Transition metal based heterogeneous catalysts for valorization of glycerol to glycerol carbonate

Thesis submitted in partial fulfilment for the award of the degree

of

Doctor of Philosophy

by

Miss Siddhi Jaiswal

Department of Chemistry

Indian Institute of Technology

(Banaras Hindu University) Varanasi

Varanasi 221005

India

i

Roll No. 17051503

2022

Dedicated to my loving

parents

CERTIFICATE

It is certified that the work contained in the thesis titled "**Transition metal based** heterogeneous catalysts for valorization of glycerol to glycerol carbonate" by Miss. Siddhi Jaiswal has been carried out under my supervision and this work has not been submitted elsewhere for a degree. It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph.D. Degree.

Professor Yogesh Chandra Sharma

(Supervisor)

Department of Chemistry,

Indian Institute of Technology (Banaras Hindu University), Varanasi

Varanasi - 221006, India

DECLARATION BY THE CANDIDATE

I, Siddhi Jaiswal, certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of **Prof. Yogesh Chandra Sharma** from Dec 2017 to June 2022, at the **Department of Chemistry**, Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not wilfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date: 16 · 12 · 2022

Place: Varanasi

Siddhi Jaiswal

(Siddhi Jaiswal)

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my knowledge. The thesis work entitled "Transition metal based heterogeneous catalysts for valorization of glycerol to glycerol carbonate" has been done by Miss Siddhi Jaiswal under my supervision.

Prof. Yogesh Chandra Sharma (Supervisor) The Head Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi Varanasi – 221005

> रसायन विज्ञान विभाग Department of Chemistry गरतीय प्रोसोगिकी संस्थान (का.हि.पि.) Statitute of Technology (B.) Statitute of Technology (B.)

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Transition metal based heterogeneous catalysts for valorization of glycerol to glycerol carbonate

Name of the Student: Miss Siddhi Jaiswal

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the "**Doctor of Philosophy**" degree.

Date: 16.12.2022

Place: Varanasi.

Siddhi Jaisual

(Siddhi Jaiswal)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

I would like to express my truthful appreciation and heartfelt thanks to my life coach, God, and all the persons around me intended for their valuable advices, critics, commitment, and encouragement that made my journey conceivable.

Initially, I would like to express my deep sense of gratitude to my supervisor **Professor Yogesh Chandra Sharma**, Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi, for his valuable guidance, constant support, critical and motivating comments throughout the completion of this research work. It is my pleasure to express my deepest admiration and heartiest thanks to him for helping me to learn the subject and to develop an interest for further research in this area.

I would like to thank the Head, Department of Chemistry, IIT (BHU), Varanasi, Prof. Yogesh Chandra Sharma, former HOD Prof. Dhanesh Tiwary as well as all the faculty members of Department of Chemistry IIT (BHU) for their kind support and for extending all required facilities to carry out my research work smoothly.

I would like to thank my RPEC members, Prof. K. D. Mandal, Department of Chemistry and Dr. H. L. Parmanik, Department of Chemical Engineering and Technology for their valuable suggestions, constant guidance and encouragement during my research work. I gratefully acknowledge the facilities provided by CIFC, IIT (BHU), Varanasi, Sophisticated Instrument Facility, Department of Chemistry, BHU, CIMAP-CSIR lab, Lucknow for characterization of my samples.

I am thankful to my seniors Dr. Sushmita Banarjee, Dr. Ashutosh Kumar, Dr. Meena Yadav, Dr. Reena Singh, Dr. Shalini Sahani, Dr. Tania Roy and Dr. Geetanjali Pradhan for their suggestions and healthy discussions of my research issues. I am also thankful to my colleagues and juniors Mr Abhijit Debnath, Ms Vartika Verma, Ms Sunita Maury, Mrs. Archana Pandey and Mr Niraj Kumar for their support throughout my research work.

