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 2.1 Introduction 

Amide functional group is found in a wide variety of compounds including biomolecules, 

natural products, pharmaceutics, materials, etc [1]. In this context, glycosides and 

glycoconjugates possessing amide groups are important scaffolds in both chemistry and 

biology [2]. In particular, natural and synthetic glucuronamide derivatives are well explored 

as antibiotics, anticancer agents, anti-oxidants, cholinesterase (ChE) inhibitors, etc [3]. For 

instance, the flavonoid glucuronamide 1 (i.e. scutellarein-7-O-β-glucuronamide) is isolated 

from the medicinal plant Scoparia dulcis L and is used in folk medicine to treat different 

diseases [2i]. 

 

Figure 2.1 Some bioactive amide compounds 
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 On the other hand, gougerotin, bagougeramines, aspiculamycin, bagougeramines A and B, 

and aspiculamycin are the natural nucleoside antibiotics with uronamide functional groups 

[3a]. Ezomycin is another group of uronamide compounds with anti-bacterial and anti-fungal 

activities [3g]. Besides these natural products, several other synthetic uronamides have also 

been investigated for their biological activities (Figure 2.1) [3a-c, 3e, 3f, 3h].       

The current method of preparation of uronamides involves the conversion of uronic acids 

into acid chlorides, mixed anhydrides, or reactive esters followed by amidation under 

different reaction conditions [3a, 4]. Alternatively, direct coupling of uronic acids with 

amines in the presence of amide coupling agent such as N,N′-dicyclohexylcarbodiimide 

(DCC) was also established [5]. However, the applicability of some of these methods is 

limited due to different side reactions including racemization, hydrolysis, etc [3h]. 

Transamidation is one of the important approaches for the synthesis of amides which 

eliminates the use of amide coupling agents [6]. The recent developments in the 

transamidation chemistry allow the preparation of the amides under milder reaction 

conditions [7]. In the last few years, our group has been focusing on amide activation and 

transamidation reactions [8]. Towards this end, we demonstrated the transamidation of 

secondary amides via N-nitroso and N-Cbz amide intermediates [8b, 8d], synthesis of aryl 

and alkyl α-ketoamides via transamidation reactions [8c,8f], transformation of N-Boc-amides 

into aryl ketones [8a],  and controlled reduction of N-Boc and N-Ts amides into aldehydes 

[8e]. On the other hand, our group also focused on the synthetic carbohydrate chemistry [9] 

and have explored the synthesis and applications of uronic acids [9h], uronic esters [9f] and 

photolabile groups protected uronic acid building blocks [9g], etc. In continuation of these 
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works, here we have demonstrated the synthesis of different functionalized uronamides via 

transamidation reactions under mild reaction conditions (Scheme 2.1). 

 

 

Scheme 2.1. Synthesis of functionalized uronamides via transamidation. 

 

2.2. Results and discussion 

At the outset, various N-functionalized O-protected glucuronamides 1a-1g were subjected to 

the transamidation with 4-methoxybenzylamine in dichloromethane at room temperature 

under the base and catalyst-free conditions (Scheme 2.2). The primary and secondary 

glucuronamides 1a and 1b failed to provide any product while tertiary N-Boc and N-nitroso 

glucuronamides 1c-1g gave the desired transamidation product 3a in 40-75% yields within 

the period of 6 hours. In particular, transamidation of N-nitroso glucuronamide 1g gave 3a in 

75% yield. 
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Scheme 2.2. Transamidation of various N-functionalized O-protected glucuronamides with 

4-methoxybenzylamine. 

 

aReaction conditions: Amide (1a-1g, 0.2 mmol, 1.0 equiv.) and 4-methoxybenzylamine (53 

µL, 0.4 mmol, 2.0 equiv.) in DCM (2 mL) at room temperature. bIsolated yields presented. 

 

Further, the amide 1g was subjected to the transamidation with 4-methoxybenzylamine in 

different solvents including acetonitrile, THF, 1,4-dioxane and dichloromethane (Table 2.1, 

entries 1-4). Among others, dichloromethane was found to be a better solvent and provided 

the product 3a in 75% yield within 2 hours (Table 2.1, entry 4). Further, the transamidation 

was carried out in the presence of different bases including triethylamine, DBU, DABCO and 

K2CO3 (Table 2.1, entries 5-8). Among them, triethylamine gave the desired product 3a in 
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96% yield at room temperature within 20 minutes (Table 2.1, entry 5). Nevertheless, the 

bases DBU and DABCO also gave the product 3a in comparable yields to that of triethyl 

amine. 

Table 2.1. Transamidation of N-Nitroso glucuronamide 1g with 4-methoxybenzylamine in 

different solvents and bases. 

 

 

aReaction conditions: Amide (1g, 105 mg, 0.2 mmol, 1.0 equiv.) and 4-

methoxybenzylamine (53 µL, 0.4 mmol, 2.0 equiv.) in DCM (2 mL) at room temperature. 

bIsolated yields. 
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2.3. Substrate Scope: 

After establishing the optimized reaction conditions, the scope of different amines in the 

transamidation was investigated with N-nitroso amide 1g (Scheme 2.3). 

Scheme 2.3. Transamidation of N-methyl-N-nitrosoamides using various amines. 

 

aReaction conditions: Amide (1a, 105 mg, 0.2 mmol, 1.0 equiv.), amines (0.4 mmol, 2.0 

equiv.), Et3N (28 µL, 1.0 equiv.), DCM (2 mL) at room temperature. bIsolated yields are 

presented. 
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 Primary amines bearing acyclic and cyclic alkyl groups participated in the transamidation 

reactions and gave the desired amides 3a-3f in 88-95% yields within 2 hours duration. 

Similarly, transamidation of 1g with benzyl amines and 2-picolylamine gave the desired 

products 3g-3i in 90-93% yields. On the other hand, transamidation of N-nitroso amide 1g 

with secondary amines afforded the desired products 3j-3k in 89-93% yields. Interestingly, 

arylamines such as aniline and 4-methoxyaniline also underwent transamidation reactions 

smoothly and gave N-aryl uronamides 3l and 3m in 45% and 55% yields, respectively. 

Scheme 2.4. Transamidation of N-methyl-N-nitroso thioglycoside with various amines. 

 
aReaction conditions: Amide (1a, 120 mg, 0.2 mmol), amines (0.4 mmol, 2.0 equiv.),  

 Et3N (28 µL, 1.0 equiv.), DCM (2 mL) at room temperature. bIsolated yields. 
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Scheme 2.5. Transamidation of various N-methyl-N-nitrosoamides with 4-

methoxybenzylamine. 

 

aReaction conditions: Amide (1j-1n, 0.2 mmol, 1.0 equiv.), amines (0.4 mmol, 2.0 equiv.), 

Et3N (1.0 equiv.), DCM (2 mL) at room temperature. bIsolated yields. 

The N-Boc amides are relatively stable when compared with other activated amides and have 

often been used in transamidation reactions. Hence, we further explored the transamidation 

of N-methyl and N-phenyl N-Boc uronamides 1c, 1e and 1r with different amines in the 

presence of a base (Scheme 2.6). Triethylamine was found to be less effective and gave 

desired transamidation products in low yields even after overnight stirring. There was only a 

little improvement was observed in terms of yields with the increasing amount of 

triethylamine from 1.0 to 3.0 equivalents. However, DBU (1.0 equiv.) proved to be a better 

base than triethylamine and transamidation products were obtained in good yields within 10 

hours.  
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Transamidation of N-Boc amides 1c, 1e and 1r with cyclic and acyclic primary amines, 

benzyl amines and 2-picolylamine gave the desired products 3b-3i and 3o-3r in 69-92% 

yields. In particular, N-phenyl N-Boc amide 1e was found to be more reactive than N-methyl 

N-Boc amide 1c in terms of yield. However, transamidation of N-phenyl-N-Boc amide 1c 

with secondary amines (3j and 3k) failed to give the desired product while Boc-deprotection 

was observed quantitatively. On the other hand, N-methyl-N-Boc amides didn’t undergo 

transamidation reaction with secondary amines (3j and 3k) even after overnight stirring. In 

the latter case, deprotection of N-Boc was observed only in a trace amount. Moreover, the 

reaction of aniline with amides 1c and 1e also failed to provide the desired product. Overall, 

it clearly indicated that N-nitroso uronamides proved to be better substrates for the 

transamidation reactions when compared with N-Boc uronamides. 
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Scheme 2.6. Transamidation of N-Methyl-N-Boc and N-Phenyl-N-Boc substrates using 

various primary amines. 

 

aReaction conditions: Amide (1c, 1e and 1r, 119 mg, 132 mg and 134 mg, 0.2 mmol, 1.0 

equiv.), amines (0.4 mmol, 2.0 equiv.), DBU (30 µL, 1.0 equiv.), DCM (2 mL) at room 

temperature. bIsolated yields are presented. 
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Scheme 2.7. Transamidation of various N-Methyl-N-Boc protected uronamides using 4-

methoxy benzylamine. 

 

aReaction conditions: Amides (1o-1q, 0.2 mmol), amines (0.4 mmol, 2.0 equiv.), DBU (30 

µL, 1.0 equiv.), DCM (2 mL) at room temperature. bIsolated yields are presented. 

