reaction	58
mitations of <i>ipso</i> -hydroxylation using lactic acid for other functional	
oups	59
ea-hydrogen peroxide used for oxidation of various functional groups	
	nthesis of antiplatelet agent Clopidogrel using <i>Petasis</i> reaction oposed mechanism for <i>Petasis Borono-Mannich</i> reaction nversion of boronic acids into different functionalities e of boronic acid as a template for the <i>Diels-Alder</i> reactions ronic acid-mediated <i>ortho</i> -α-hydroxyalkylation of phenol with ehyde inolin-8-ylboronic acid catalyzed hydrolysis chlorine-functionalized obtaic alcohols ylboronic acids catalyzed direct amidation of carboxylic acids schanism arylboronic acids catalyzed direct amidation of carboxylic ds ylboronic acids catalyzed <i>Diels-Alder</i> reactions ylboronic acids catalyzed [3+2] dipolar cycloaddition reactions ylboronic acids catalyzed <i>Friedel-Crafts</i> alkylation reaction eraction of boronic acid with diols in different pH freent approaches for the preparation of phenolic compounds oduction of lactic acid from biomass ctic acida s a green solvent for multi-component reactions (MCR) idation of phenylboronic acids with hydrogen peroxide in lactic acid to different mechanistic pathways (A and B) for the oxidation reaction initations of <i>ipso</i> -hydroxylation using lactic acid for other functional ups

	in organic synthesis	60
2.9	Synthesis of Urea-hydrogen peroxide solid adduct	61
2.10	Oxidation of 4-(methylthio)phenylboronic acid in different conditions	67
2.11	Oxidation of phenylboronic acid pinacol ester and potassium	
	phenyltrifluoroborate	67
2.12	Oxidation of alkylboronic acids with urea-hydrogen peroxide	68
2.13	Oxidation of arylboronic acids under solvent-free condition	68
2.14	Proposed mechanism for the <i>ipso</i> -hydroxylation reaction of arylboronic acids	69
3.1	A selective α -carbon functionalization of <i>N</i> -methylsulfoximine <i>via</i> lithiation	94
3.2	Representative methods for <i>N</i> -methylation of sulfoximines and their drawbacks	95
3.3	Copper-mediated N-arylation of sulfoximine using arylboronic acid	95
3.4	Methylboronic acid used as methylating reagent	96
3.5	N-alkylation of sulfoximine with alkylboronic acid	96
3.6	Representative methods for N-alkylation of sulfoximines and their	
	drawbacks.	102
3.7	N-Alkylation of L-methionine sulfoximine derivative under optimized	
	reaction condition	104
3.8	An example of selective functionalization of N-methylsulfoximine via	
	lithiation	104
3.9	Proposed mechanism for N-methylation reaction	105
4.1	Previous reports for N-arylation of sulfoximines	147
4.2	Objective of the present work	148
4.3	N-phenylation of S-methyl-S-phenylsulfoximine using phenylboronic	
	acid surrogates	158
4.4	N-vinylation of S-methyl-S-phenylsulfoximine using trans-2-	
	phenylvinylboronic acid	160
4.5	Proposed mechanism for N-arylation of sulfoximine with arylboronic	

	acid	161
5.1	Deoxygenation processes under metal or metal-free conditions	201
5.2	Deoxygenation of 4-bromo-N,N-dimethylaniline N-oxide with diboron	
	compounds	204
5.3	Deoxygenation of 4-bromo-N,N-dimethylaniline N-oxide (11) with 4-	
	nitrophenylboronic acid	211
5.4	Deoxygenation of N,N-dimethylaniline N-oxide (1a) with 4-	
	nitrophenylboronic acid in acetonitrile	213
5.5	Deoxygenation of 4-bromo-N,N-dimethylaniline N-oxide (11) with 4-	
	nitrophenylboronic acid in THF or water	214
5.6	Plausible mechanism for the deoxygenation of amine N-oxides to	
	corresponding amines	216
6.1	Snapshot of chapter-2	244
6.2	Pictorial representation of chapter-3	245
6.3	Quick look of chapter-4	246
6.4	Graphical illustration of chapter-5	247