I would like to express my deepest affection to my parents, my brothers, and sisters, for their love, concern, continuous moral support, and encouragement which enabled me to perform my liabilities. I also would like to thank my friends (Miss. Neha, Mr. Vishal, Mr. Salman, Mr. Shivendra and Miss. Amisha) for their affection and support in my research work. I am thankful and indebted to MHRD for providing me financial support during my research work.

Date: 16. 12. 2022

Place: Varanasi

Siddhi Jaiswal

(Siddhi Jaiswal, Research Scholar)

TABLE OF CONTENTS

Ē

	Page Nos.
Certificates	iii-vi
Acknowledgments	vii-viii
Table of Contents	ix-xiii
List of Figures	xiv-xvi
List of Schemes	xvii
List of Tables	xviii
Abbreviations	xix
Preface	xx-xxii
Chapter 1. Background and Introduction	1 - 31
1.1 General introduction	1
1.2. History and discovery of glycerol	3
1.3. Significance of glycerol	4
1.4. Physical properties of glycerol	5
1.5. Global production of glycerol	6
1.6. Need for value addition of glycerol	7
1.7. Valorisation of glycerol	9
1.7.1. Acetalization of glycerol	9
1.7.2. Dehydration of glycerol	10
1.7.3. Etherification of Glycerol	10
1.7.4. Esterification of glycerol	10
1.7.5. Glycerol to synthesis gas	11
1.7.6. Halogenation of glycerol	12
1.7.7. Hydrogenolysis of glycerol	12
1.7.8. Oxidation of glycerol	13
1.7.9. Polymerization of glycerol	14
1.8. Transesterification of glycerol	14
1.8.1. Introduction to glycerol carbonate	15
1.9. Synthetic routes for glycerol carbonate from glycerol	17
1.9.1. Reaction of carbon monoxide with glycerol	17
1.9.2 Reaction of carbon dioxide with glycerol	17
1.9.3. Reaction of phosgene with glycerol	18
1.9.4. Reaction of urea with glycerol	18
1.9.5. Reaction of alkylene carbonate with glycerol	19
1.9.6. Reaction of Dialkyl carbonate with glycerol	19
1.10. Knowledge gaps	21
1.11: Literature Review	23 - 29
1.11.1 Glycerol production and consumption	23
1.11.2. Catalytic conversion of glycerol to value added products	24
1.11.3. Catalytic approach in transesterification of glycerol	25

1.11.4. Reaction mechanism involved in transesterification of glycerol	29
1.12. Objectives of the work	31
Chapter 2: Experimental Procedures and Characterization Techniques	32 - 41
2.1. Introduction	32
2.2. Reagents and catalysts	32
2.3. Methods for preparation of catalyst	32
2.3.1 Wet impregnation method	32
2.3.2 Co-precipitation method	33
2.4. Methods adopted for catalyst designing in present work	34
2.4.1 Synthesis of Li/TiO ₂	34
2.4.1 Synthesis of Na/TiO ₂	35
2.4.3 Synthesis of Ni/CaO	35
2.4.4. Synthesis of Mg/CuO and Mg/MnO ₂ catalyst.	36
2.5. Characterization of catalysts	37 - 39
2.5.1. TGA-DSC	37
2.5.2. XRD	37
2.5.3 FT-IR Spectroscopy	37
2.5.4. XPS Spectroscopy	38
2.5.5. SEM-EDX	38
2.5.6. TEM Analysis	39
2.5.7. Hammett indicator	39
2.6. Activity study	40
2.6.1. NMR spectra	40
2.6.2. GC-MS analysis	41
2.6.3. HR-MS analysis	41
Chapter 3. Synthesis of Li/TiO2 catalyst for the synthesis of biodiesel	42 - 63
derived glycerol to glycerol carbonate	
3.1. Introduction	42
3.2. Synthesis of Li/TiO ₂ catalyst	42
3.3. Characterizations of catalyst	43 - 51
3.3.1. XRD studies	43
3.3.2 Thermogravimetric analysis of Li/TiO ₂	45
3.3.3 XPS studies of the synthesized catalyst	46
3.3.4 Basicity of Li/TiO ₂	48
3.3.5. FT-IR analysis of Li/TiO ₂	48
3.3.6. FE-SEM studies of Li/TiO ₂	49
3.3.7 TEM studies of Li/TiO ₂	51
3.4 Evaluation of Activity of Catalyst for glycerol carbonate synthesis	52
3.4.1. Selection of active catalyst	52
3.4.2 Calcination temperature	54
3.4.3 Effect of loading percentage	54
3.4.4 Characterization of synthesized product	55

