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3.1 Introduction 

N-Nitrosamines, a class of compounds derived from secondary amines, are studied since the 

nineteenth century [1]. N-Nitrosamines are known as potential carcinogens and mutagenic 

agents [2]. Nevertheless, N-Nitrosamines display various biological properties including 

anticancer activities (Figure 3.1A) [3]. On the other hand, N-Nitrosamines are important 

intermediates in organic synthesis [4]. For example, biologically relevant hydrazines and 

sydnones are prepared from N-Nitrosamines [5]. Recently, N-Nitrosamines have been 

exploited as directing groups for transition metals catalyzed C-H activation reactions (Figure 

3.1B) [6].  

While many reactions require N-Nitrosamines as starting materials and intermediates, they 

are also often formed as side products in some reactions. For instance, N-Nitrosamine is 

formed as the major product during the dealkylation process of N, N-Dialkyl anilines 

[7].Similarly, N-Nitrosamines are formed as the by-product during the preparation of 

pendimethalin (herbicide) and triazolopyrazine (inhibitor of DPP-4) molecules [8]. 

Moreover, in many N-Nitroso directed C-H activation reactions, N-Nitroso group remains in 

the product [6]. 

In this context, denitrosation of N-Nitrosamines plays an important role to regenerate the 

active amine compound for subsequent applications. However, only a few reports are 

available for the denitrosation of N-Nitrosamines while most of which involve metal-based 

reducing agents. In particular, CuCl/HCl, [6b, 10], NiCl2/NaBH4, [6b, 11], Fe(CO)5,[6b, 10], 
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Raney- Ni/H2, [6b, 11], Fe/NH4Cl [6f, 6l] and Zn/NH4Cl [6j], systems have been used for the 

denitrosation of N-Nitrosamines. Besides the potential toxicity, most of these metal reagents 

are known for the reduction of other functional groups including nitro, nitrile, aldehyde, 

ketone, etc. Additionally, some of these methods require excess reagents, strongly acidic or 

alkaline medium, high temperature, longer reaction time, etc. Therefore, the development of 

an alternative route is important for process of denitrosation.  

 

Figure 3.1 A: Biologically relevant N-Nitroso compounds. B: Applications of N-

Nitrosamines in some transformations. 
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Our research group is focused on the chemistry of N-Nitrosamines [12] and has reported N-

Nitrosation of secondary amines using tert-butyl nitrite, [12a] reduction of N-Nitrosamines to 

hydrazines, [12b] nitration of aryl amines through N-Nitroso intermediate, [12c] activation 

and trans-amidation of secondary amides via N-Nitroso intermediate, [12e] etc. Towards this 

end, recently our group has reported a metal-free method for the denitrosation of aryl N-

Nitrosamines using iodine-triethylsilane system [12d]. This method was found to be very 

selective and efficient which tolerates many reactive functional groups during the 

denitrosation. In continuation of this work, here we developed a new route for the 

denitrosation of aryl-N-Nitrosamines using ethanethiol with PTSA (p-Toluenesulfonic acid) 

via trans-nitrosation strategy (Scheme 3.1).   

 

Scheme 3.1 Denitrosation of N-Nitrosamines using ethanethiol with PTSA. 

3.2 Results and Discussion 

At the outset, denitrosation of N-Benzyl N-Nitroso aniline 1a was examined with one 

equivalent of thiophenol in different polar and nonpolar solvents including methanol, 

acetonitrile, tetrahydrofuran (THF), toluene and dichloromethane (DCM) at 30 C for 12 h in 

the absence of any additives (Table 3.1, entries 1-5). Among these solvents, DCM was found 

to be the best and gave the desired product 2a in 14% yield. Further, instead of thiophenol, 

more nucleophilic ethanethiol was used as a nucleophile in DCM at 30 C for 12 hours. 
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Under this condition, the yield of the desired product was raised to 21% (Table 3.1, entry 6). 

Furthermore, the reaction temperature was elevated to 50 C in order to study the effect of 

temperature. However, no significant change in the yield was observed (Table 3.1, entry 7). 

Further, we have increased the amount of ethanethiol from 1.0 equivalent to 3.0 equivalents. 