Figure No.	LIST OF FIGURES	Page No.
1.1	Structures of some common boronic acid surrogates	11
1.2	Examples of clinical drugs accessed by <i>Suzuki-Miyaura</i> cross-coupling reactions.	18
1.3	Applications of boronic acids in various fields	33
1.4	Structures of some glucose sensors	34
1.5	Boronic acids as proteasome and DPP-IV enzyme inhibitors	35
1.6	Therapeutic applications of boronic acids	36
2.1	Various green solvents used in organic synthesis	46
2.2	Structure of various bio-based solvents used in organic synthesis	47

2.3	Applications of phenolic compounds in different fields	48
2.4	¹ H NMR of Phenol ($2a$)	85
2.5	13 C NMR of Phenol (2a)	85
2.6	¹ H NMR of cyclohexanol ($2\mathbf{u}$)	86
2.7	¹³ C NMR of cyclohexanol (2u)	86
2.8	¹ H NMR of 4-(methylthio)phenol (4e)	87
2.9	¹³ C NMR of 4-(methylthio)phenol (4e)	87
3.1	Biologically and chemically relevant sulfoximines.	93
3.2	¹ H NMR of <i>N</i> , <i>S</i> -dimethyl- <i>S</i> -phenylsulfoximine (2a)	139
3.3	¹³ C NMR of <i>N</i> , <i>S</i> -dimethyl- <i>S</i> -phenylsulfoximine (2a)	139
3.4	¹ H NMR of <i>N</i> -methyl- <i>S</i> , <i>S</i> -diphenylsulfoximine (2p)	140
3.5	¹³ C NMR of <i>N</i> -methyl- <i>S</i> , <i>S</i> -diphenylsulfoximine (2p)	140
3.6	¹ H NMR of <i>N</i> -cylcopropyl- <i>S</i> -ethyl- <i>S</i> -phenylsulfoximine (3e)	141
3.7	¹³ C NMR of <i>N</i> -cylcopropyl- <i>S</i> -ethyl- <i>S</i> -phenylsulfoximine (3e)	141
3.8	¹ H NMR of L-Methionine sulfoximine derivative ($4a$)	142
3.9	¹³ C NMR of L-Methionine sulfoximine derivative (4a)	142
4.1	Single crystal XRD structure of compound 3ay	154
4.2	¹ H NMR of N -(2,4,6-trimethylphenyl)- S , S -methylphenylsulfoximine	
	(3aa)	192
4.3	13 C NMR of <i>N</i> -(2,4,6-trimethylphenyl)- <i>S</i> , <i>S</i> -methylphenylsulfoximine	
	(3aa)	192
4.4	¹ H NMR of <i>N</i> -phenylethynyl- <i>S</i> , <i>S</i> -methylphenylsulfoximine ($3aw$)	193
4.5	¹³ C NMR of <i>N</i> -phenylethynyl- <i>S</i> , <i>S</i> -methylphenylsulfoximine (3aw)	193
4.6	¹ H NMR of N -(2,4,6-trimethylphenyl)- S , S -dibutylsulfoximine (4c)	194
4.7	13 C NMR of <i>N</i> -(2,4,6-trimethylphenyl)- <i>S</i> , <i>S</i> -dibutylsulfoximine (4 c)	194
4.8	¹ H NMR of L-Methionine Sulfoximine Derivative (4h)	195
4.9	¹³ C NMR of L-Methionine Sulfoximine Derivative (4h)	195
5.1	Example of N-oxide deoxygenation promoted turn-on fluorescent probe	199
5.2	Structures of N-oxide based anticancer prodrugs	200
5.3	Structures of antidepressant drug Clozapine and it metabolite Clozapine	