3.4.4.1 ¹ H and ¹³ C NMR of the synthesized glycerol carbonate	55
3.4.5 Proposed reaction mechanism	57
3.5. Optimization of reaction parameters	58
3.5.1 Influence of molar ratio on conversion	58
3.5.2 Influence of reaction temperature	58
3.5.3 Influence of catalyst dose	58
3.5.4 Influence of reaction time	59
3.6. Recyclability of the catalyst	60
3.7. Comparative study of synthesized 25wt% Li/TiO ₂ with previously	62
reported catalyst	
3.8. Conclusion	63
Chapter 4. Synthesis of Na/TiO ₂ catalyst for the synthesis of biodiesel	64 - 86
derived glycerol to glycerol carbonate	
4.1. Introduction	64
4.2 Experimental	64
4.2.1. Synthesis of the Na/TiO ₂ catalyst	64
4.3 Characterization of the catalyst	66 - 74
4.3.1. Thermogravimetric analysis of the synthesized catalyst	66
4.3.2. X-ray diffraction studies	67
4.3.3. XPS Analysis	69
4.3.4. FTIR studies	71
4.3.5. TEM analysis	72
4.3.6. Basicity	74
4.4. Evaluation of activity of catalyst for production of glycerol carbonate	75
4.5. Proposed reaction mechanism and characterization of the synthesized	77
product	
4.6. Optimization of the reaction parameters	79
4.6.1. Influence of amount of catalyst	79
4.6.2. Influence of molar ratio	79
4.6.3. Influence of reaction temperature	79
4.6.4. Influence of reaction time	80
4.7. Green metrics study of glycerol transesterification	82
4.8. Endurance competency of Na/TiO ₂	83
4.9. Comparison of the synthesized catalyst with the previously reported	84
catalysts	
5. Conclusion	86
Chapter 5. Synthesis of Ni modified distillation waste derived	87 - 111
heterogeneous catalyst utilized to produce glycerol carbonate from a	
biodiesel by-product glycerol	
5.1. Introduction	87
5.2. Synthesis of Ni/CaO catalyst	87
5.3. Characterization of the catalyst	89 - 96