The yield of the reaction was increased to 40% with two equivalents of ethanethiol (Table 

3.1, entry 8). However, not much change was observed with three equivalents of ethanethiol 

(Table 3.1, entry 9). Hence, base and acid additives were introduced into the reaction 

mixture (Table 3.1, entries 10-14). In the presence of a base, no product was observed 

(Table 3.1, entries 10-11). However, the organic acids such as camphorsulfonic acid (CSA), 

triflic acid (TfOH) and p-Toluenesulfonic acid (PTSA) facilitated the denitrosation process 

and the desired product 2a was obtained in good yields in 5 hours (Table 3.1, entry 12-14). 

Among the different acids, PTSA was found to be better than other acids and gave the 

desired product 2a in 89% yield (Table 3.1, entry 14). Moreover, it was also observed that 

one equivalent of ethanethiol or two equivalents of thiophenol provided the desired product 

in low yields (Table 3.1, entry 15-16).  

 

 

 

 

 

 

 



Chapter-3 

Department of Chemistry, IIT (BHU), Varanasi. Page 66 

Table 3.1 Screening condition for denitrosationa 

 

 

 

aReaction conditions: N-Nitrosamine (1 mmol), thiol (2.0 eq.), acid/base (0.3 eq.) and 

solvent (3 ml). bIsolated yields. 
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After finding the optimized reaction conditions, [15] denitrosation of various N-nitrosamines 

was investigated using ethanethiol and PTSA at 30 C (Table 3.2).  

Table 3.2 Denitrosation of N-nitrosamines using ethanethiol and PTSA.a,b 

 

aReaction conditions: N-Nitrosamine (1 mmol), ethanethiol (2.0 eq.), PTSA (0.3 eq.) and 

DCM (3 ml). bIsolated yields. 
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Denitrosation of N-Nitroso N-Alkyl anilines were achieved in excellent yields (i.e. 85-89%) 

within 3 hours, irrespective of the length of the alkyl chain present on the substrate (Table 

3.2, 2b-2d). Similarly, N-Nitroso-N-Phenyl aniline gave the desired product 2e in 90% yield 

in 4 hours. The substrate scope was further extended by investigating the denitrosation of N-

Nitroso-N-Benzyl anilines. In this series, we have chosen the substrates bearing various 

electron-donating and electron-withdrawing groups on the aryl rings and were subjected to 

denitrosation using ethanethiol and PTSA under optimized conditions. To our delight, all 

these substrates underwent denitrosation and provided corresponding amines in good to 

excellent yields (Table 3.2, 2f-2p). Moreover, the reduction susceptible functional groups 

such as nitro, nitrile and ketones were found to be stable during the denitrosation process 

(Table 3.2, 2q-2u), which increases the scope of the reaction. 

After exploring the substrates scope, we investigated the applications of the developed 

methodology in multistep synthesis (Scheme 3.2). Palladium-catalyzed N-Nitrosamine 

directed ortho-alkoxylation of aniline with PhI(OAc)2 in methanol provided the N-Nitroso 

intermediate 1t in 76% yields [15b]. The compound 1t was successfully denitrosated to 

obtain 2v using EtSH/PTSA in 82% yield (Scheme 3.2, a). Similarly, the dealkylation of N, 

N-Dimethyl aniline in the presence of KI/t-BuOOH in nitromethane provided the N-Nitroso 

intermediate 1b in 52% yield [15c]. Further, the compound 1b was subjected to denitrosation 

using EtSH /PTSA to obtain compound 2b in 85% yield (Scheme 3.2, b).  
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Scheme 3.2 (a) Palladium-catalyzed C-H activation followed by denitrosation; (b)   

Nitrosative dealkylation of N, N-Dimethylaniline followed by denitrosation. 

After exploring the scope of the reactions with N-Nitroso arylamines, we investigated the 

denitrosation of N-Nitroso dibenzyl and dialkyl amines under optimized conditions. The 

denitrosation of N-Nitroso dibenzyl amines provided the desired product 2w only in 7% yield 

while N-Nitroso dihexyl amine failed to undergo denitrosation (Scheme 3.3). We believe that 

alkyl N-nitrosamines are more stable when compare with aromatic N-nitrosamines due to 

some electronic reasons.  