N-oxide

- 5.4 (a) Spectral profile showing the increase of *p*-NP band at 400 nm with respect to time. The reaction was carried out with 4-bromo-*N*,*N*-dimethylaniline *N*-oxide and 4-nitrophenylboronic acid in acetonitrile and spectra were measured in *tris*-HCl buffer solution with 15 min interval. (b) Plot of absorbance *vs* time
- 5.5 (a) Spectral profile showing the increase of *p*-NP band at 400 nm with respect to time. The reaction was carried out with *N*,*N*-dimethylaniline *N*-oxide and 4-nitrophenylboronic acid in acetonitrile and spectra were measured in *tris*-HCl buffer solution with 15 min interval. (b) Plot of absorbance *vs* time
- 5.6 (a) Spectral profile showing the increase of *p*-NP band at 400 nm with respect to time. The reaction was carried out with 4-bromo-*N*,*N*-dimethylaniline *N*-oxide and 4-nitrophenylboronic acid in tetrahydrofuran and spectra were measured in *tris*-HCl buffer solution with 15 min interval. (b) Plot of absorbance *vs* time
- 5.7 (a) Spectral profile showing the increase of *p*-NP band at 400 nm with respect to time. The reaction was carried out with 4-bromo-*N*,*N*-dimethylaniline *N*-oxide and 4-nitrophenylboronic acid in water at 70 °C and spectra were measured in *tris*-HCl buffer solution with 30 min interval. (b) Plot of absorbance *vs* time
- 5.8 ¹H NMR of 4-bromo-N,N-dimethylaniline (**2**I) 236
- 5.9 13 C NMR of 4-bromo-*N*,*N*-dimethylaniline (**2l**) 236
- 5.10 ¹H NMR of 4-ethylmorpholine (**4b**) 237
- 5.11 13 C NMR of 4-ethylmorpholine (**4b**) 237
- 5.12 ¹H NMR of Quinoline (**6g**) 238
- 5.13 13 C NMR of Quinoline (**6g**) 238
- 6.1 Overview of chapter-1

212

213

214

215

243

Table No.	LIST OF TABLES	Page No.
2.1	Synthesis of phenols from arylboronic acids	50
2.2	Oxidation of 4-chlorophenylboronic acid in various solvents with hydrogen peroxide	52
2.3	Oxidation of various functionalized arylboronic acids in lactic acid and	
	acetic acid	56
2.4	Oxidation of phenylboronic acid using urea-hydrogen peroxide (UHP)	63
2.5	Oxidation of substituted arylboronic acids to corresponding phenols using UHP	65
3.1	Optimization of reaction condition for N-methylation of sulfoximine	
	using methylboronic acid	98
3.2	N-Methylation of various sulfoximines with methylboronic acid under	
	optimized conditions	100
3.3	N-Alkylation of S-ethyl-S-phenylsulfoximine (1b) with different	
	alkylboronic acids	103
4.1	Optimization of reaction condition for N-arylation of sulfoximine (1a)	
	using 2,4,6-trimethylphenylboronic acid (2a)	150
4.2	<i>N</i> -Arylation of <i>S</i> -methyl- <i>S</i> -phenylsulfoximine (1a) using sterically	
	hindered arylboronic acid	151
4.3	<i>N</i> -Arylation of <i>S</i> -methyl- <i>S</i> -phenylsulfoximine (1a) using various	
	arylboronic acid	153
4.4	<i>N</i> -(4-methyl)phenylation of various sulfoximines using 4-	
	methylphenylboronic acid	155
4.5	Crystal data and structure refinement for 3ay	156
4.6	<i>N</i> -arylation of aliphatic sulfoximines using various arylboronic acids	157
4.7	<i>N</i> -arylation of bio-active L-methionine sulfoximine with arylboronic	159
	,	

acids

5.1	Optimization of reaction condition in various solvents	202
5.2	Optimization of reaction condition with different boronic acids	203
5.3	Deoxygenation of N,N-dialkylaniline N-oxides using phenylboronic acid	206
5.4	Deoxygenation of trialkyl and benzylamine N-oxides with	
	phenylboronic acid	207
5.5	Deoxygenation of heteroaromatic N-oxides with phenylboronic acid	209
5.6	Yield comparison between isolated and calculated values from UV for	
	the deoxygenation reaction of 4-bromo-N,N-dimethylaniline N-oxide	
	(11) with 4-nitrophenylboronic acid.	215