After exploring the scope of amines, transamidation of different N-Boc uronamides were 

investigated. The amides 1o-1r were subjected to the transamidation reaction with 4-

methoxybenzylamine in the presence of DBU at room temperature (Scheme 2.7). To our 

delight, benzyl, benzoyl and isopropylidene protected glucose and galactose N-Boc 

uronamides underwent transamidation smoothly and gave corresponding uronamides 4a, 4c 

and 4d in 78-88% yields. 
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2.4. Conclusions 

In conclusion, a mild and efficient method for the synthesis of various uronamides via 

transamidation reaction was demonstrated.  N-Nitroso uronamides underwent transamidation 

with various primary and secondary amines (alkyl amines, benzyl amines and anilines) in 

presence of triethylamine at room temperature. On the other hand, transamidation of N-Boc 

uronamides was successfully achieved with primary amines in the presence of DBU. In 

general, N-nitroso uronamides were found to be more reactive than N-Boc uronamides in 

terms of reaction time and yields. The developed protocol is highly efficient and does not 

require any catalyst or high-temperature conditions. 

2.5. Experimental Section: 

To a stirred solution of N-nitroso amide (0.2 mmol, 1.0 equiv.) in dichloromethane (5 mL) 

were added triethylamine (1.0 equiv.) and amine (2.0 equiv.) sequentially under a nitrogen 

atmosphere.  The resulting mixture was stirred at room temperature and monitored by TLC. 

After completion, the reaction mixture was diluted with dichloromethane (5 mL), and washed 

with HCl (1.0 N, 10 mL) and brine (2 x 10 mL). The resulting organic layer was concentrated 

in vacuo and purified by flash chromatography (SiO2: 100-200 mesh) using EtOAc/hexane as 

eluant to give analytically pure products. 
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2.5.1.  Starting materials used for transamidation: 

 

 

2.5.2. General procedure for preparation of sugar amides from uronic acids1a, b 

 

Uronic acid (0.2 mmol, 1.0 equiv.) and 1,1’-carbonyl diimidazole (CDI) (1.0 equiv.) (10 mL) 

were stirred in DCM until CO2 evolution was stopped (~ 20 min). Further, an aqueous 

solution of amine (7.0 equiv. in case of methylamine, 40% w/w solution and 1.5 equiv. in 

case of benzylamine and aniline) was added. After completion, the reaction mixture was 

quenched by 1N HCl (20 mL), and extracted by EA (2 x 20 mL). The organic phase was 

washed with brine (2 x 20 mL), dried over anhydrous Na2SO4, filtered and concentrated in 
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vacuo. The residue was purified by silica gel flash column chromatography (SiO2: 100-200 

mesh) to afford the desired products (1b, 1h, 1j, 1k, 1l, 1m and 1n).  

2.5.3. General procedure for preparation of N-NO sugar amides2a, b 

 

Amide (0.2 mmol, 1.0 equiv.) was stirred in dichloromethane (5 mL) approximately for 2 

min at room temperature to which tert-butyl nitrite (1.5 equiv.) was added using syringe and 

allowed to stir at room temperature. The progress of the reaction was monitored by TLC. 

After completion, dichloromethane was evaporated and subjected for silica gel (100-200 

mesh) column chromatography purification (SiO2: ethyl acetate/hexane) to obtain the 

corresponding N-nitroso amide products (1g and 1i). 

 

2.5.4. General procedure for preparation of N-Boc sugar amides3. 
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An oven-dried round-bottomed flask (100 mL) was charged with secondary amide (0.2 

mmol, 1.0 equiv.) and DMAP (0.1 equiv.) in dichloromethane (10 mL). Di-tert-butyl 

dicarbonate (Boc2O) (2.0 equiv.) was added in one portion and the reaction mixture was 

allowed to stir until TLC showed full conversion. After completion, the reaction mixture was 

quenched with saturated solution of NaHCO3 (10 mL) followed by extraction with EtOAc (3 

× 20 mL). The organic layer was washed with H2O (1 x 20 mL), brine (1 x 20 mL), dried and 

concentrated. The crude product was purified by column chromatography (SiO2: ethyl 

acetate/hexane, 100-200 mesh) to obtain the corresponding N-Boc amides (1c, 1d, 1e, 1f, 1o, 

1p, 1q and 1r).  

2.5.5. General procedures for transamidation. 

a. Procedure for transamidation with N-nitroso-N-methyl uronamides 

 

To a stirred solution of N-nitroso amide substrate (0.2 mmol, 1.0 equiv.) in dichloromethane 

(5 ml) were added triethylamine (1.0 equiv.) and amine (2.0 equiv.) sequentially under a 

nitrogen atmosphere. The reaction mixture was stirred at room temperature and monitored by 

TLC. After completion, the reaction mixture was diluted with dichloromethane (5 mL) and 

washed with HCl (1.0 N, 10 mL) and brine (2 x 10 mL). The resulting organic layer was 
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concentrated in vacuo and was purified by flash chromatography (SiO2: 100-200 mesh) using 

EtOAc/hexane as eluant to give analytically pure products. 

b. Procedure for transamidation with in situ generation of N-nitroso-N-methyl amides 

from N-methyl uronamides. 

 

To a stirred solution of amide (0.2 mmol, 1.0 equiv.) in dichloromethane (5 mL) was added 

tert-butyl nitrite (1.5 equiv.) and allowed to stir for 2-3 h at room temperature. The external 

amine (2.0 equiv.) and triethyl amine (1.0 equiv.) were added to the reaction mixture and 

allowed to stir at room temperature and monitored by TLC. After completion, 

dichloromethane was evaporated and subjected to silica gel (100-200 mesh) column 

chromatography purification (SiO2: ethyl acetate/hexane) to obtain the corresponding 

transamidation products. 

C. Procedure for transamidation with N-Boc-N-methyl uronamides. 
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To a stirred solution of N-Boc amide (0.2 mmol, 1.0 equiv.) in dichloromethane (5 ml) were 

added triethylamine (1.0 equiv.) and amine (2.0 equiv.) sequentially under a nitrogen 

atmosphere. The reaction mixture was stirred at room temperature and monitored by TLC. 

After completion, the reaction mixture was diluted with dichloromethane (5 mL) and washed 

with HCl (1.0 N, 10 mL) and brine (2 x 10 mL). The resulting organic layer was concentrated 

in vacuo and was purified by flash chromatography (SiO2: 100-200 mesh) using 

EtOAc/hexane as eluant to give analytically pure products.  

2.6. Analytical data for starting materials: 

2.6.1. (2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxytetrahydro-2H-pyran-2-

carboxamide (1a) 

 Yield: 73% (38.4 mg) white solid; mp. 162-163 ℃; [α]D
25= -1.7 [c 0.1, CHCl3], 

1H NMR 

(500 MHz, CDCl3) δ 7.28–7.17 (m, 15H), 6.03 (s, 1H), 5.81 (s, 1H), 4.88 (d, J = 10.9 Hz, 

1H), 4.76 – 4.71 (m, 3H), 4.60 – 4.54 (m, 3H), 4.01 (d, J = 10.0 Hz, 1H), 3.92 (t, J = 9.3 Hz, 

1H), 3.53 – 3.49 (m, 1H), 3.47 (dd, J = 9.7, 3.5 Hz, 1H), 3.31 (s, 3H). 13C NMR (125 MHz, 

CDCl3) δ 171.4, 138.4, 137.8, 137.6, 128.4, 128.3, 128.3, 128.1, 128.1, 128.0, 127.8, 127.8, 

127.6, 98.3, 81.5, 80.1, 79.1, 75.8, 75.3, 73.5, 69.9, 55.7. HRMS-ESI (m/z): calcd for 

C28H31NO6, [M + H]+: 478.2230, found 478.2233. 

2.6.2. (2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxy-N-methyltetrahydro-2H-pyran-

2-carboxamide (1b) 

Yield: 73% (38.4 mg) pale yellow viscous liquid; [α]D
25= 1.9 [c 0.1, CHCl3], 

1H NMR (500 

MHz, CDCl3) δ 7.29 – 7.19 (m, 15H), 5.97 (d, J = 4.6 Hz, 1H), 4.88 (d, J = 10.9 Hz, 1H), 

4.78 – 4.69 (m, 3H), 4.58 – 4.52 (m, 3H), 3.96 – 3.89 (m, 2H), 3.52 – 3.46 (m, 2H), 3.30 (s, 
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3H), 2.72 (d, J = 4.9 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 169.4, 138.5, 137.9, 137.8, 

128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.6, 98.4, 81.5, 80.2, 79.1, 75.9, 75.2, 73.5, 

70.5, 55.7, 26.0. HRMS-ESI (m/z): calcd for C29H33NO6, [M + H]+ : 492.2386, found 

492.2392. 

2.6.3. tert-butyl methyl((2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxytetrahydro-

2H-pyran-2-carbonyl) carbamate (1c) 

 Yield: 73% (38.4 mg) as viscous liquid; [α]D
25= -0.4 [c 0.1, CHCl3], 

1H NMR (500 MHz, 

CDCl3) δ 7.29 – 7.10 (m, 15H), 5.46 (d, J = 9.8 Hz, 1H), 4.89 (d, J = 10.9 Hz, 1H), 4.76 – 

4.71 (m, 3H), 4.57 (d, J = 12.1 Hz, 1H), 4.52 (d, J = 3.5 Hz, 1H), 4.45 (d, J = 10.9 Hz, 1H), 

3.94 (t, J = 9.4 Hz, 1H), 3.78 (t, J = 9.4 Hz, 1H), 3.51 (dd, J = 9.6, 3.6 Hz, 1H), 3.40 (s, 3H), 

3.04 (s, 3H), 1.39 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 172.6, 152.3, 138.6, 138.2, 138.0, 

128.4, 128.3, 128.1, 127.9, 127.9, 127.7, 127.5, 127.5, 99.2, 83.5, 81.5, 80.5, 79.5, 75.7, 75.1, 

73.5, 69.0, 56.2, 32.2, 27.8. HRMS-ESI (m/z): calcd for C34H41NO8, [M + H]+ : 592.2910, 

found 592.2902. 