 

Scheme 3.3  Denitrosation of N-Nitroso dibenzyl and dialkylamines. 
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3.3 Proposed mechanism for the reaction 

A plausible mechanism for the denitrosation of N-Nitrosamines is shown in Scheme 3.4. In 

the first step, N-Nitrosamine gets protonated and the intermediate A is formed. Subsequently, 

the nucleophile RSH reacts with the intermediate A and provides RS-NO (via trans-

nitrosation) and the amine (Scheme 3.4, eq. 1) [13]. The unstable RS-NO converts into 

disulfide and nitric oxide (Scheme 3.4, eq. 2) [14]. 

 

Scheme 3.4 Proposed mechanism for the denitrosation reaction. 

To shed light on the proposed mechanism, we have performed a control experiment between 

thiophenol and N-Methyl N-Nitroso aniline 1b in the presence of PTSA (Scheme 3.5). In this 

reaction, the disulfide 3 was isolated in 35% along with the amine 2b, which supports the 

proposed reaction mechanism.  

 

Scheme 3.5 Formation of disulfide in the denitrosation reaction. 
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3.4 Conclusions 

In conclusion, we have designed an efficient and useful method for the denitrosation of N-

Nitrosamines using PTSA and ethanethiol. The reaction proceeds at room temperature and 

provides the amine in 74–90% yield. Reduction susceptible functionalities such as nitrile, 

nitro and ketone were found to be stable under the standard reaction conditions. Applications 

of the current method were demonstrated in multistep organic synthesis. We believe that the 

current methodology will have a wide scope in organic synthesis. 

3.5 Experimental procedures 

Procedure for the denitrosation of N-Nitrosamines: N-Nitrosamine 1a (1.0 mmol, 1.0 equiv.) 

was allowed to stir in dichloromethane (3 mL) for 5 min at room temperature to which PTSA 

(0.3 eq.) and ethanethiol (2.0 eq.) were added. The reaction mixture was further allowed to 

stir for appropriate time and the progress of the reaction was monitored by TLC. After 

completion, the reaction mixture was diluted with DCM and washed with water. The organic 

layer was dried over anhydrous sodium sulphate, concentrated, and subjected to column 

chromatography (SiO2, eluent: Hexane/ethyl acetate; 92:8) to obtain 2a as pale-yellow 

viscous liquid in 89% (164 mg) yield. Rf = 0.62; 1H NMR (500 MHz, CDCl3) δ 7.26–7.19 

(m, 4H), 7.18–7.13 (m, 1H), 7.08–7.04 (m, 2H), 6.61 (td, J = 7.4, 1.0 Hz, 1H), 6.50 (dd, J = 

8.6, 0.9 Hz, 2H), 4.18 (s, 2H), 3.85 (s, 1H); 13C NMR (125 MHz, CDCl3) δ 148.0, 139.3, 

129.1, 128.5, 127.4, 127.1, 117.4, 112.7, 48.1. 
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3.5.1 General Experimental procedure for the nitrosation of amines: [12a]  

As mentioned in literature, amines (1.0 mmol) and TBN (2 eq.) were taken in 

dichloromethane solvent and allowed to stir at room temperature for appropriate time. After 

completion, the reaction mixture was diluted with DCM and washed with water. The organic 

layer was dried over anhydrous sodium sulphate, concentrated, and subjected to column 

chromatography (SiO2, eluent: Hexane/ethyl acetate) to obtain corresponding N-nitrosamine 

products. 

 

3.5.2 General Experimental procedure for the optimization table 

N-Benzyl-N-Nitrosamine (1 mmol) and thiol (2 eq.) were stirred in the solvent (3ml) at 

respective time. The acid (0.1 eq.) or base (1 eq.) was used where it is mentioned. The 

reaction was further allowed to stir for 6 h and the progress of the reaction was monitored by 

TLC. After completion, the reaction mixture was diluted with dichloromethane and washed 

with water. The organic layer was dried over anhydrous sodium sulphate, concentrated, and 

subjected to column chromatography (SiO2, eluent: Hexane/ethyl acetate) to obtain 

corresponding pure substituted secondary amines. 
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3.5.3 General Experimental procedure for the denitrosation of N-Nitrosamines 

 

N-Nitrosamine (1.0 mmol, 1.0 equiv.) was allowed to stir in dichloromethane (3 mL) for 5 

min at room temperature to which PTSA (1 eq.) and ethane thiol (2 eq.) were added. The 

reaction mixture was further allowed to stir for 6 h and the progress of the reaction was 

monitored by TLC. After completion, the reaction mixture was diluted with DCM and 

washed with water. The organic layer was dried over anhydrous sodium sulphate, 

concentrated, and subjected to column chromatography (SiO2, eluent: Hexane/ethyl acetate) 

to obtain corresponding pure substituted secondary amines. 