xi

5.3.1. TGA & DSC studies	89
5.3.2. XRD studies	90
5.3.3. FT-IR studies	91
5.3.4. XPS analysis	93
5.3.5. SEM analysis	94
5.3.6. TEM Studies	95
5.3.7. Basicity	96
5.4. Evaluation of the catalyst for glycerol carbonate synthesis via	97 - 99
transesterification	
5.4.1. ¹ H- NMR & ¹³ C-NMR	98
5.4.2. HR-MS studies	99
5.5. Proposed mechanism for transesterification of the product	101
5.6. Effect of reaction parameters on product yields	102
5.6.1. Catalyst amount	102
5.6.2. Reaction temperature	103
5.6.3. Molar ratio	104
5.6.4. Reaction time	104
5.7. Green metric studies	106
5.8. Recyclability study	107
5.9. Comparison study	109
6. Conclusion	111
Chapter 6. Synthesis of Mg/MnO ₂ and Mg/CuO catalyst and its	112 - 128
application in glycerol carbonate synthesis: Establishing role of support	112 120
metal in glycerol conversion	
6.1. Introduction	112
	112
6.2. Synthesis of Mg modified transition metal catalysts	113
6.3 Characterization of synthesized catalyst	113 - 120
6.3.1 TGA study	113
6.3.2 XRD analysis	114
6.3.3 XPS analysis	115
6.3.4 FTIR spectra	117
6.3.5 TEM analysis	118
6.3.5 TEM analysis 6.3.6 Basicity	118 120
6.3.5 TEM analysis6.3.6 Basicity6.4 Evaluation of catalyst for glycerol carbonate synthesis	118 120 121 - 122
6.3.5 TEM analysis6.3.6 Basicity6.4 Evaluation of catalyst for glycerol carbonate synthesis6.4.1. Gas chromatography analysis of synthesized product glycerol	118 120
 6.3.5 TEM analysis 6.3.6 Basicity 6.4 Evaluation of catalyst for glycerol carbonate synthesis 6.4.1. Gas chromatography analysis of synthesized product glycerol carbonate 	118 120 121 - 122 122
 6.3.5 TEM analysis 6.3.6 Basicity 6.4 Evaluation of catalyst for glycerol carbonate synthesis 6.4.1. Gas chromatography analysis of synthesized product glycerol carbonate 6.5 Detailed study of reaction mechanism in transesterification of glycerol 	118 120 121 - 122 122 123
 6.3.5 TEM analysis 6.3.6 Basicity 6.4 Evaluation of catalyst for glycerol carbonate synthesis 6.4.1. Gas chromatography analysis of synthesized product glycerol carbonate 6.5 Detailed study of reaction mechanism in transesterification of glycerol 6.6. Optimization of reaction parameters 	118 120 121 - 122 122 123 124 - 125
 6.3.5 TEM analysis 6.3.6 Basicity 6.4 Evaluation of catalyst for glycerol carbonate synthesis 6.4.1. Gas chromatography analysis of synthesized product glycerol carbonate 6.5 Detailed study of reaction mechanism in transesterification of glycerol 6.6.0 ptimization of reaction parameters 6.6.1 Effect of reaction temperature 	118 120 121 - 122 122 123 124 - 125 124
 6.3.5 TEM analysis 6.3.6 Basicity 6.4 Evaluation of catalyst for glycerol carbonate synthesis 6.4.1. Gas chromatography analysis of synthesized product glycerol carbonate 6.5 Detailed study of reaction mechanism in transesterification of glycerol 6.6.0 ptimization of reaction parameters 6.6.1 Effect of reaction temperature 6.6.2 Effect of reaction time 	118 120 121 - 122 122 123 124 - 125 124 124
 6.3.5 TEM analysis 6.3.6 Basicity 6.4 Evaluation of catalyst for glycerol carbonate synthesis 6.4.1. Gas chromatography analysis of synthesized product glycerol carbonate 6.5 Detailed study of reaction mechanism in transesterification of glycerol 6.6.0 Optimization of reaction parameters 6.6.1 Effect of reaction temperature 6.6.2 Effect of reaction time 6.6.3 Effect of DMC to glycerol molar ratio 	118 120 121 - 122 122 123 124 - 125 124 124 124
 6.3.5 TEM analysis 6.3.6 Basicity 6.4 Evaluation of catalyst for glycerol carbonate synthesis 6.4.1. Gas chromatography analysis of synthesized product glycerol carbonate 6.5 Detailed study of reaction mechanism in transesterification of glycerol 6.6.0 ptimization of reaction parameters 6.6.1 Effect of reaction temperature 6.6.2 Effect of reaction time 	118 120 121 - 122 122 123 124 - 125 124 124

6.8. Conclusion	128
Chapter.7. Summary and future perspectives	129 - 134
7.1. Summary of the thesis7.2. Future scope of present work	129 -133 133 -134
References	135 – 164
Publications and Conferences	165 - 166