2.6.4. tert-butyl propyl((2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxytetrahydro-2H-

pyran-2-carbonyl)carbamate (1d) 

Yield: 73% (38.4 mg) as transparent viscous liquid; [α]D
25= -0.1 [c 0.1, CHCl3], 

1H NMR 

(500 MHz, CDCl3) δ 7.36 – 7.19 (m, 15H), 5.44 (d, J = 9.7 Hz, 1H), 4.96 (d, J = 10.9 Hz, 

1H), 4.82 – 4.79  (m, 3H), 4.65 (d, J = 12.1 Hz, 1H), 4.60 (d, J = 3.5 Hz, 1H), 4.55 (d, J = 

10.8 Hz, 1H), 4.01 (t, J = 9.4 Hz, 1H), 3.90 (t, J = 9.4 Hz, 1H), 3.59 (m, 3H), 3.49 (s, 3H), 
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1.56 – 1.51 (m, 2H), 1.47 (s, 9H), 0.86 (t, J = 7.5 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 

172.3, 152.4, 138.6, 138.3, 138.0, 128.4, 128.3, 128.1, 128.1, 127.8, 127.7, 127.5, 127.4, 

99.2, 83.2, 81.5, 80.3, 79.5, 75.6, 75.0, 73.5, 69.3, 56.3, 46.9, 27.8, 21.8, 11.2. HRMS-ESI 

(m/z): calcd for C36H45NO8, [M + H]+ : 620.3223, found 620.3217. 

2.6.5. tert-butyl phenyl((2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxytetrahydro-2H-

pyran-2-carbonyl)carbamate (1e) 

Yield: 73% (38.4 mg) as pale-yellow viscous liquid; [α]D
25= 0.1 [c 0.1, CHCl3], 

1H NMR 

(500 MHz, CDCl3) δ 7.25 – 7.15 (m, 18H), 6.94 – 6.92 (m, 2H), 5.17 (s, 1H), 5.04 – 5.02 (m, 

1H), 4.90 – 4.86 (m, 1H), 4.80 – 4.69 (m, 3H), 4.58 – 4.50 (m, 3H), 3.92 – 3.89 (m, 1H), 3.50 

– 3.47 (m, 1H), 3.30 (s, 3H), 1.25 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 171.7, 151.8, 

138.6, 138.5, 138.4, 138.0, 128.9, 128.4, 128.3, 128.2, 128.2, 128.0, 127.9, 127.8, 127.7, 

127.7, 127.5, 127.5, 99.3, 83.4, 81.4, 80.1, 79.5, 75.6, 75.1, 73.5, 69.5, 56.3, 27.6. HRMS-

ESI (m/z): calcd for C39H43NO8, [M + H]+ : 654.3067, found 654.3078. 

2.6.6. Bis-tert-butyl ((2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxytetrahydro-2H-

pyran-2-carbonyl)dicarbamate (1f) 

Yield: 73% (38.4 mg) as transparent viscous liquid; [α]D
25= 0.5 [c 0.1, CHCl3], 

1H NMR 

(500 MHz, CDCl3) δ 7.30 – 7.20 (m, 15H), 5.20 (d, J = 9.8 Hz, 1H), 4.90 (d, J = 10.9 Hz, 

1H), 4.79 – 4.71 (m, 3H), 4.63 (d, J = 10.3 Hz, 1H), 4.59 – 4.55 (m, 2H), 3.96 (t, J = 9.3 Hz, 

1H), 3.78 (t, J = 9.4 Hz, 1H), 3.50 (dd, J = 9.7, 3.5 Hz, 1H), 3.41 (s, 3H), 1.42 (s, 18H). 13C 

NMR (125 MHz, CDCl3) δ 170.8, 149.1, 138.6, 138.1, 138.0, 128.4, 128.3, 128.1, 128.1, 
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128.1, 127.9, 127.8, 127.5, 127.5, 99.0, 85.0, 81.5, 80.1, 79.3, 75.7, 75.2, 73.5, 68.9, 56.2, 

27.5. HRMS-ESI (m/z): calcd for C38H47NO10, [M + H]+ : 700.3092, found 700.3089. 

2.6.7. (2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxy-N-methyl-N-nitrosotetrahydro-

2H-pyran-2-carboxamide (1g) 

Yield: 73% (38.4 mg) as transparent viscous liquid; 1H NMR (500 MHz, CDCl3) δ 7.29 – 

7.15 (m, 13H), 7.06 – 7.05 (m, 2H), 5.40 (d, J = 9.3 Hz, 1H), 4.93 (d, J = 10.9 Hz, 1H), 4.83 

(d, J = 10.9 Hz, 1H), 4.78 – 4.73 (m, 2H), 4.61 – 4.57 (m, 2H), 4.51 (d, J = 3.5 Hz, 1H), 4.05 

– 4.03 (m, 2H), 3.56 – 3.53 (m, 1H), 3.29 (s, 3H), 2.96 (s, 3H). 13C NMR (125 MHz, CDCl3) 

δ 172.9, 138.4, 138.0, 137.8, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127.6, 127.6, 

99.2, 81.5, 79.4, 78.7, 75.8, 75.2, 73.6, 67.9, 56.1, 25.7. HRMS-ESI (m/z): calcd for 

C29H32N2O7, [M + H]+ : 521.2288, found 521.2278. 

2.6.8. (2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-N-methyl-6-(phenylthio)tetrahydro-2H-

pyran-2-carboxamide (1h) 

Yield: 73% (38.4 mg) as white solid; mp. 182-183 ℃ [α]D
25= -6.8 [c 0.1, CHCl3], 

1H NMR 

(500 MHz, CDCl3) δ 7.42 – 7.40 (m, 2H), 7.28 – 7.18 (m, 18H), 6.22 (s, 1H), 4.77 (d, J = 

10.5 Hz, 1H), 4.73 – 4.70 (m, 2H), 4.67 – 4.64 (m, 3H), 4.59 (d, J = 10.6 Hz, 1H), 3.86 – 

3.84 (m, 1H), 3.66 – 3.64 (m, 2H), 3.45 – 3.41 (m, 1H), 2.71 (d, J = 4.9 Hz, 3H). 13C NMR 

(125 MHz, CDCl3) δ 168.8, 138.0, 137.7, 137.5, 133.1, 131.8, 129.0, 128.4, 128.3, 128.3, 

128.3, 128.1, 127.9, 127.8, 127.7, 127.7, 127.7, 86.9, 84.3, 80.2, 79.1, 78.5, 75.1, 75.0, 74.4, 

25.9. HRMS-ESI (m/z): calcd for C34H35NO5S, [M + H]+ : 570.2314, found 570.2314. 
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2.6.8. (2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-N-methyl-N-nitroso-6-

(phenylthio)tetrahydro-2H-pyran-2-carboxamide (1i) (Isomeric mixture) 

Yield: 73% (38.4 mg) as a pale-yellow sticky solid; [α]D
25= -2.2 [c 0.1, CHCl3], 1H NMR 

(500 MHz, CDCl3) δ 7.35 – 7.06 (m, 20H), 5.10 (d, J = 9.7 Hz, 1H), 4.87 – 4.66 (m, 6H), 

4.16 (t, J = 9.5 Hz, 1H), 3.79 – 3.76 (m, 1H), 3.66 (s, 1H), 3.53 (t, J = 9.3 Hz, 1H), 2.98 (s, 

3H). 13C NMR (125 MHz, CDCl3) δ 171.1, 138.1, 137.9, 137.8, 133.3, 132.2, 131.2, 129.0, 

128.5, 128.4, 128.3, 128.1, 127.9, 127.9, 127.8, 127.7, 127.6, 88.7, 86.2, 80.5, 78.4, 75.9, 

75.6, 75.4, 75.3, 25.8. HRMS-ESI (m/z): calcd for C34H34N2O6S, [M + H]+: 599.2216, found 

599.2206. 

2.6.9. (2S,3S,4S,5R,6S)-4,5-bis(benzyloxy)-3-((4-bromobenzyl)oxy)-6-methoxy-N-

methyltetrahydro-2H-pyran-2-carboxamide (1j) 

Yield: 73% (38.4 mg) as white solid; mp. 183-184 ℃ [α]D
25= -4.9 [c 0.1, CHCl3], 

1H NMR 

(500 MHz, CDCl3) δ 7.33 (d, J = 8.2 Hz, 2H), 7.29 – 7.20 (m, 10H), 7.08 (d, J = 8.2 Hz, 2H), 

6.05 (s, 1H), 4.87 (d, J = 10.9 Hz, 1H), 4.73 – 4.69 (m, 2H), 4.59 – 4.50 (m, 4H), 3.95 (d, J = 

9.9 Hz, 1H), 3.88 (t, J = 9.3 Hz, 1H), 3.47 – 3.43 (m, 2H), 3.29 (s, 3H), 2.71 (d, J = 4.9 Hz, 

3H). 13C NMR (126 MHz, CDCl3) δ 169.4, 138.4, 137.8, 136.8, 131.3, 129.8, 128.4, 128.3, 

128.0, 127.9, 127.7, 127.6, 121.6, 98.3, 81.3, 80.1, 79.0, 75.8, 74.2, 73.4, 70.4, 55.7, 25.9. 

HRMS-ESI (m/z): calcd for C29H32BrNO5, [M + H]+ : 554.1542, found 554.1536. 