 

3.5.4 General Experimental procedure for the preparation of 1t 

N-Alkyl- N-Nitroso arylamine (1 mmol), PhI(OAc)2 (5mmol) and Pd(CH3CN)2Cl2 (0.1 

mmol) were charged into a pressure tube containing methanol (4 mL). The mixture was 

stirred at 30 °C for 24 h. After completion, the mixture was diluted with dichloromethane, 

washed with water and dried over anhydrous sodium sulphate. The organic layer was 

concentrated in vacuo and purified in column chromatography. 
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3.5.5 General Experimental procedure for the preparation of 1b 

Tert-Amine (1.0 mmol) and TBAI (73 mg, 0.2 mmol) were placed in a pressure tube to 

which CH3NO2 (4.0 mL) and TBHP (3.0 mmol, 0.4 mL, 70% solution in water) were added. 

The reaction mixture was stirred at 80 °C for 6 h. After completion, the reaction mixture was 

quenched with saturated Na2SO3 solution and extracted with ethyl acetate. The organic layer 

was combined and dried with anhydrous Na2SO4. Removal of solvent followed by column 

chromatography using a mixture of hexane and ethyl acetate afforded the desired products. 

3.6 Analytical data for denitrosation products 

3.6.1. N-Benzylaniline (2a): [12d] 

The title compound was obtained as pale yellow viscous. The residue was purified by column 

chromatography in silica gel eluting with hexane:EtOAc  92:8, Rf = 0.62; Yield: 88% (167 

mg); 1H NMR (500 MHz, CDCl3) δ 7.26–7.19 (m, 4H), 7.18–7.13 (m, 1H), 7.08–7.04 (m, 

2H), 6.61 (td, J = 7.4, 1.0 Hz, 1H), 6.50 (dd, J = 8.6, 0.9 Hz, 2H), 4.18 (s, 2H), 3.85 (s, 1H); 

13C NMR (125 MHz, CDCl3) δ 148.0, 139.3, 129.1, 128.5, 127.4, 127.1, 117.4, 112.7, 48.1. 

3.6.2. N-Methylaniline (2b): [15a] 

The title compound was obtained as a yellow viscous liquid. The residue was purified by 

column chromatography in silica gel eluting with hexane:EtOAc  97:3, Rf = 0.55; Yield: 85% 

(97 mg); 1H NMR (500 MHz, CDCl3) δ 7.37–7.30 (m, 2H), 6.85 (td, J = 7.3, 1.0 Hz, 1H), 

6.73 (dd, J = 8.6, 1.0 Hz, 2H), 3.64 (s, 1H), 2.92 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 

149.2, 129.0, 117.0, 112.2, 30.5. 
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3.6.3. N-Butylaniline (2c): [12d] 

The title compound was obtained as a yellow liquid. The residue was purified by column 

chromatography in silica gel eluting with hexane:EtOAc  97:3, Rf = 0.54; Yield: 86% (132 

mg); 1H NMR (500 MHz, CDCl3) δ 7.12–7.06 (m, 2H), 6.63–6.57 (m, 1H), 6.53–6.49 (m, 

2H), 3.26 (s, 1H), 3.03–3.00 (m, 2H), 1.51 (ddd, J = 12.6, 8.4, 6.4 Hz, 2H), 1.35 (dt, J = 15.0, 

7.3 Hz, 2H), 0.87 (t, J = 7.4 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 148.4, 129.1, 117.0, 

112.6, 43.6, 31.6, 20.2, 13.8. 

3.6.4. N-Hexylaniline (2d): [12d] 

The title compound was obtained as a pale yellow liquid. The residue was purified by column 

chromatography in silica gel eluting with hexane:EtOAc  97:3, Rf = 0.58; Yield: 89% (153 

mg); 1H NMR (500 MHz, CDCl3) δ 7.15–7.04 (m, 2H), 6.61 (ddd, J = 7.3, 4.2, 1.0 Hz, 1H), 

6.57–6.44 (m, 2H), 3.04–3.00 (m, 2H), 1.54 (dt, J = 14.7, 7.3 Hz, 2H), 1.32–1.18 (m, 6H), 

0.83 (dd, J = 9.5, 4.6 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 148.4, 129.1, 117.1, 112.7, 

44.0, 31.6, 29.5, 26.8, 22.6, 14.0. 

