TABLE OF CONTENTS

	Page Nos.
Certificates	iii-vi
Acknowledgments	vii-viii
Table of Contents	ix-xiii
List of Figures	xiv-xvi
List of Schemes	xvii
List of Tables	xviii
Abbreviations	xix
Preface	xx-xxii
Chapter 1. Background and Introduction	1 - 31
1.1 General introduction	1
1.2. History and discovery of glycerol	3
1.3. Significance of glycerol	4
1.4. Physical properties of glycerol	5
1.5. Global production of glycerol	6
1.6. Need for value addition of glycerol	7
1.7. Valorisation of glycerol	9
1.7.1. Acetalization of glycerol	9
1.7.2. Dehydration of glycerol	10
1.7.3. Etherification of Glycerol	10
1.7.4. Esterification of glycerol	10
1.7.5. Glycerol to synthesis gas	11
1.7.6. Halogenation of glycerol	12
1.7.7. Hydrogenolysis of glycerol	12
1.7.8. Oxidation of glycerol	13
1.7.9. Polymerization of glycerol	14
1.8. Transesterification of glycerol	14
1.8.1. Introduction to glycerol carbonate	15
1.9. Synthetic routes for glycerol carbonate from glycerol	17
1.9.1. Reaction of carbon monoxide with glycerol	17
1.9.2 Reaction of carbon dioxide with glycerol	17
1.9.3. Reaction of phosgene with glycerol	18
1.9.4. Reaction of urea with glycerol	18
1.9.5. Reaction of alkylene carbonate with glycerol	19
1.9.6. Reaction of Dialkyl carbonate with glycerol	19
1.10. Knowledge gaps	21
1.11: Literature Review	23 - 29
1.11.1 Glycerol production and consumption	23
1.11.2. Catalytic conversion of glycerol to value added products	24
1.11.3. Catalytic approach in transesterification of glycerol	25

1.11.4. Reaction mechanism involved in transesterification of glycerol	29
1.12. Objectives of the work	31
Chapter 2: Experimental Procedures and Characterization Techniques	32 - 41
2.1. Introduction	32
2.2. Reagents and catalysts	32
2.3. Methods for preparation of catalyst	32
2.3.1 Wet impregnation method	32
2.3.2 Co-precipitation method	33
2.4. Methods adopted for catalyst designing in present work	34
2.4.1 Synthesis of Li/TiO ₂	34
2.4.1 Synthesis of Na/TiO ₂	35
2.4.3 Synthesis of Ni/CaO	35
2.4.4. Synthesis of Mg/CuO and Mg/MnO ₂ catalyst.	36
2.5. Characterization of catalysts	37 - 39
2.5.1. TGA-DSC	37
2.5.2. XRD	37
2.5.3 FT-IR Spectroscopy	37
2.5.4. XPS Spectroscopy	38
2.5.5. SEM-EDX	38
2.5.6. TEM Analysis	39
2.5.7. Hammett indicator	39
2.6. Activity study	40
2.6.1. NMR spectra	40
2.6.2. GC-MS analysis	41
2.6.3. HR-MS analysis	41
Chapter 3. Synthesis of Li/TiO ₂ catalyst for the synthesis of biodiesel	42 - 63
derived glycerol to glycerol carbonate	
3.1. Introduction	42
3.2. Synthesis of Li/TiO ₂ catalyst	42
3.3. Characterizations of catalyst	43 - 51
3.3.1. XRD studies	43
3.3.2 Thermogravimetric analysis of Li/TiO ₂	45
3.3.3 XPS studies of the synthesized catalyst	46
3.3.4 Basicity of Li/TiO ₂	48
3.3.5. FT-IR analysis of Li/TiO ₂	48
3.3.6. FE-SEM studies of Li/TiO ₂	49
3.3.7 TEM studies of Li/TiO ₂	51
3.4 Evaluation of Activity of Catalyst for glycerol carbonate synthesis	52
3.4.1. Selection of active catalyst	52
3.4.2 Calcination temperature	54
3.4.3 Effect of loading percentage	54
3.4.4 Characterization of synthesized product	55

