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Abstract
In this paper, we introduce the concept of the α-fractal function and fractal approxi-
mation for a set-valued continuous map defined on a closed and bounded interval of
real numbers. Also, we study some properties of such fractal functions. Further, we
estimate the perturbation error between the given continuous function and its α-fractal
function. Additionally, we define a new graph of a set-valued function different from
the standard graph introduced in the literature and establish some bounds on the fractal
dimension of the newly defined graph of some special classes of set-valued functions.
Also, we explain the need to define this new graph with examples. In the sequel, we
prove that this new graph of an α-fractal function is an attractor of an iterated function
system.
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Constructive Approximation

1 Introduction

Approximation theory has gained appreciable attention in the literature. Fractal the-
ory embraced the approximation theory in 1986 by Barnsley [6] through his paper
“Fractal functions and interpolations”. Following this pioneering work of Barnsley,
Navascués [22, 24] studied a parameterized class of fractal interpolation function,
known as α-fractal function, associated with the continuous function defined on a real
compact interval. After that, several theories have been developed concerning fractal
interpolation functions. For example, in [17, 36] concept of α-fractal function has been
studied, and in [7, 11, 20, 25], a generalized Cr fractal interpolation function has been
studied.

In this paper, we have extended the notion of α-fractal function in the case of set-
valued maps. The significance of set-valued maps can be found in many essential
areas, such as optimization theory, game theory, control theory, etc. One may refer
[3] to understand the properties and nature of set-valued maps. The algebra of sets
is different from this of numbers. There are different types of sums have been given
for sets. For instance, in [2], the binary metric average of sets is defined. In [13], the
Minkowski sum of two sets is used, and in [9], the notion of the sum specified in
[2] has been extended, which is known as a metric linear combination of sets. In this
paper, we have taken the Minkowski sum of sets.

Approximation of set-valued maps is one of the celebrated topics in the literature.
Several theories have been given regarding the classical approximation of set-valued
maps. See, for instance, [18] where the notion of univariate data interpolation func-
tion has been given. Initially, approximation theory mainly focused on set-valued
maps with convex images, known as convex set-valued maps. For example, in [37],
Vitale explored the approximation of convex set-valued maps with set-valued Bern-
stein polynomials. One may refer [4, 10, 13] for more research on the approximation
of convex set-valued maps. The Minkowski sum of the two sets has been taken in all
those researches. In [2], Arstein studied the approximation of set-valued maps having
compact images, known as compact set-valued maps. Instead of Minkowski’s sum of
sets, he used the set of a sum of special pairs of elements, later known as “metric pairs”.
One may refer [9, 14] for more research on the approximation of compact set-valued
maps. In this paper, we have studied the fractal approximation of set-valued maps.

Like fractal approximation, estimating the fractal dimension is also a fascinating
area in fractal theory. It provides the statistical ratio of complexity with the details
of how a fractal pattern changes with the scale it is measured. Several notions of
fractal dimension have been introduced so far in the literature. For example, Hausdorff
dimension, box dimension, packing dimension [7, 15, 20], etc. In this paper, we have
worked on Hausdorff and box dimensions.

1.1 Motivation andWork Done

The concept of α-fractal function, fractal approximation, and fractal dimension have
been studied for different types of single-valued maps. For instance, in [17, 24] α-
fractal function for univariate single-valuedmaps and fractal dimension of the graph of
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some classes of univariate single-valued maps have been discussed. In [36], α-fractal
function and dimensional results for bivariate single-valued maps have been explored.
In [27, 28], the existence ofα-fractal function corresponding to continuousmultivariate
functions is given. Agrawal et al.,[1] worked on the L p approximation using fractal
functions on the Sierpiński gasket. Sahu and Priyadarshi [30] have studied the box
dimension of the graph of a harmonic function on the Sierpiński gasket. Persuaded
by these researches, we have extended the classical approximation of set-valued maps
to the fractal approximation of set-valued maps. We have introduced the notion of
α-fractal function for set-valued maps. Still, unlike in the case of single-valued maps,
we noticed that, in general, the set-valued α-fractal function is not interpolatory in
nature. Further, we have worked on estimating the fractal dimension of the graph of
some special classes of set-valued maps.

1.2 Delineation

The proposed paper is assembled as follows. The next section is reserved for notations
and preliminaries required for our study. Section3 is devoted to the development of
fractal functions and to explore their properties. In Sect. 4, we have studied the fractal
approximations and constrained approximations of the set-valued map. Further, in
Sect. 5, we have defined a new definition of the graph of set-valued maps and provided
some dimensional results for this new graph. Also, we have explained the need to
define this new graph. Moreover, we proved that there exists an iterated function
system whose attractor is this new graph of the set-valued α-fractal function. We have
concluded our paper in Sect. 6.