3.6.5. Diphenylamine (2e): [16] 

The title compound was obtained as a yellow solid. m.p. 56 °C. The residue was purified by 

column chromatography in silica gel eluting with hexane:EtOAc  92:8, Rf = 0.65; Yield: 90% 

(161 mg); 1H NMR (500 MHz, CDCl3) δ 7.27–7.19 (m, 4H), 7.09–7.03 (m, 4H), 6.96–6.89 

(m, 2H), 5.66 (s, 1H); 13C NMR (125 MHz, CDCl3) δ 143.0, 129.2, 120.9, 117.7. 

3.6.6. N-Benzyl-4-methoxyaniline (2f): [17] 
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The title compound was obtained as a pale yellow solid. M.p. 54 °C. The residue was 

purified by column chromatography in silica gel eluting with hexane:EtOAc  97:3, Rf = 0.60; 

Yield: 83% (182 mg); 1H NMR (500 MHz, CDCl3) δ 7.31–7.16 (m, 5H), 6.69 (d, J = 8.9 Hz, 

2H), 6.51 (d, J = 8.9 Hz, 2H), 4.19 (s, 2H), 3.64 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 

152.1, 142.3, 139.6, 128.5, 127.5, 127.1, 114.8, 114.0, 55.7, 49.2. 

3.6.7. N-Benzyl-4-bromoaniline (2g): [18] 

The title compound was obtained as a yellow solid. M.p. 50 °C. The residue was purified by 

column chromatography in silica gel eluting with hexane:EtOAc  97:3, Rf = 0.51; Yield: 79% 

(213 mg); 1H NMR (500 MHz, CDCl3) δ 7.26 (d, J = 4.7 Hz, 3H), 7.23–7.18 (m, 1H), 7.16 

(d, J = 2.3 Hz, 2H), 7.15 (d, J = 2.1 Hz, 1H), 6.43–6.40 (m, 2H), 4.21 (s, 2H), 4.00 (s, 1H).; 

13C NMR (125 MHz, CDCl3) δ 147.0, 138.8, 131.8, 128.6, 127.3, 127.3, 114.3, 109.0, 48.19. 

3.6.8. N-Benzyl-4-fluoroaniline (2h): [19] 

The title compound was obtained as a yellow liquid. The residue was purified by column 

chromatography in silica gel eluting with hexane:EtOAc  97:3, Rf = 0.59; Yield: 75% (160 

mg); 1H NMR (500 MHz, CDCl3) δ 7.44–7.38 (m, 4H), 7.33 (ddd, J = 8.6, 5.2, 2.4 Hz, 1H), 

6.98–6.88 (m, 2H), 6.63–6.57 (m, 2H), 4.33 (s, 2H), 3.96 (s, 1H); 13C NMR (125 MHz, 

CDCl3) δ 156.7, 154.9, 144.4, 144.4, 139.1, 128.6, 127.4, 127.2, 115.7, 115.5, 113.6, 113.5, 

48.8. 

3.6.9. N-Benzyl-2,4-dimethylaniline (2i): [12d] 
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The title compound was obtained as a pale yellow liquid. The residue was purified by column 

chromatography in silica gel eluting with hexane:EtOAc  97:3, Rf = 0.57; Yield: 82% (180 

mg); 1H NMR (500 MHz, CDCl3) δ 7.40–7.16 (m, 5H), 6.88–6.75 (m, 2H), 6.44 (d, J = 8.2 

Hz, 1H), 4.26 (s, 2H), 3.63 (s, 1H), 2.14 (s, 3H), 2.06 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 

143.7, 139.6, 130.9, 128.5, 127.4, 127.3, 127.1, 126.2, 122.0, 110.1, 48.5, 20.3, 17.4. 