3.4.4.1 ¹ H and ¹³ C NMR of the synthesized glycerol carbonate	55
3.4.5 Proposed reaction mechanism	57
3.5. Optimization of reaction parameters	58
3.5.1 Influence of molar ratio on conversion	58
3.5.2 Influence of reaction temperature	58
3.5.3 Influence of catalyst dose	58
3.5.4 Influence of reaction time	59
3.6. Recyclability of the catalyst	60
3.7. Comparative study of synthesized 25wt% Li/TiO ₂ with previously reported catalyst	62
3.8. Conclusion	63
Chapter 4. Synthesis of Na/TiO ₂ catalyst for the synthesis of biodiesel derived glycerol to glycerol carbonate	64 - 86
4.1. Introduction	64
4.2 Experimental	64
4.2.1. Synthesis of the Na/TiO ₂ catalyst	64
4.3 Characterization of the catalyst	66 - 74
4.3.1. Thermogravimetric analysis of the synthesized catalyst	66
4.3.2. X-ray diffraction studies	67
4.3.3. XPS Analysis	69
4.3.4. FTIR studies	71
4.3.5. TEM analysis	72
4.3.6. Basicity	74
4.4. Evaluation of activity of catalyst for production of glycerol carbonate	75
4.5. Proposed reaction mechanism and characterization of the synthesized	77
product	
4.6. Optimization of the reaction parameters	79
4.6.1. Influence of amount of catalyst	79
4.6.2. Influence of molar ratio	79
4.6.3. Influence of reaction temperature	79
4.6.4. Influence of reaction time	80
4.7. Green metrics study of glycerol transesterification	82
4.8. Endurance competency of Na/TiO ₂	83
4.9. Comparison of the synthesized catalyst with the previously reported	84
catalysts	
5. Conclusion	86
Chapter 5. Synthesis of Ni modified distillation waste derived	87 - 111
heterogeneous catalyst utilized to produce glycerol carbonate from a biodiesel by-product glycerol	
5.1. Introduction	87
5.2. Synthesis of Ni/CaO catalyst	87
5.3. Characterization of the catalyst	89 - 96

5.3.1. TGA & DSC studies	89
5.3.2. XRD studies	90
5.3.3. FT-IR studies	91
5.3.4. XPS analysis	93
5.3.5. SEM analysis	94
5.3.6. TEM Studies	95
5.3.7. Basicity	96
5.4. Evaluation of the catalyst for glycerol carbonate synthesis via	97 - 99
transesterification	
5.4.1. ¹ H- NMR & ¹³ C-NMR	98
5.4.2. HR-MS studies	99
5.5. Proposed mechanism for transesterification of the product	101
5.6. Effect of reaction parameters on product yields	102
5.6.1. Catalyst amount	102
5.6.2. Reaction temperature	103
5.6.3. Molar ratio	104
5.6.4. Reaction time	104
5.7. Green metric studies	106
5.8. Recyclability study	107
5.9. Comparison study	109
6. Conclusion	111
Chapter 6. Synthesis of Mg/MnO2 and Mg/CuO catalyst and its	112 - 128
application in glycerol carbonate synthesis: Establishing role of support	
metal in glycerol conversion	
6.1. Introduction	112
6.2. Synthesis of Mg modified transition metal catalysts	113
6.3 Characterization of synthesized catalyst	113 - 120
6.3.1 TGA study	113
6.3.2 XRD analysis	114
6.3.3 XPS analysis	115
6.3.4 FTIR spectra	117
6.3.5 TEM analysis	118
6.3.6 Basicity	120
6.4 Evaluation of catalyst for glycerol carbonate synthesis	121 - 122
6.4.1. Gas chromatography analysis of synthesized product glycerol	122
carbonate	
6.5 Detailed study of reaction mechanism in transesterification of glycerol	123
6.5 Detailed study of reaction mechanism in transesterification of glycerol6.6. Optimization of reaction parameters	123 124 - 125
6.5 Detailed study of reaction mechanism in transesterification of glycerol6.6. Optimization of reaction parameters6.6.1 Effect of reaction temperature	
6.6. Optimization of reaction parameters	124 - 125
6.6. Optimization of reaction parameters 6.6.1 Effect of reaction temperature	124 - 125 124
6.6. Optimization of reaction parameters 6.6.1 Effect of reaction temperature 6.6.2 Effect of reaction time	124 - 125 124 124
6.6. Optimization of reaction parameters6.6.1 Effect of reaction temperature6.6.2 Effect of reaction time6.6.3 Effect of DMC to glycerol molar ratio	124 - 125 124 124 124

6.8. Conclusion	128
Chapter.7. Summary and future perspectives	129 - 134
7.1. Summary of the thesis	129 -133
7.2. Future scope of present work	133 -134
References	135 – 164
Publications and Conferences	165 – 166