2.6.10. (2S,3R,4S,5S,6S)-2-methoxy-6-(methylcarbamoyl)tetrahydro-2H-pyran-3,4,5-

triyl tris(2,2-dimethylpropanoate) (1k) 
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Yield: 73% (38.4 mg) as a pale yellow sticky solid; [α]D
25= -10.9 [c 0.1, CHCl3], 

1H NMR 

(500 MHz, CDCl3) δ 6.39 (d, J = 4.2 Hz, 1H), 5.60 (t, J = 9.8 Hz, 1H), 5.12 (t, J = 9.8 Hz, 

1H), 5.02 (d, J = 3.7 Hz, 1H), 4.77 (dd, J = 10.1, 3.7 Hz, 1H), 4.20 (d, J = 10.2 Hz, 1H), 3.40 

(s, 3H), 2.80 (d, J = 4.9 Hz, 3H), 1.19 (s, 9H), 1.17 (s, 9H), 1.12 (s, 9H). 13C NMR (125 

MHz, CDCl3) δ 177.7, 176.7, 176.6, 167.7, 96.7, 70.9, 69.4, 68.8, 68.4, 56.0, 38.7, 38.6, 

38.6, 27.1, 26.9, 25.7. HRMS-ESI (m/z): calcd for C23H39NO9, [M + H]+ : 474.2703, found 

474.2711. 

2.6.11. (2S,3R,4S,5S,6S)-2-methoxy-6-(methylcarbamoyl)tetrahydro-2H-pyran-3,4,5-

triyl tribenzoate (1l) 

Yield: 73% (38.4 mg) as pale yellow viscous liquid; [α]D
25= 7.7 [c 0.1, CHCl3], 

1H NMR 

(500 MHz, CDCl3) δ 7.91 – 7.89 (m, 4H), 7.80 – 7.78 (m, 2H), 7.44 – 7.18 (m, 9H), 6.52 (d, 

J = 4.6 Hz, 1H), 6.10 (t, J = 9.9 Hz, 1H), 5.56 (t, J = 9.9 Hz, 1H), 5.23 (d, J = 3.5 Hz, 1H), 

5.16 (dd, J = 10.2, 3.6 Hz, 1H), 4.42 (d, J = 10.2 Hz, 1H), 3.39 (s, 3H), 2.74 – 2.73 (m, 3H). 

13C NMR (125 MHz, CDCl3) δ 167.7, 165.8, 165.5, 165.3, 133.4, 133.1, 133.0, 129.8, 129.8, 

129.5, 129.1, 128.9, 128.6, 128.4, 128.3, 128.2, 97.05, 71.7, 70.2, 69.7, 68.3, 56.0, 25.8. 

HRMS-ESI (m/z): calcd for C29H27NO9, [M + H]+ : 534.1764, found 534.1751. 

2.6.12. (3aR,5S,5aR,8aS,8bR)-N-2,2,7,7-pentamethyltetrahydro-5H-

bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-carboxamide (1m) 

Yield: 73% (38.4 mg) as white sticky solid; [α]D
25= -17.7 [c 0.1, CHCl3], 

1H NMR (500 

MHz, CDCl3) δ 6.51 (d, J = 4.0 Hz, 1H), 5.52 – 5.51 (m, 1H), 4.64 – 4.57 (m, 2H), 4.29 – 
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4.23 (m, 2H), 2.80 (d, J = 4.7 Hz, 3H), 1.45 (s, 3H), 1.35 (s, 3H), 1.27 (s, 6H). 13C NMR 

(125 MHz, CDCl3) δ 168.7, 109.2, 109.0, 96.1, 71.2, 70.7, 70.2, 68.5, 25.8, 25.7, 25.4, 24.6, 

23.9. HRMS-ESI (m/z): calcd for C13H21NO6, [M + H]+ : 288.1447, found 288.1438. 

2.6.13. (2S,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-N-methyl-6-(phenylthio)tetrahydro-2H-

pyran-2-carboxamide (1n) 

Yield: 73% (38.4 mg) as white sticky solid; [α]D
25= 1.8 [c 0.1, CHCl3],  

1H NMR (500 MHz, 

CDCl3) δ 7.42 – 7.40 (m, 2H), 7.29 – 7.18 (m, 15H), 7.14 – 7.12 (m, 3H), 6.58 (d, J = 4.9 Hz, 

1H), 4.77 (d, J = 11.1 Hz, 2H), 4.69 – 4.50 (m, 5H), 4.37 (d, J = 2.0 Hz, 1H), 3.86 – 3.81 (m, 

2H), 3.56 (dd, J = 9.2, 2.8 Hz, 1H), 2.73 (d, J = 5.0 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 

168.6, 138.5, 138.0, 137.8, 133.6, 131.2, 129.0, 128.4, 128.3, 128.2, 128.1, 127.8, 127.7, 

127.6, 127.5, 127.3, 87.4, 83.0, 78.1, 76.6, 75.6, 74.9, 74.8, 72.2, 25.8. HRMS-ESI (m/z): 

calcd for C34H35NO5S, [M + H]+ : 570.2314, found 570.2321. 

2.6.14. tert-butyl methyl((2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-

(phenylthio)tetrahydro-2H-pyran-2-carbonyl)carbamate (1o) 

Yield: 73% (38.4 mg) as yellowish syrup; [α]D
25= -1.6 [c 0.1, CHCl3], 

1H NMR (500 MHz, 

CDCl3) δ 7.50 (d, J = 7.3 Hz, 2H), 7.27 – 7.13 (m, 18H), 5.02 (d, J = 9.6 Hz, 1H), 4.83 – 

4.74 (m, 5H), 4.67 – 4.61 (m, 2H), 3.99 (t, J = 9.4 Hz, 1H), 3.70 (t, J = 9.0 Hz, 1H), 3.46 (t, J 

= 9.3 Hz, 1H), 3.08 (s, 3H), 1.40 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 170.1, 152.2, 138.3, 

138.2, 138.0, 133.9, 131.2, 128.8, 128.4, 128.3, 128.3, 128.0, 127.9, 127.7, 127.6, 127.1, 
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88.1, 86.3, 83.5, 80.7, 79.3, 76.7, 75.7, 75.3, 75.2, 31.9, 27.9. HRMS-ESI (m/z): calcd for 

C39H43NO7S, [M + H]+ : 670.2838, found 670.2842. 

2.6.15. tert-butyl ((2S,3S,4S,5R,6S)-4,5-bis(benzyloxy)-3-((4-bromobenzyl)oxy)-6-

methoxy tetrahydro-2H-pyran-2-carbonyl)(methyl)carbamate (1p) 

Yield: 73% (38.4 mg) as pale yellow viscous liquid; [α]D
25= -3.6 [c 0.1, CHCl3], 

1H NMR 

(500 MHz, CDCl3) δ 7.30 – 7.18 (m, 12H), 6.96 (d, J = 8.3 Hz, 2H), 5.43 (d, J = 9.7 Hz, 1H), 

4.89 (d, J = 11.0 Hz, 1H), 4.73 – 4.64 (m, 3H), 4.56 (d, J = 12.1 Hz, 1H), 4.52 (d, J = 3.5 Hz, 

1H), 4.40 (d, J = 11.3 Hz, 1H), 3.92 (t, J = 9.4 Hz, 1H), 3.77 (t, J = 9.4 Hz, 1H), 3.49 (dd, J = 

9.6, 3.5 Hz, 1H), 3.40 (s, 3H), 3.03 (s, 3H), 1.40 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 

172.4, 152.3, 138.6, 137.9, 137.3, 131.2, 129.2, 128.4, 128.3, 128.1, 127.9, 127.7, 127.5, 

121.2, 99.2, 83.5, 81.4, 80.4, 79.5, 75.6, 74.2, 73.4, 69.1, 56.3, 32.2, 27.8. HRMS-ESI (m/z): 

calcd for C34H40BrNO7, [M + Na]+ : 676.1886, found 676.1898 

2.6.16. (2S,3S,4S,5R,6S)-2-((tert-butoxycarbonyl)(methyl)carbamoyl)-6-methoxytetrahydro-

2H-pyran-3,4,5-triyl tribenzoate (1q) 

Yield: 73% (38.4 mg) as pale-yellow viscous liquid; [α]D
25= 3.8 [c 0.1, CHCl3], 

1H NMR 

(500 MHz, CDCl3) δ 7.91 – 7.81 (m, 6H), 7.42 (t, J = 7.5 Hz, 2H), 7.35 – 7.19 (m, 7H), 6.15 

– 6.10 (m, 1H), 5.95 (d, J = 9.9 Hz, 1H), 5.79 (t, J = 9.7 Hz, 1H), 5.23 – 5.22 (m, 2H), 3.49 

(s, 3H), 3.02 (s, 3H), 1.36 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 170.8, 165.8, 165.7, 164.8, 

152.5, 133.3, 133.1, 133.0, 129.9, 129.8, 129.7, 129.6, 129.2, 129.2, 129.0, 128.3, 128.2, 
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97.9, 83.5, 71.8, 70.9, 70.1, 68.4, 56.8, 32.5, 27.8. HRMS-ESI (m/z): calcd for C34H35NO11, 

[M + Na]+ : 656.2108, found 656.2097. 