3.6.10. N-(4-Methylbenzyl)aniline (2j): [20] 

The title compound was obtained as a yellow solid. M.p. 45 °C. The residue was purified by 

column chromatography in silica gel eluting with hexane:EtOAc  97:3, Rf = 0.60; Yield: 84% 

(175 mg); 1H NMR (500 MHz, CDCl3) δ 7.16 (d, J = 7.9 Hz, 2H), 7.10–7.04 (m, 4H), 6.61 

(dd, J = 10.6, 4.1 Hz, 1H), 6.57–6.49 (m, 2H), 4.17 (s, 2H), 3.86 (s, 1H), 2.25 (s, 3H); 13C 

NMR (125 MHz, CDCl3) δ 148.1, 136.7, 136.3, 129.2, 129.1, 127.4, 117.4, 112.7, 48.0, 21.0. 

3.6.11. 4-Methyl-N-(4-methylbenzyl)aniline (2k): [21] 

The title compound was obtained as a pale yellow solid. M.p. 54 °C. The residue was 

purified by column chromatography in silica gel eluting with hexane:EtOAc  97:3, Rf = 0.63; 

Yield: 88% (193 mg); 1H NMR (500 MHz, CDCl3) δ 7.18–7.14 (m, 2H), 7.05 (d, J = 6.9 Hz, 

2H), 6.92–6.88 (m, 2H), 6.47 (dd, J = 8.3, 1.7 Hz, 2H), 4.16 (s, 2H), 3.74 (s, 1H), 2.25 (s, 

3H), 2.15 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 145.9, 136.7, 136.5, 129.6, 129.2, 127.4, 

126.6, 112.9, 48.3, 21.0, 20.3. 

3.6.12. 4-Methyl-N-(4-(methylthio) benzyl)aniline (2l): [12d] 
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The title compound was obtained as a yellow liquid. The residue was purified by column 

chromatography in silica gel eluting with hexane:EtOAc  92:8, Rf = 0.61; Yield: 90% (232 

mg); 1H NMR (500 MHz, CDCl3) δ 7.20 (d, J = 8.3 Hz, 2H), 7.15 (dd, J = 6.4, 4.4 Hz, 2H), 

6.96–6.81 (m, 2H), 6.52–6.40 (m, 2H), 4.18 (s, 2H), 3.80 (s, 1H), 2.39 (s, 3H), 2.15 (s, 3H); 

13C NMR (125 MHz, CDCl3) δ 145.7, 136.9, 136.6, 129.7, 127.9, 126.9, 126.7, 112.9, 48.1, 

20.3, 16.0. 

3.6.13. 4-Chloro-N-(4-methylbenzyl) aniline (2m): [21] 

The title compound was obtained as a yellow liquid. The residue was purified by column 

chromatography in silica gel eluting with hexane:EtOAc  97:3, Rf = 0.61; Yield: 81% (194 

mg); 1H NMR (500 MHz, CDCl3) δ 7.15 (d, J = 8.0 Hz, 2H), 7.07 (d, J = 7.9 Hz, 2H), 7.04–

7.00 (m, 2H), 6.46 (d, J = 8.9 Hz, 2H), 4.17 (s, 2H), 3.96 (s, 1H), 2.27 (s, 3H); 13C NMR 

(125 MHz, CDCl3) δ 146.6, 137.0, 135.8, 129.3, 129.0, 127.4, 122.0, 113.8, 48.0, 21.0. 

3.6.14. 4-Chloro-N-(4-methoxybenzyl) aniline (2n): [22] 

The title compound was obtained as a yellow solid. M.p. 83 °C. The residue was purified by 

column chromatography in silica gel eluting with hexane:EtOAc  97:3, Rf = 0.61; Yield: 84% 

(218 mg); 1H NMR (500 MHz, CDCl3) δ 8.18 (d, J = 8.6 Hz, 2H), 8.02 (d, J = 8.9 Hz, 2H), 

7.79 (d, J = 8.6 Hz, 2H), 7.45 (d, J = 8.8 Hz, 2H), 5.13 (s, 2H), 4.90 (s, 1H), 4.71 (s, 3H); 13C 

NMR (125 MHz, CDCl3) δ 158.8, 146.6, 130.8, 129.0, 128.6, 121.97, 114.0, 113.8, 55.2, 

47.7. 