LIST OF FIGURES

	Page Nos.
Chapter 1. Background and Introduction	1 - 31
Figure 1.1 World energy consumption by end-use sector (quadrillion Btu).	2
Figure 1.2 Molecular structure of glycerol.	4
Figure 1.3 Various applications of glycerol.	5
Figure 1.4 Worldwide production of glycerol from biodiesel industries	7
Figure 1.5. Valorisation of glycerol to different value-added products.	9
Figure 1.6 Application of glycerol carbonate	16
Figure 1.7. Synthetic pathways for glycerol carbonate.	21
Figure 1.8. Reaction mechanism of glycerol carbonate synthesis.	30
Chapter 3. Synthesis of Li/TiO2 catalyst for the synthesis of biodiesel derived glycerol to glycerol carbonate	42 - 63
Figure 3.1 Synthesis of Li/TiO ₂ catalyst.	43
Figure 3.2 XRD patterns of (a) Pure TiO ₂ and TiO ₂ with different loading wt.% of LiOH (b) 25 wt.% LiOH loaded on TiO ₂ calcined at different calcination temperatures	45
Figure 3.3. TGA – DTA plot of 25 wt.% Li/TiO ₂ (without calcination).	46
Figure 3.4. XPS plots of (a) survey peak of synthesized 25 wt.% Li/TiO ₂ (b) Li (1s) spectra, (c) Ti spectra, (d) O (1s) spectra.	47
Figure 3.5. FT-IR spectra of TiO ₂ Pure, 5 wt.% Li/TiO ₂ , 25 wt.% Li/TiO ₂ .	49
Figure 3.6. FE-SEM images of (A) Pure TiO ₂ , (B) 25 wt.% Li/TiO ₂ calcined	51
at 650 °C, (C) Recycled 25 wt.% Li/TiO ₂ calcined at 650 °C, (D)	
25 wt.% Li/TiO ₂ calcined at 750 °C and (E) EDAX spectra of the synthesized 25 wt.% Li/TiO ₂ .	
Figure 3.7. HR-TEM images of synthesized 25 wt.% Li/TiO ₂	52
Figure 3.8. (a) ¹ H-NMR spectra of the synthesized glycerol carbonate	56
Figure 3.8 (b) ¹³ C-NMR of the synthesized glycerol carbonate.	56
 Figure 3.9. Effect of reaction parameters (a) Molar ratio (reaction conditions: catalyst dose = 5 wt.% with respect to glycerol used, reaction temperature = 90 °C, reaction time = 2 hrs), (b) Temperature (GLY: DMC = 1:3, catalyst dose = 5 wt.%, reaction time = 2 hrs), (c) Catalyst dose (reaction temperature = 90 °C, reaction time = 2 hrs, GLY: DMC = 1:3), (d) Reaction time (GLY: DMC = 1:3, catalyst dose = 5 wt.% reaction temperature = 90 °C). 	60
Figure 3.10. (a) XRD diagram of fresh catalyst, reused catalyst (without calcination), and reused catalyst (after calcination), (b) Reusability of as prepared 25 wt.% Li/TiO ₂ , (c) ICP-MS Analysis of fresh 25 wt.% Li/TiO ₂ catalyst and reused 25 wt.% Li/TiO ₂ .	61