2.6.17 tert-butyl methyl((3aR,5S,5aR,8aS,8bR)-2,2,7,7-tetramethyltetrahydro-5H-

bis([1,3]dioxolo) [4,5-b:4',5'-d]pyran-5-carbonyl)carbamate (1r)  

Yield: 73% (38.4 mg) as white sticky solid; [α]D
25= -8.8 [c 0.1, CHCl3], 

1H NMR (500 MHz, 

CDCl3) δ 5.64 (d, J = 5.1 Hz, 1H), 5.54 (s, 1H), 4.70 – 4.69 (m, 1H), 4.61 – 4.59 (m, 1H), 

4.34 – 4.33 (m, 1H), 3.09 (d, J = 0.8 Hz, 3H), 1.49 (s, 3H), 1.45 (s, 9H), 1.42 (s, 3H), 1.27 (s, 

3H), 1.25 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 169.6, 152.8, 110.1, 109.0, 96.8, 83.2, 71.5, 

71.4, 70.2, 70.0, 31.7, 27.8, 25.8, 25.6, 25.0, 24.9. HRMS-ESI (m/z): calcd for C18H29NO8, 

[M + H]+ : 388.1971, found 388.1968. 

 

2.7. Analytical data for transamidation products: 

 2.7.1. (2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxy-N-(4-methoxybenzyl)tetrahydro      

2H-pyran-2-carboxamide (3a) 

Yield: 96% (116 mg) as white solid; mp. 161-162 ℃; [α]D
25= -1.1 [c 0.1, CHCl3], 

1H NMR 

(500 MHz, CDCl3) δ 7.35 – 7.25 (m, 11H), 7.24 – 7.21 (m, 4H), 7.11 (d, J = 8.6 Hz, 2H), 

6.78 (d, J = 8.7 Hz, 2H), 6.32 (t, J = 5.1 Hz, 1H), 4.94 (d, J = 10.9 Hz, 1H), 4.83 – 4.74 (m, 

3H), 4.64 – 4.57 (m, 3H), 4.41 – 4.37 (m, 1H), 4.33 –  4.29 (m, 1H), 4.06 (d, J = 9.9 Hz, 1H), 

3.98 (t, J = 9.3 Hz, 1H), 3.75 (s, 3H), 3.61 – 3.57 (m, 1H), 3.53 (dd, J = 9.7, 3.5 Hz, 1H), 
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3.37 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 168.5, 159.0, 138.4, 137.8, 137.8, 129.7, 129.2, 

128.4, 128.3, 128.2, 128.0, 128.0, 127.9, 127.8, 127.6, 127.5, 114.0, 98.3, 81.4, 80.1, 79.1, 

75.8, 75.0, 73.4, 70.6, 55.7, 55.1, 42.8. HRMS-ESI (m/z): calcd for C36H39NO7, [M + H]+ : 

598.2805, found 598.2785. 

2.7.2. (2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxy-N-propyltetrahydro-2H-pyran-

2-carboxamide (3b) 

Yield: 94% (99 mg) as white solid; mp. 163-164 ℃; [α]D
25= -1.6 [c 0.1, CHCl3], 

1H NMR 

(500 MHz, CDCl3) δ 7.28 – 7.17 (m, 15H), 6.01 (s, 1H), 4.87 (d, J = 10.9 Hz, 1H), 4.77 – 

4.68 (m, 3H), 4.58 – 4.53 (m, 3H), 3.96 – 3.89 (m, 2H), 3.52 – 3.50 (m, 1H), 3.49 – 3.46 (m, 

1H), 3.30 (s, 3H), 3.21 – 3.16 (m, 1H),3.10 – 3.03 (m, 1H), 1.40 – 1.36 (m, 2H), 0.79 (t, J = 

7.4 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 168.7, 138.5, 137.9, 137.8, 128.4, 128.3, 128.2, 

128.0, 128.0, 127.9, 127.8, 127.7, 127.5, 98.4, 81.4, 80.3, 79.1, 75.8, 75.1, 73.4, 70.6, 55.6, 

40.9, 22.5, 11.2. HRMS-ESI (m/z): calcd for C31H37NO6, [M + H]+ : 520.2699, found 

520.2686. 

2.7.3. (2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-N-butyl-6-methoxytetrahydro-2H-pyran-2-

carboxamide (3c) 

Yield: 95% (102 mg) as white sticky solid; [α]D
25= -1.2 [c 0.1, CHCl3], 

1H NMR (500 MHz, 

CDCl3) δ 7.34 – 7.27 (m, 14H), 7.25 (s, 1H), 6.03 (t, J = 5.4 Hz, 1H), 4.94 (d, J = 10.9 Hz, 

1H), 4.84 – 4.76 (m, 3H), 4.66 – 4.61 (m, 3H), 4.03 – 3.97 (m, 2H), 3.60 – 3.53 (m, 2H), 3.38 

(s, 3H), 3.32 – 3.26 (m, 1H), 3.20 – 3.16 (m, 1H), 1.43 – 1.38 (m, 2H), 1.31 – 1.26 (m, 2H), 

0.87 (t, J = 7.3 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 168.7, 138.5, 137.9, 137.9, 128.4, 

128.3, 128.3, 128.1, 128.0, 127.9, 127.9, 127.7, 127.6, 98.4, 81.4, 80.3, 79.1, 75.8, 75.1, 73.5, 
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70.7, 55.7, 39.0, 31.3, 19.9, 13.6. HRMS-ESI (m/z): calcd for C32H39NO6, [M + H]+ : 

534.2856, found 534.2848. 

2.7.4. (2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-N-hexanoyl-6-methoxytetrahydro-2H-

pyran-2-carboxamide (3d) 

Yield: 92% (104 mg) as white solid; mp. 118-120 ℃; [α]D
25= -1.2 [c 0.1, CHCl3], 

1H NMR 

(500 MHz, CDCl3) δ 7.34 – 7.25 (m, 15H), 6.04 (t, J = 5.0 Hz, 1H), 4.94 (d, J = 10.9 Hz, 

1H), 4.84 – 4.76 (m, 3H), 4.66 – 4.61 (m, 3H), 4.03 – 3.97 (m, 2H), 3.60 – 3.53 (m, 2H), 3.38 

(s, 3H), 3.30 – 3.25 (m, 1H),3.20  – 3.14 (m, 1H), 1.43 – 1.39 (m, 2H), 1.26 – 1.24 (m, 6H), 

0.86 (t, J = 6.8 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 168.7, 138.5, 137.9, 137.8, 128.4, 

128.3, 128.3, 128.1, 128.0, 127.9, 127.9, 127.7, 127.6, 98.4, 81.4, 80.3, 79.1, 75.8, 75.1, 73.5, 

70.6, 55.6, 39.3, 31.3, 29.2, 26.5, 22.4, 13.9. HRMS-ESI (m/z): calcd for C34H41NO7, [M + 

H]+ : 576.2961, found 576.2949. 

2.7.5. (2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-N-cyclopropyl-6-methoxytetrahydro-2H-

pyran-2-carboxamide (3e) 

Yield: 89% (93 mg) as white sticky solid; [α]D
25= -1.3 [c 0.1, CHCl3], 

1H NMR (500 MHz, 

CDCl3) δ 7.28 – 7.19 (m, 15H), 6.08 (s, 1H), 4.87 (d, J = 10.9 Hz, 1H), 4.77 – 4.68 (m, 3H), 

4.57 (d, J = 11.2 Hz, 2H), 4.53 (d, J = 3.5 Hz, 1H), 3.93 – 3.88 (m, 2H), 3.50 – 3.44 (m, 2H), 

3.30 (s, 3H), 2.68 – 2.64 (m, 1H), 0.69 – 0.67 (m, 2H), 0.35 – 0.34 (m, 2H). 13C NMR (125 

MHz, CDCl3) δ 170.2, 138.5, 137.9, 137.8, 128.4, 128.3, 128.3, 128.1, 128.1, 128.0, 127.8, 

127.8, 127.6, 98.4, 81.4, 80.2, 79.1, 75.8, 75.2, 73.5, 70.5, 55.7, 22.4, 6.5, 6.3. HRMS-ESI 

(m/z): calcd for C31H35NO6, [M + H]+: 518.2543, found 518.2533. 
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2.7.6. (2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-N-cyclohexyl-6-methoxytetrahydro-2H-

pyran-2-carboxamide (3f) 

Yield: 88% (99 mg) as white sticky solid; [α]D
25= -3.4 [c 0.1, CHCl3], 

1H NMR (500 MHz, 

CDCl3) δ 7.36 – 7.25 (m, 15H), 5.93 (d, J = 7.9 Hz, 1H), 4.93 (d, J = 10.9 Hz, 1H), 4.83 – 

4.74 (m, 3H), 4.67 – 4.61 (m, 3H), 4.01 – 3.96 (m, 2H), 3.79 – 3.75 (m, 1H), 3.60 – 3.53 (m, 

2H), 3.39 (s, 3H), 1.91 – 1.82 (m, 2H), 1.68 – 1.64 (m, 3H), 1.15 – 0.99 (m, 4H), 0.89 – 0.83 

(m, 1H). 13C NMR (125 MHz, CDCl3) δ 167.9, 138.6, 138.0, 138.0, 128.5, 128.4, 128.3, 

128.1, 128.1, 128.0, 127.9, 127.7, 127.6, 98.4, 81.4, 80.5, 79.2, 75.9, 75.2, 73.5, 70.8, 55.7, 

48.0, 33.0, 32.8, 25.4, 24.7 (2C). HRMS-ESI (m/z): calcd for C34H41NO6, [M + H]+: 

560.3012, found 560.3000. 