3.6.15. 4-Bromo-N-(4-methylbenzyl) aniline (2o): [23] 
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The title compound was obtained as a yellow solid. m.p. 77 °C. The residue was purified by 

column chromatography in silica gel eluting with hexane:EtOAc  97:3, Rf = 0.63; Yield: 86% 

(238 mg); 1H NMR (500 MHz, CDCl3) δ 7.16 – 7.13 (m, 4H), 7.06 (d, J = 7.7 Hz, 2H), 6.40 

(d, J = 8.7 Hz, 2H), 4.15 (s, 2H), 3.94 (s, 1H), 2.26 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 

147.0, 137.0, 135.7, 131.8, 129.3, 127.3, 114.3, 108.9, 47.9, 21.0. 

3.6.16. 4-Bromo-N-(3,4-dimethoxybenzyl) aniline (2p): [12d] 

The title compound was obtained as a pale yellow solid. M.p. 106 °C. The residue was 

purified by column chromatography in silica gel eluting with hexane:EtOAc  92:8, Rf = 0.48; 

Yield: 88% (283 mg); 1H NMR (500 MHz, CDCl3) δ 7.18–7.14 (m, 2H), 6.81 (d, J = 8.2 Hz, 

2H), 6.76 (d, J = 7.9 Hz, 1H), 6.45–6.41 (m, 2H), 4.14 (s, 2H), 3.79 (d, J = 4.0 Hz, 6H); 13C 

NMR (125 MHz, CDCl3) δ 149.1, 148.3, 147.0, 131.8, 131.3, 119.5, 114.4, 111.2, 110.6, 

109.1, 55.9, 55.8, 48.1. 

3.6.17. N-Benzyl-2-nitroaniline (2q): [24] 

The title compound was obtained as a dark yellow solid. m.p. 75 °C. The residue was 

purified by column chromatography in silica gel eluting with hexane:EtOAc  92:8, Rf = 0.42; 

Yield: 74% (177 mg); 1H NMR (500 MHz, CDCl3) δ 8.35 (s, 1H), 8.11 (dd, J = 8.6, 1.5 Hz, 

1H), 7.32–7.25 (m, 5H), 7.22 (ddd, J = 8.5, 5.2, 2.2 Hz, 1H), 6.73 (dd, J = 8.6, 0.8 Hz, 1H), 

6.58 (ddd, J = 8.3, 7.0, 1.2 Hz, 1H), 4.47 (d, J = 5.6 Hz, 2H); 13C NMR (125 MHz, CDCl3) δ 

145.2, 137.3, 136.1, 132.2, 128.8, 127.6, 127.0, 126.8, 115.6, 114.1, 47.0. 

3.6.18. 4-(Benzylamino) benzonitrile (2r): [25] 
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The title compound was obtained as a yellow solid. m.p. 74 °C. The residue was purified by 

column chromatography in silica gel eluting with hexane:EtOAc  92:8, Rf = 0.62; Yield: 78% 

(171 mg); 1H NMR  (500 MHz, CDCl3) δ 7.34 (s, 1H), 7.32 (s, 1H), 7.31–7.28 (m, 1H), 

7.28–7.26 (m, 2H), 7.25–7.21 (m, 2H), 6.53–6.50 (m, 2H), 4.57 (s, 1H), 4.30 (d, J = 5.3 Hz, 

2H); 13C NMR (125 MHz, CDCl3) δ 151.0, 137.7, 133.6, 128.8, 127.6, 127.2, 120.3, 112.3, 

99.0, 47.4. 

3.6.19. 1-(2-(Benzylamino)phenyl)ethan-1-one (2s): [12d] 

The title compound was obtained as a yellow solid. m.p.77 °C. The residue was purified by 

column chromatography in silica gel eluting with hexane:EtOAc  92:8, Rf = 0.46; Yield: 75% 

(179 mg); 1H NMR (500 MHz, CDCl3) δ 9.37 (s, 1H), 7.81 (dd, J = 8.1, 1.4 Hz, 1H), 7.39–

7.28 (m, 6H), 6.69 (d, J = 8.5 Hz, 1H), 6.64 (t, J = 7.5 Hz, 1H), 4.50 (d, J = 5.6 Hz, 2H), 2.64 

(s, 3H); 13C NMR (125 MHz, CDCl3) δ 200.9, 150.8, 138.6, 134.97, 132.6, 128.6, 127.0, 

126.9, 117.7, 114.3, 112.1, 46.6, 27.9. 