Chapter 4. Synthesis of Na/TiO2 catalyst for the synthesis of biodiesel derived glycerol to glycerol carbonate	64 - 86
Figure 4.1 Synthesis of Na/TiO ₂	66
Figure 4.2 TGA – DSC plot of 10TNO (without calcination).	67
Figure 4.3 XRD patterns of (a) catalyst with varying Na concentration from 0 to 20 wt.% i.e., TiO ₂ , 5TNO, 10TNO, 20TNO (b) calcination temperature optimization of 10TNO.	69
Figure 4.4 XPS plots of synthesized 10TNO.	70
Figure 4.5 FT-IR spectra of TiO_2 , 5TNO, 10TNO, 20TNO.	71
Figure 4.6 HR-TEM micrographs of 10TNO (a) morphology, (b) HR image showing lattice planes corresponding to 10TNO (c) SAED pattern of 10TNO (d) Histogram showing average particle size and (e) elemental mapping of O, (f) elemental mapping of Na, (g) elemental mapping of Ti and, (h) EDX spectra of the synthesized 10TNO	73
Figure 4.7 (a) ^{1}H – NMR of synthesized glycerol carbonate	76
Figure 4.7 (b) ${}^{13}C$ – NMR of synthesized glycerol carbonate	77
 Figure 4.8 Influence of reaction parameters (a) Catalyst dose (reaction temperature = 90 °C, reaction time = 2 hrs, GLY: DMC = 1:2) (b) Molar ratio (reaction conditions: catalyst dose = 3 wt% with respect to glycerol used, reaction temperature = 90 °C, reaction time = 2 hrs), (c) Temperature (GLY:DMC = 1:2, catalyst dose = 3 wt%, reaction time = 2 hrs) (d) Reaction time (GLY:DMC = 1:2, catalyst dose = 3 wt% reaction temperature = 90 °C). 	81
Figure 4.9 (a) Reusability of the Na/TiO ₂ , (b) XRD diagram of reused catalyst	84
Chapter 5. Synthesis of Ni modified distillation waste derived	87 - 111
heterogeneous catalyst utilized to produce glycerol carbonate from a biodiesel by-product glycerol	
Figure 5.1 Flow chart for synthesis of Ni/CaO catalyst	88
Figure 5.2 TGA – DSC plot of NDW catalyst (without calcination).	89
Figure 5.3 XRD spectra of raw distillation waste (DW), calcined DW, NDW catalyst calcined at 700 °C, and NDW catalyst calcined at 900 °C respectively	91
Figure 5.4 FT-IR spectra of NDW synthesised by coprecipitation method, NDW calcined at 700 °C, NDW calcined at 900 °C, and NDW synthesised by hydrothermal method	92
Figure 5.5 XPS spectra of (a) Ca2p, (b) Ni2p, (c) O1s and (d) XPS survey spectra of all the elements present in NDW catalyst.	94
Figure 5.6 SEM images of NDW catalyst and EDAX spectra of NDW.	95
Figure 5.7 (a) HR-TEM micrographs of synthesised NDW catalyst; (b) Histogram showing average particle size	96

Figure 5.8 (a) ¹ H-NMR spectra of products, and (b) 13 C NMR spectra of	99
product.	
Figure 5.9 (a) HR-MS spectra before the reaction	100
Figure 5.9 (b) HR-MS spectra of components after the reaction.	100
 Figure 5.10 Effect of reaction parameters (a) Catalyst dose (reaction temperature = 90 °C, reaction time = 2 hrs, Gly:DMC = 1:2) (b) Temperature (Gly:DMC = 1:3, catalyst dose = 300 mg, reaction time = 2 hrs) (c) Molar ratio (reaction conditions: catalyst dose = 300 mg with respect to glycerol used, reaction temperature = 90 0C, reaction time = 2 hrs), (d) Reaction time (Gly:DMC = 1:2, catalyst dose = 300 mg, reaction temperature = 90 °C). Figure 5.11 (a) XPD diagram of reused NDW catalyst (b). Reusebility of 	105
Figure 5.11 (a) XRD diagram of reused NDW catalyst, (b). Reusability of the synthesized NDW catalyst.	108
Chapter 6. Synthesis of Mg/MnO2 and Mg/CuO catalyst and its	112 - 128
application in glycerol carbonate synthesis.	
Figure 6.1. TGA-DSC of (a) CMO and (b) MMO.	114
	114 115
Figure 6.1. TGA-DSC of (a) CMO and (b) MMO.	
Figure 6.1. TGA-DSC of (a) CMO and (b) MMO. Figure 6.2. XRD patterns of MMO and CMO.	115
Figure 6.1. TGA-DSC of (a) CMO and (b) MMO. Figure 6.2. XRD patterns of MMO and CMO. Figure 6.3 (A). XPS Spectra of MMO	115 116
Figure 6.1. TGA-DSC of (a) CMO and (b) MMO. Figure 6.2. XRD patterns of MMO and CMO. Figure 6.3 (A). XPS Spectra of MMO Figure 6.3 (B). XPS Spectra of CMO	115 116 117
Figure 6.1. TGA-DSC of (a) CMO and (b) MMO. Figure 6.2. XRD patterns of MMO and CMO. Figure 6.3 (A). XPS Spectra of MMO Figure 6.3 (B). XPS Spectra of CMO Figure 6.4. FT-IR spectra of MMO and CMO respectively.	115 116 117 118
Figure 6.1. TGA-DSC of (a) CMO and (b) MMO. Figure 6.2. XRD patterns of MMO and CMO. Figure 6.3 (A). XPS Spectra of MMO Figure 6.3 (B). XPS Spectra of CMO Figure 6.4. FT-IR spectra of MMO and CMO respectively. Figure 6.5 (A) TEM micrographs of MMO.	115 116 117 118 119
 Figure 6.1. TGA-DSC of (a) CMO and (b) MMO. Figure 6.2. XRD patterns of MMO and CMO. Figure 6.3 (A). XPS Spectra of MMO Figure 6.3 (B). XPS Spectra of CMO Figure 6.4. FT-IR spectra of MMO and CMO respectively. Figure 6.5 (A) TEM micrographs of MMO. Figure 6.5 (B). TEM micrographs of CMO. Figure 6.6. Gas Chromatography analysis of synthesized product glycerol 	115 116 117 118 119 119