2.7.7. (2S,3S,4S,5R,6S)-N-benzyl-3,4,5-tris(benzyloxy)-6-methoxytetrahydro-2H-pyran-

2-carboxamide (3g) 

Yield: 93% (106 mg) as white sticky solid; [α]D
25= -1.4 [c 0.1, CHCl3], 

1H NMR (500 MHz, 

CDCl3) δ 7.36 – 7.19 (m, 20H), 6.39 (t, J = 5.6 Hz, 1H), 4.94 (d, J = 10.9 Hz, 1H), 4.83 – 

4.74 (m, 3H), 4.65 – 4.58 (m, 3H), 4.49 – 4.45 (m, 1H), 4.39 – 4.34 (m, 1H), 4.09 (d, J = 9.9 

Hz, 1H), 3.99 (t, J = 9.3 Hz, 1H), 3.60 (dd, J = 9.8, 9.0 Hz, 1H), 3.54 (dd, J = 9.7, 3.5 Hz, 

1H), 3.37 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 168.8, 138.5, 137.9, 137.8, 137.7, 128.7, 

128.5, 128.4, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.6, 127.6, 98.5, 81.5, 80.2, 79.2, 

75.9, 75.2, 73.5, 70.7, 55.8, 43.4. HRMS-ESI (m/z): calcd for C35H37NO6, [M + H]+ : 

568.2699, found 568.2689. 

2.7.8.  (2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxy-N-(3- 

methoxybenzyl)tetrahydro-2H-pyran-2-carboxamide (3h) 



Chapter-2 
 

Department of Chemistry, IIT (BHU), Varanasi. Page 45 

Yield: 93% (112 mg) as white sticky solid; [α]D
25= -1.2 [c 0.1, CHCl3], 

1H NMR (500 MHz, 

CDCl3) δ 7.35 – 7.27 (m, 12H), 7.25 – 7.17 (m, 5H), 6.80 – 6.77 (m, 2H), 6.38 (t, J = 5.4 Hz, 

1H), 4.94 (d, J = 10.9 Hz, 1H), 4.83 – 4.73 (m, 3H), 4.63 (d, J = 12.1 Hz, 1H), 4.61 – 4.59 

(m, 2H), 4.47 – 4.43 (m, 1H), 4.35 – 4,31 (m, 1H), 4.12 – 4.07 (m, 1H), 3.99 (t, J = 9.3 Hz, 

1H), 3.74 (s, 3H), 3.61 – 3.57 (m, 1H), 3.54 (dd, J = 9.7, 3.5 Hz, 1H), 3.38 (s, 3H). 13C NMR 

(125 MHz, CDCl3) δ 168.7, 159.8, 139.2, 138.5, 137.9, 137.7, 129.7, 128.4, 128.3, 128.3, 

128.1, 128.0, 127.8, 127.7, 127.6, 120.1, 113.5, 113.0, 98.4, 81.4, 80.2, 79.1, 75.8, 75.1, 73.5, 

70.6, 55.7, 55.1, 43.3. HRMS-ESI (m/z): calcd for C36H39NO7, [M + H]+ : 598.2805, found 

598.2801. 

2.7.9. (2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxy-N-(quinolin-3-

ylmethyl)tetrahydro-2H-pyran-2-carboxamide (3i) 

Yield: 90% (103 mg) as white solid; mp. 157-158 ℃; [α]D
25= -1.5 [c 0.1, CHCl3], 

1H NMR 

(500 MHz, CDCl3) δ 8.38 (d, J = 4.8 Hz, 1H), 7.53 (t, J = 7.7 Hz, 1H), 7.28 – 7.26 (m, 5H), 

7.25 – 7.07 (m, 13H), 4.86 (d, J = 10.9 Hz, 1H), 4.76 – 4.72 (m, 2H), 4.65 (d, J = 10.5 Hz, 

1H), 4.59 – 4.56 (m, 2H), 4.53 – 4.48 (m, 3H), 4.08 (d, J = 9.9 Hz, 1H), 3.93 (t, J = 9.3 Hz, 

1H), 3.60 – 3.56 (m, 1H), 3.51 (dd, J = 9.7, 3.6 Hz, 1H), 3.32 (s, 3H). 13C NMR (125 MHz, 

CDCl3) δ 168.9, 155.7, 148.9, 138.5, 137.9, 137.8, 136.7, 128.4, 128.3, 128.1, 128.1, 128.0, 

127.9, 127.8, 127.5, 122.3, 122.0, 98.4, 81.4, 80.1, 79.1, 75.8, 75.0, 73.5, 70.8, 55.7, 44.2. 

HRMS-ESI (m/z): calcd for C34H36N2O6, [M + H]+ : 569.2652, found 569.2641. 

2.7.10. piperidin-1-yl((2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxytetrahydro-2H-

pyran-2-yl)methanone (3j) 
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Yield: 93% (102 mg) as viscous liquid; [α]D
25= -4.9 [c 0.1, CHCl3], 

1H NMR (500 MHz, 

CDCl3) δ 7.29 – 7.15 (m, 15H), 4.90 (d, J = 10.9 Hz, 1H), 4.78 – 4.73 (m, 3H), 4.61 (d, J = 

10.6 Hz, 1H), 4.57 (d, J = 12.1 Hz, 1H), 4.49 (d, J = 3.5 Hz, 1H), 4.46 – 4.44 (m, 1H), 3.94 – 

3.92 (m, 2H), 3.69 – 3.65 (m, 1H), 3.54 – 3.51 (m, 1H), 3.48 – 3.43 (m, 1H), 3.40 – 3.37 (m, 

1H), 3.35 (s, 3H), 3.30 – 3.26 (m, 1H), 1.56 – 1.42 (m, 6H). 13C NMR (125 MHz, CDCl3) δ 

166.6, 138.6, 138.4, 137.9, 128.4, 128.3, 128.2, 128.1, 127.9, 127.8, 127.8, 127.5, 127.5, 

99.4, 81.4, 79.5, 79.2, 75.7, 75.2, 73.6, 66.2, 56.2, 46.8, 43.4, 26.5, 25.4, 24.4. HRMS-ESI 

(m/z): calcd for C33H39NO6, [M + H]+: 546.2856, found 546.2845. 

2.7.11. morpholino((2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxytetrahydro-2H-

pyran-2-yl)methanone (3k) 

Yield: 89% (98 mg) as white sticky solid; [α]D
25= -3.5 [c 0.1, CHCl3], 

1H NMR (500 MHz, 

CDCl3) δ 7.37 – 7.24 (m, 15H), 5.00 (d, J = 10.9 Hz, 1H), 4.88 (d, J = 3.1 Hz, 1H), 4.86 – 

4.83 (m, 2H), 4.68 (d, J = 7.4 Hz, 1H), 4.66 (d, J = 8.8 Hz, 1H), 4.60 (d, J = 3.5 Hz, 1H), 

4.50 (d, J = 9.0 Hz, 1H), 4.02 – 3.99 (m, 2H), 3.70 – 3.57 (m, 7H), 3.53 – 3.51 (m, 2H), 3.43 

(s, 3H). 13C NMR (125 MHz, CDCl3) δ 167.1, 138.5, 138.2, 137.8, 128.4, 128.3, 128.3, 

128.1, 128.0, 127.8, 127.8, 127.7, 127.6, 99.4, 81.4, 79.5, 79.2, 75.7, 75.3, 73.7, 66.5, 66.5, 

66.1, 56.4, 46.0, 42.5. HRMS-ESI (m/z): calcd for C32H37NO7, [M + H]+: 548.2648, found 

548.2651. 

2.7.12. (2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxy-N-phenyltetrahydro-2H-

pyran-2-carboxamide (3l) 

Yield: 45% (50 mg) as white sticky solid; [α]D
25= 1.4 [c 0.1, CHCl3], 

1H NMR (500 MHz, 

CDCl3) δ 7.80 (s, 1H), 7.37 – 7.34 (m, 2H), 7.29 – 7.16 (m, 17H), 7.02 (t, J = 7.4 Hz, 1H), 
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4.90 (d, J = 10.9 Hz, 1H), 4.80 – 4.72 (m, 3H), 4.60 – 4.55 (m, 3H), 4.12 (d, J = 10.0 Hz, 

1H), 3.97 (t, J = 9.3 Hz, 1H), 3.58 – 3.50 (m, 2H), 3.33 (s, 3H). 13C NMR (125 MHz, CDCl3) 

δ 166.7, 138.3, 137.8, 137.4, 137.1, 128.9, 128.4, 128.3, 128.3, 128.2, 128.1, 128.0, 127.8, 

127.8, 127.6, 124.3, 119.6, 98.4, 81.4, 80.1, 79.0, 75.8, 75.4, 73.5, 70.7, 55.8. HRMS-ESI 

(m/z): calcd for C34H35NO6, [M + H]+: 554.2543, found 554.2534. 

2.7.13. (2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-methoxy-N-(4-

methoxyphenyl)tetrahydro-2H-pyran-2-carboxamide (3m) 

Yield: 55% (65 mg) as white solid; mp. 159-160 ℃; [α]D
25= -0.9 [c 0.1, CHCl3], 

1H NMR 

(500 MHz, CDCl3) δ 7.66 (s, 1H), 7.30 – 7.22 (m, 12H), 7.18 – 7.16 (m, 5H), 6.76 (d, J = 9.0 

Hz, 2H), 4.90 (d, J = 10.9 Hz, 1H), 4.80 – 4.72 (m, 3H), 4.61 – 4.56 (m, 3H), 4.10 (d, J = 

10.0 Hz, 1H), 3.97 (t, J = 9.3 Hz, 1H), 3.71 (s, 3H), 3.59 – 3.55 (m, 1H), 3.52 (dd, J = 9.7, 

3.6 Hz, 1H), 3.35 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 166.5, 156.4, 138.5, 137.9, 137.6, 

130.4, 128.5, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 127.6, 121.4, 114.1, 98.5, 81.5, 80.3, 

79.2, 75.9, 75.4, 73.5, 70.8, 55.8, 55.4. HRMS-ESI (m/z): calcd for C35H37NO7, [M + H]+ : 

584.2648, found 584.2648. 