 

 

3.6.20 N-Benzylpyridin-2-amine (2t): [29] 

The title compound was obtained as white solid. m.p. 92 °C. The residue was purified by 

column chromatography in silica gel eluting with hexane:EtOAc  85:15, Rf = 0.56; Yield: 

40% (76 mg); 1H NMR (500 MHz, CDCl3) δ 7.99 (dd, J = 5.0, 1.0 Hz, 1H), 7.31 – 7.22 (m, 

5H), 7.20 – 7.17 (m, 1H), 6.49 (m, J = 7.1, 5.1, 0.8 Hz, 1H), 6.27 (d, J = 8.4 Hz, 1H), 4.98 (s, 



Chapter-3 

Department of Chemistry, IIT (BHU), Varanasi. Page 81 

1H), 4.41 (d, J = 5.3 Hz, 2H). 13C NMR (125 MHz, CDCl3) δ 158.61, 148.09, 139.13, 

137.42, 128.56, 127.33, 127.15, 113.04, 106.70, 46.25. 

3.6.21 N-(pyridin-2-ylmethyl) aniline (2u): [29] 

The title compound was obtained as yellow liquid. The residue was purified by column 

chromatography in silica gel eluting with hexane:EtOAc  80:20, Rf = 0.49; Yield: 43% (81.7 

mg); 1H NMR (500 MHz, CDCl3) δ 8.48 (d, J = 4.5 Hz, 1H), 7.52 (td, J = 7.7, 1.7 Hz, 1H), 

7.23 (d, J = 7.8 Hz, 1H), 7.08 (dt, J = 11.7, 5.9 Hz, 3H), 6.62 (t, J = 7.3 Hz, 1H), 6.57 (d, J = 

7.7 Hz, 2H), 4.36 (s, 2H). 13C NMR (125 MHz, CDCl3) δ 158.48, 149.06, 147.80, 136.58, 

129.15, 122.00, 121.51, 117.49, 112.96, 49.17. 

3.6.22. 2-Methoxy-N-Methylaniline (2v): [26] 

The title compound was obtained as a yellow liquid. The residue was purified by column 

chromatography in silica gel eluting with hexane:EtOAc  92:8, Rf = 0.51; Yield: 82% (118 

mg); 1H NMR (500 MHz, CDCl3) δ 6.82 (td, J = 7.6, 1.4 Hz, 1H), 6.68 (dd, J = 7.9, 1.3 Hz, 

1H), 6.59 (td, J = 7.7, 1.5 Hz, 1H), 6.52 (dd, J = 7.8, 1.4 Hz, 1H), 4.28–4.07 (m, 1H), 3.75 (s, 

3H), 2.77 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 146.8, 139.3, 121.2, 116.2, 109.2, 109.1, 

55.3, 30.2. 

3.6.23. Dibenzylamine (2w): [27] 

The title compound was obtained as a pale yellow liquid. The residue was purified by column 

chromatography in silica gel eluting with hexane:EtOAc  85:15, Rf = 0.52; Yield: 7% (14 
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mg); 1H NMR (500 MHz, CDCl3) δ 7.26–7.22 (m, 4H), 7.19–7.14 (m, 4H), 3.72 (s, 4H). 13C 

NMR (125 MHz, CDCl3) δ 140.2, 128.3, 128.1, 126.9, 53.0. 

3.6.24. 1, 2-Diphenyldisulfane (3): [28]  

The title compound was obtained as a white solid. m.p.63 °C The residue was purified by 

column chromatography in silica gel eluting with hexane:EtOAc  92:8, Rf = 0.61; Yield: 79% 

(118 mg); 1H NMR (500 MHz, CDCl3) δ 7.55 (t, J = 1.6 Hz, 2H), 7.54–7.53 (m, 2H), 7.36–

7.34 (m, 2H), 7.34–7.32 (m, 2H), 7.29–7.28 (m, 1H), 7.26 (d, J = 5.4 Hz, 1H). 13C NMR 

(125 MHz, CDCl3) δ 136.9, 129.0, 127.4, 127.1. 
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3.6 Spectra of Few Compounds 

Figure 3.2.  1H NMR Spectra of product 2d in CDCl3 

 

Figure 3.3.  13C NMR Spectra of product 2d in CDCl3
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Figure 3.4.  1H NMR Spectra of product 2r in CDCl3 

 

Figure 3.5.  13C NMR Spectra of product 2r in CDCl3
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