LIST OF SCHEMES

Scheme 3.1. Transesterification reaction of Gly with DMC	51
Scheme 3.2. Proposed reaction mechanism for the role of 25 wt.% Li/TiO ₂ for the	57
transesterification of glycerol with DMC.	
Scheme 4.1. Transesterification reaction of Glycerol with DMC	78
Scheme 4.2. Proposed reaction mechanism for the role of 10TNO during	78
transesterification of glycerol with DMC.	
Scheme 5.1. Proposed reaction mechanism presenting the role of NDW catalyst in	101
transesterification reaction.	

LIST OF TABLES

Chapter 1

Ē

Table 1.1 Basic characteristics of Glycerol.	6
Table 1.2 Physical property of glycerol carbonate.	16
Chapter 3	
Table 3.1. Basic amount and surface properties of the as synthesized catalyst. Table 3.2. Screening of catalyst and effect of calcination temperature for synthesis of Glycerol Carbonate. Table 3.3. Comparison of synthesized 25 wt.% Li/TiO ₂ catalyst with previous reports.	48 53 62
Chapter 4	
Table 4.1. Screening of catalyst and effect of calcination temperature for synthesis of glycerol carbonate. Table 4.2. Comparison of catalytic activity of synthesized Na ₂ Ti ₆ O ₁₃ with various	75 85
reported heterogeneous catalysts for glycerol transesterification with DMC.	
Chapter 5	
Table 5.1: Effect of pretreatment on reusability of the catalyst. Table 5.2. Comparison study of synthesised NDW catalyst with the previous reports.	108 110
Chapter 6	
Table 6.1. Basicity correlation with conversion and yield of the synthesized MMO	121

and CMO.

Å	Angstrom
eV	Electron volt
FT-IR	Fourier transform infrared
GC	Gas Chromatography
GC-MS	Gas chromatography-mass spectrometry
NMR	Nuclear magnetic resonance
IEA	International Energy Agency
JCPDS	Joint Committee on Powder Diffraction Standards
Gly	Glycerol
GlyC	Glycerol carbonate
DMC	Dimethyl carbonate
EIA	Energy Information Administration
FAME	Fatty acid methyl ester
FFA	Free fatty acid
Kg	Kilogram
KJ/mol	Kilojoule per mole
kV	Kilovolt
nm	Nanometre
mmol/g	Millimole per gram
Ν	Stoichiometric factor
Т	Temperature
°C	Degree Celsius
Κ	Kelvin
λ	Lambda
mM	Micrometre
pH	Potential of hydrogen
XRD	X-ray diffraction
TGA	Thermogravimetric analysis
SEM	Scanning electron microscopy
EDX	Energy dispersive X-ray analysis
XPS	X-ray photo electron spectroscopy
BET	Brunauer-Emmett-Teller
BJH	Barrett-Joyner-Halenda
рКа	Dissociation constant of acid