2.7.14. (2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-N-butyl-6-(phenylthio)tetrahydro-2H-

pyran-2-carboxamide (3n) 

Yield: 94% (115 mg) as white sticky solid; [α]D
25= -16.2 [c 0.1, CHCl3], 

1H NMR (500 

MHz, CDCl3) δ 7.44 – 7.42 (m, 2H), 7.30 – 7.28 (m, 3H), 7.25 – 7.16 (m, 15H), 6.18 (t, J = 

5.3 Hz, 1H), 4.77 (d, J = 10.5 Hz, 1H), 4.72 – 4.64 (m, 5H), 4.57 (d, J = 10.5 Hz, 1H), 3.83 – 

3.82 (m, 1H), 3.65 – 3.63 (m, 2H), 3.45 – 3.42 (m, 1H), 3.19 – 3.14 (m, 2H), 1.38 – 1.35 (m, 

2H), 1.26 – 1.21 (m, 2H), 0.83 (t, J = 7.3 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 168.1, 
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138.0, 137.7, 137.6, 132.8, 132.4, 129.0, 128.3, 128.3, 128.1, 127.9, 127.8, 127.7, 127.7, 

86.7, 84.4, 80.2, 79.4, 78.6, 75.2, 75.0, 74.5, 38.8, 31.3, 19.9, 13.6. HRMS-ESI (m/z): calcd 

for C37H41NO5S, [M + H]+: 612.2784, found 612.2778. 

2.7.15. (2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-N-hexanoyl-6-(phenylthio)tetrahydro-2H-

pyran-2-carboxamide (3o) 

Yield: 92% (118 mg) as white solid; mp. 148-149 ℃; [α]D
25= -3.4 [c 0.1, CHCl3], 

1H NMR 

(500 MHz, CDCl3) δ 7.44 – 7.42 (m, 2H), 7.31 – 7.27 (m, 4H), 7.25 – 7.17 (m, 14H), 6.20 (d, 

J = 5.3 Hz, 1H), 4.78 (d, J = 10.5 Hz, 1H), 4.73 – 4.70 (m, 2H), 4.68 – 4.64 (m, 3H), 4.58 (d, 

J = 10.5 Hz, 1H), 3.84 – 3.82 (m, 1H), 3.67 – 3.64 (m, 2H), 3.46 – 3.42 (m, 1H), 3.19 – 3.14 

(m, 2H), 1.21 (d, J = 7.9 Hz, 8H), 0.81 (t, J = 6.8 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 

168.1, 138.0, 137.7, 137.6, 132.9, 132.3, 129.0, 128.3, 128.3, 128.1, 127.9, 127.8, 127.7, 

127.7, 86.7, 84.4, 80.2, 79.5, 78.6, 75.2, 75.0, 74.5, 39.1, 31.4, 29.3, 26.5, 22.5, 13.9. HRMS-

ESI (m/z): calcd for C39H43NO6S, [M + H]+ : 654.2889, found 654.2898. 

2.7.16. (2S,3S,4S,5R,6S)-N-benzyl-3,4,5-tris(benzyloxy)-6-(phenylthio)tetrahydro-2H-

pyran-2-carboxamide (3p) 

Yield: 91% (118 mg) as white solid; mp. 168-169 ℃; [α]D
25= -5.5 [c 0.1, CHCl3], 

1H NMR 

(500 MHz, CDCl3) δ 7.39 – 7.37 (m, 2H), 7.30 – 7.17 (m, 20H), 7.16 – 7.14 (m, 3H), 6.50 (t, 

J = 5.7 Hz, 1H), 4.77 (d, J = 10.5 Hz, 1H), 4.70 – 4.61 (m, 5H), 4.56 (d, J = 10.6 Hz, 1H), 

4.39 – 4.30 (m, 2H), 3.88 (d, J = 7.8 Hz, 1H), 3.69 – 3.63 (m, 2H), 3.43 – 3.40 (m, 1H). 13C 

NMR (125 MHz, CDCl3) δ 168.1, 138.0, 137.7, 137.7, 137.6, 132.7, 132.5, 129.0, 128.6, 

128.4, 128.4, 128.3, 128.3, 128.1, 128.0, 127.9, 127.8, 127.7, 127.7, 127.5, 86.6, 84.4, 80.2, 
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79.3, 78.6, 75.2, 75.0, 74.5, 43.1. HRMS-ESI (m/z): calcd for C40H39NO5S, [M + H]+ : 

646.2627, found  646.2618. 

2.7.17. (2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-N-(4-methoxybenzyl)-6-

(phenylthio)tetrahydro -2H-pyran-2-carboxamide (3q) 

Yield: 94% (127 mg) as transparent viscous liquid [α]D
25= -4.1 [c 0.1, CHCl3]

 1H NMR (500 

MHz, CDCl3) δ 7.39 – 7.37 (m, 2H), 7.29 – 7.17 (m, 18H), 7.07 (d, J = 8.6 Hz, 2H), 6.76 – 

6.73 (m, 2H), 6.43 (t, J = 5.6 Hz, 1H), 4.77 (d, J = 10.5 Hz, 1H), 4.71 – 4.55 (m, 6H), 4.32 – 

4.24 (m, 2H), 3.87 – 3.85 (m, 1H), 3.70 (s, 3H), 3.67 – 3.63 (m, 2H), 3.43 – 3.39 (m, 1H). 

13C NMR (125 MHz, CDCl3) δ 168.0, 159.0, 138.0, 137.7, 137.6, 132.6, 132.6, 129.8, 129.1, 

129.0, 128.4, 128.3, 128.3, 128.1, 128.0, 127.9, 127.8, 127.7, 114.0, 86.7, 84.5, 80.2, 79.4, 

78.6, 75.2, 75.0, 74.5, 55.2, 42.6. HRMS-ESI (m/z): calcd for C41H41NO6S, [M + H]+ : 

676.2733, found  676.2729. 

2.7.18. pyrrolidin-1-yl((2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-(phenylthio)tetrahydro-

2H-pyran-2-yl)methanone (3r) 

Yield: 93% (114 mg) as white solid; mp. 148-149 ℃; [α]D
25= -1.1 [c 0.1, CHCl3], 

1H NMR 

(500 MHz, CDCl3) δ 7.52 – 7.50 (m, 2H), 7.32 – 7.13 (m, 18H), 4.84 – 4.64 (m, 6H), 4.60 (d, 

J = 9.7 Hz, 1H), 4.01 (t, J = 9.3 Hz, 1H), 3.80 (d, J = 9.5 Hz, 1H), 3.66 (t, J = 9.0 Hz, 1H), 

3.49 – 3.33 (m, 3H), 3.23 – 3.19 (m, 2H), 1.72 – 1.64 (m, 4H). 13C NMR (125 MHz, CDCl3) 

δ 165.3, 138.5, 138.5, 138.0, 133.4, 132.9, 129.0, 128.5, 128.5, 128.4, 128.3, 128.1, 128.0, 

127.8, 127.8, 127.7, 88.6, 86.4, 80.5, 79.1, 77.3, 75.9, 75.6, 75.2, 46.2, 46.0, 26.0, 24.2. 

HRMS-ESI (m/z): calcd for C37H39NO5S, [M + H]+ : 610.2627, found 610.2618. 
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2.7.19. piperidin-1-yl((2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-(phenylthio)tetrahydro-

2H-pyran-2-yl)methanone (3s) 

Yield: 94% (118 mg) as white solid; mp. 123-124 ℃; [α]D
25= -5.7 [c 0.1, CHCl3], 

1H NMR 

(500 MHz, CDCl3) δ 7.49 – 7.47 (m, 2H), 7.32 – 7.30 (m, 2H), 7.27 – 7.14 (m, 16H), 4.84 – 

4.80 (m, 3H), 4.79 (d, J = 10.3 Hz, 1H), 4.72 (d, J = 10.5 Hz, 1H), 4.67 (d, J = 10.3 Hz, 1H), 

4.63 (d, J = 9.7 Hz, 1H), 4.06 (t, J = 9.3 Hz, 1H), 3.94 (d, J = 9.4 Hz, 1H), 3.67 (t, J = 9.0 Hz, 

1H), 3.58 – 3.55 (m, 1H), 3.48 – 3.44 (m, 1H), 3.41 – 3.36 (m, 1H), 3.15 – 3.05 (m, 2H), 1.49 

– 1.46 (m, 4H), 1.30 – 1.26 (m, 2H). 13C NMR (125 MHz, CDCl3) δ 164.8, 138.5, 138.3, 

137.9, 133.0, 132.7, 128.9, 128.4, 128.3, 128.2, 128.2, 128.0, 127.8, 127.8, 127.7, 127.6, 

127.5, 88.5, 86.4, 80.3, 78.7, 75.8, 75.4, 75.3, 75.0, 46.5, 43.3, 26.3, 25.4, 24.4. HRMS-ESI 

(m/z): calcd for C38H41NO5S, [M + H]+ : 624.2784, found 624.2771. 

2.7.20. morpholino((2S,3S,4S,5R,6S)-3,4,5-tris(benzyloxy)-6-(phenylthio)tetrahydro-2H-

pyran-2-yl)methanone (3t) 

Yield: 88% (110 mg) as white sticky solid; [α]D
25= -1.9 [c 0.1, CHCl3], 

1H NMR (500 MHz, 

CDCl3) δ 7.49 – 7.47 (m, 2H), 7.32 – 7.24 (m, 8H), 7.23 – 7.14 (m, 10H), 4.84 – 4.79 (m, 

4H), 4.75 (d, J = 10.5 Hz, 1H), 4.69 – 4.64 (m, 2H), 4.05 (t, J = 9.2 Hz, 1H), 3.85 (d, J = 9.4 

Hz, 1H), 3.70 – 3.66 (m, 2H), 3.58 – 3.52 (m, 2H), 3.48 – 3.44 (m, 1H), 3.38 – 3.33 (m, 1H), 

3.28 – 3.20 (m, 2H), 3.09 – 3.00 (m, 2H). 13C NMR (125 MHz, CDCl3) δ 165.1, 138.3, 

138.2, 137.7, 132.9, 132.7, 129.1, 128.4, 128.4, 128.2, 128.2, 128.1, 127.9, 127.9, 127.7, 

127.6, 88.7, 86.3, 80.3, 78.3, 75.8, 75.5, 75.2, 75.0, 66.5, 45.7, 42.4. HRMS-ESI (m/z): calcd 

for C37H39NO6S, [M + H]+ : 626.2576, found 626.2580. 
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2.7.21. (2S,3S,4S,5R,6S)-4,5-bis(benzyloxy)-3-((4-bromobenzyl)oxy)-6-methoxy-N-(4-

methoxybenzyl) tetrahydro-2H-pyran-2-carboxamide (4a) 

Yield: 92% (115 mg) as light brown solid; mp. 170-172 ℃; [α]D
25= -1.9 [c 0.1, CHCl3], 

1H 

NMR (500 MHz, CDCl3) δ 7.32 – 7.27 (m, 3H), 7.25 – 7.17 (m, 9H), 7.04 (d, J = 8.6 Hz, 

2H), 7.00 (d, J = 8.3 Hz, 2H), 6.71 (d, J = 8.6 Hz, 2H), 6.25 (t, J = 5.5 Hz, 1H), 4.86 (d, J = 

10.9 Hz, 1H), 4.72 – 4.67 (m, 2H), 4.59 – 4.54 (m, 2H), 4.51 (d, J = 3.5 Hz, 1H), 4.44 (d, J = 

10.8 Hz, 1H), 4.27 (d, J = 5.5 Hz, 2H), 3.98 (d, J = 9.9 Hz, 1H), 3.89 (t, J = 9.3 Hz, 1H), 3.69 

(s, 3H), 3.48 – 3.43 (m, 2H), 3.30 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 168.5, 159.0, 

138.4, 137.8, 136.8, 131.3, 129.6, 129.6, 129.2, 128.4, 128.3, 128.1, 128.0, 127.8, 127.6, 

121.5, 114.0, 98.3, 81.3, 80.1, 79.0, 77.2, 75.8, 74.1, 73.4, 70.5, 55.7, 55.2, 42.8. HRMS-ESI 

(m/z): calcd for C36H38BrNO6, [M + H]+ : 660.1961, found 660.1968. 

2.7.22. (2S,3R,4S,5S,6S)-2-methoxy-6-((4-methoxybenzyl)carbamoyl)tetrahydro-2H-

pyran-3,4,5-triyl tris(2,2-dimethylpropanoate) (4b) 

Yield: 86% (108 mg) as a light brown sticky solid; [α]D
25= 14.7 [c 0.1, CHCl3], 

1H NMR 

(500 MHz, CDCl3) δ 7.15 (d, J = 8.5 Hz, 2H), 6.82 (d, J = 8.6 Hz, 2H), 6.51 (t, J = 5.5 Hz, 

1H), 5.54 (t, J = 9.8 Hz, 1H), 5.08 (t, J = 9.8 Hz, 1H), 4.91 (d, J = 3.7 Hz, 1H), 4.68 (dd, J = 

10.1, 3.7 Hz, 1H), 4.39 – 4.34 (m, 1H), 4.22 – 4.19 (m, 1H), 4.17 (d, J = 10.3 Hz, 1H), 3.73 

(s, 3H), 3.32 (s, 3H), 1.13 (s, 9H), 1.09 (s, 9H), 1.05 (s, 9H).  13C NMR (125 MHz, CDCl3) δ 

177.7, 176.8, 176.6, 166.9, 159.0, 129.7, 129.2, 114.0, 96.6, 77.2, 70.8, 69.3, 68.7, 68.4, 56.1, 
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55.2, 42.5, 38.6, 38.6, 38.6, 27.1, 27.1, 26.8. HRMS-ESI (m/z): calcd for C30H45NO10, [M + 

H]+ : 580.3122, found 580.3132. 

2.7.23. (2S,3R,4S,5S,6S)-2-methoxy-6-((4-methoxybenzyl)carbamoyl)tetrahydro-2H-

pyran-3,4,5-triyl tribenzoate (4c) 

Yield: 88% (111 mg) as a light brown sticky solid; [α]D
25= 15.5 [c 0.1, CHCl3], 

1H NMR 

(500 MHz, CDCl3) δ 7.94 – 7.89 (m, 4H), 7.81 – 7.79 (m, 2H), 7.46 – 7.41 (m, 2H), 7.38 – 

7.35 (m, 1H), 7.33 – 7.29 (m, 4H), 7.22 (t, J = 7.8 Hz, 2H), 7.17 (d, J = 8.7 Hz, 2H), 6.82 (d, 

J = 8.6 Hz, 2H), 6.65 (t, J = 5.6 Hz, 1H), 6.11 (t, J = 9.9 Hz, 1H), 5.59 (t, J = 9.9 Hz, 1H), 

5.20 (d, J = 3.5 Hz, 1H), 5.14 (dd, J = 10.2, 3.6 Hz, 1H), 4.46 (d, J = 10.2 Hz, 1H), 4.40 – 

4.37  (m, 1H), 4.27  –  4.23 (m, 1H), 3.74 (s, 3H), 3.39 (s, 3H). 13C NMR (125 MHz, CDCl3) 

δ 166.9, 165.8, 165.6, 165.4, 159.1, 133.5, 133.1, 133.1, 129.9, 129.9, 129.6, 129.3, 129.2, 

129.0, 128.7, 128.5, 128.4, 128.3, 128.2, 114.1, 97.1, 71.7, 70.2, 69.7, 68.5, 56.1, 55.2, 42.6. 

HRMS-ESI (m/z): calcd for C36H33NO10, [M + H]+ : 640.2183, found 640.2172. 

2.7.24. (3aR,5S,5aR,8aS,8bR)-N-(4-methoxybenzyl)-2,2,7,7-tetramethyltetrahydro-5H-

bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-carboxamide (4d) 

Yield: 93% (73 mg) as a light brown sticky solid; [α]D
25= -10.3 [c 0.1, CHCl3], 

1H NMR 

(500 MHz, CDCl3) δ 7.16 (d, J = 8.7 Hz, 2H), 6.78 – 6.77 (m, 3H), 5.48 (d, J = 4.9 Hz, 1H), 

4.66 (dd, J = 7.9, 2.0 Hz, 1H), 4.62  –  4.58(m, 2H), 4.29 – 4.28 (m, 2H), 4.18  – 4.14 (m, 

1H), 3.72 (s, 3H), 1.45 (s, 3H), 1.33 (s, 3H), 1.29 (s, 3H), 1.26 (s, 3H).  13C NMR (125 MHz, 

CDCl3) δ 168.2, 158.8, 129.9, 128.9, 113.8, 109.3, 109.2, 96.1, 70.6, 70.3, 68.7, 55.2, 42.2, 

25.9, 25.8, 24.7, 24.1. HRMS-ESI (m/z): calcd for C20H27NO7, [M + H]+ : 394.1866, found 

394.1864. 
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2.7.25. (2S,3R,4S,5R,6S)-3,4,5-tris(benzyloxy)-N-(4-methoxybenzyl)-6-

(phenylthio)tetrahydro -2H-pyran-2-carboxamide (4e) 

Yield: 90% (113 mg) as brown sticky solid; [α]D
25= 0.9 [c 0.1, CHCl3], 

1H NMR (500 MHz, 

CDCl3) δ  7.40 – 7.38 (m, 2H), 7.31 – 7.17 (m, 15H), 7.14 – 7.12 (m, 1H), 7.07  –  7.04 (m, 

2H), 7.01 (d, J = 8.7 Hz, 2H), 6.80 (t, J = 5.8 Hz, 1H), 6.65 – 6.62 (m, 2H), 4.80 (d, J = 11.1 

Hz, 1H), 4.71 – 4.51 (m, 6H), 4.39  –  4.35 (m, 2H), 4.25  –  4.20 (m, 1H), 3.89  –  3.83 (m, 

2H), 3.68 (s, 3H), 3.58 (dd, J = 9.2, 2.8 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ 167.7, 

158.8, 138.5, 138.0, 137.8, 132.8, 132.1, 129.5, 128.9, 128.8, 128.4, 128.3, 128.2, 128.1, 

127.7, 127.6, 127.6, 127.5, 127.3, 113.9, 86.9, 83.1, 78.0, 76.6, 75.6, 74.7, 74.7, 72.3, 55.2, 

42.4. HRMS-ESI (m/z): calcd for C42H43NO6S, [M + H]+ : 690.2889, found 690.2875. 
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2.8 Spectral data for few products 

Figure 2.2 1H NMR Spectra for 3a in CDCl3

Figure 2.3 13C NMR Spectra for 3a in CDCl3 
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Figure 2.4 1H NMR Spectra for 3p in CDCl3 

 

Figure 2.5 13C NMR Spectra for 3p in CDCl3 
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