List of Abbreviations

Preface

Starting from powering engines to lighting the lamps, fossil fuels have become indispensable part of human life. The use of biofuels like ethanol, butanol and biodiesel as an energy alternative has become a hot topic within the scientific community as it augments in cutting down the greenhouse gas exhausts concurrently providing energy security for the future generations. According to World Bioenergy Association, Europe, United States and Asia are principal producers of liquid biodiesel. Biodiesel is fatty acid methyl esters (FAME) produced from transesterification reaction of oil, algae or animal derived triglycerides and a monohydric alcohol. However, the production cost of biodiesel is relatively high and leads to co-generation of a major co-product 'glycerol' (10 wt.% of total produce). Glycerol is cheap and highly reactive triol which makes it a potential green platform chemical for the synthesis of broad spectrum value added products. Proper utilization of surplus glycerol is a promising transformation as a small portion of it has direct commercial applications, hence exploration of a smart, sustainable, and profitable way of glycerol conversion to value added downstream products like 1,2 or 1,3 diols, dihydroxy acetone, ethylene glycol, mono/di/tri glycerol ethers, hydrogen, glycerol carbonate etc. is vital. Over the recent years, catalytic conversion of glycerol into cyclic carbonate of glycerol i.e., glycerol carbonate (GlyC) has increased tremendously due to its unique properties like biodegradability, water solubility, low toxicity, and low volatility. These properties of glycerol carbonate are used in beauty and personal care industries, as carrier solvents in pharmaceutical industries, surfactants, carrier in lithium-ion batteries, component in `membranes for gas separation equipment. Most importantly, the presence of both carbonyl and hydroxyl functionalities makes GlyC a precursor for synthesis of a variety of polymers including polyesters, polyurethanes, and polycarbonates. The conventional synthesis of glycerol carbonate can be carried out through different pathways depending on the carbonyl source in feed which may include phosgene, urea, carbon monoxide

(CO) and carbon dioxide (CO₂). But these routes have certain drawbacks like in glycerolysis using urea feed requires continuous removal of ammonia from the reaction system and the formation of isocyanic acid, biuret decreases the rate of GlyC formation and makes the process less desirable. In glycerol carboxylation using CO₂ requires high pressure and temperature conditions but provides very low glycerol carbonate yield which greatly increases the production costs. Direct synthesis of glycerol carbonate through transesterification of glycerol and dimethyl carbonate is considered to be the best green pathway as it involves no side reactions, no by-products and the reaction proceeds in equimolar ratios, easy separation of catalyst, etc. The transesterification reaction is catalysed by catalyst having appreciable number of active basic sites for the activation of a glycerol molecule. The activated glycerol undergoes nucleophilic addition reaction with activated dimethyl carbonate to give a molecule of glycerol carbonate. Using a suitable catalyst under optimal conditions, for the transesterification process boosts up the yield of desired GlyC by chemically activating the reactant species and increasing the reaction rates. Homogeneous bases like potassium (K), sodium (Na) or calcium-based carbonates, alkoxides, hydroxides, and organic ionic liquids (ILs) have already been used for the transesterification process. The major drawbacks of using such homogenous catalysts are the difficult separation procedure after the reaction and leaching of the catalyst contents during the reaction process. Hence, the use of such catalysts is discouraged. Lately, the use of solid base heterogeneous catalyst has gained much prevalence. Literature showed successful application of mixed metal oxides as effective heterogeneous catalysts for transesterification. Mainly, both alkali and alkaline earth metal oxides are highly basic in nature and influence the transesterification reaction of glycerol. As a results investigations were carried out on influence of alkaline earth metal oxides on transesterification reaction of glycerol on the basis of catalyst concentration, reaction temperature, reaction time, glycerol to DMC molar ratios.

This thesis includes study on synthesis of Transition metal based heterogeneous catalysts and their application in synthesis of glycerol carbonate, physicochemical properties study of designed catalyst, optimization study of entire reaction process, both qualitative and quantitative study of glycerol carbonate and reusability study of catalyst.