2 Notations and Preliminaries

The following are the notations that we have used in our paper:

• N: Collection of all natural numbers
• R: Collection of all real numbers
• I : Closed and bounded interval of R
• K(R) = {A ⊂ R : A is a compact subset of R}
• Kc(R) = {A ∈ K(R) : A is a convex subset of R}
• Hd(A, B) = max

{
sup
a∈A

inf
b∈B|a − b|, sup

b∈B
inf
a∈A

|b − a|
}

be the metric defined on

K(R). It is broadly known as the Hausdorff metric
• C(I ,K(R)): Collection of all the continuous maps from I to K(R)

• Li p(I ,K(R)): Collection of all the Lipschitz maps from I to K(R)

• σ -HC: Collection of all theHölder continuousmaps from I toK(R)with exponent
σ .

Definition 1 [15] Let V ⊆ R be a subset of R, then the diameter of V is defined as

|V | = sup {|u − w| : u, w ∈ V } .
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Let E ⊂ R be a subset of R. A countable collection (or finite) of sets, Vi is said to be
η-cover of E if it satisfies

E ⊆
⋃
i

Vi such that |Vi | ≤ η for all i .

Definition 2 [15] For a non-negative number t and η > 0, define

Ht
η(E) = inf

{ ∞∑
i=1

|Vi |t : {Vi } is a η-cover of E

}
.

Then, t-dimensional Hausdorff measure of E is defined as

Ht (E) = lim
η→0

Ht
η(E).

Definition 3 [15] Consider E ⊆ R and t ≥ 0. The Hausdorff dimension of E is
defined as,

dimH (E) = sup{t : Ht (E) = ∞} = inf
{
t : Ht (E) = 0}.

Definition 4 [15] Assume E be a non-empty and bounded subset of R and Nη(E) be
the lowest count of sets having at most η diameter, which can cover E . The upper box
dimension and lower box dimension of E are defined as

dimB(E) = lim
η→0

log Nη(E)

− log η
and dimB(E) = lim

η→0

log Nη(E)

− log η
, respectively .

If dimB(E) = dimB(E), then it is called as the box dimension of E , and it is defined

as, dimB(E) = limη→0
log Nη(E)

− log η
.

Definition 5 [3] Let X and Y be metric spaces and F : X ⇒ Y be a set-valued map
from X to Y , then the graph of F is defined as,

GF = {(u, w) ∈ X × Y : w ∈ F(u)}. (1)

F(u) is the image (or) the value of F at u. If there is at least one element u ∈ X such
that F(u) is non-empty, then F is considered nontrivial. If F(u) is non-empty for each
u ∈ X , then F is known to be strict. The domain and range of F are defined as

Dom(F) := {u ∈ X : F(u) 	= ∅} and Im(F) :=
⋃
u∈X

F(u), respectively.

Definition 6 Let F,G : I ⇒ R be set-valued maps. Then, F ≤ G if and only if
F(u) ⊆ G(u) for all u ∈ I .
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Remark 1 If F(u) is closed (convex, compact, bounded), then F is said to be closed
(convex, compact, bounded).

Definition 7 [3] Let F : X ⇒ Y be a set-valued mapping and u ∈ Dom(F) such that
for every neighborhood U of F(u),

there exists η > 0 such that F(u′) ⊂ U for all u′ ∈ BX (u, η). (2)

Then, F is characterized as upper semicontinuous at u. If it satisfies (2) for each
u ∈ Dom(F), then F is known as an upper semicontinuous function.

If for every w ∈ F(u) and every sequence {un} ⊂ Dom(F) converges to u, there
exists a sequence of elements wn ∈ F(un) converges to w, then F is characterized as
lower semicontinuous at u. If it is lower semicontinuous at each u ∈ Dom(F), then
F is said to be the lower semicontinuous function.

Lemma 1 [3] A set-valued map F is said to be convex if and only if for all u1, u2 ∈
Dom(F), λ ∈ [0, 1], we have

λF(u1) + (1 − λ)F(u2) ⊂ F (λu1 + (1 − λ)u2) .

Definition 8 [7] Consider (X , d) be a complete metric space and K(X) be the collec-
tion of all non-empty compact subsets of X and Hd be the Hausdorff metric defined
on K(X) and m be a positive integer such that wi : X → X be a contraction map
for each i ∈ {1, . . . ,m}, then the system {(X , d) : w1, . . . , wm} is known as Iterated
Function System (IFS).

In theDefinition 8, IFS satisfies the Banach contraction principle. One can construct
the fractal using those IFSs, which satisfies other contractions. For instance, in [29],
the construction of fractal using φ-contraction has been introduced.

Definition 9 [5] An IFS,
{
(X , d) : ω1, . . . ωm

}
is said to satisfy Open Set Condition

(OSC), if there exists a non-empty open set V ⊂ R such that

m⋃
i=1

ωi (V ) ⊂ V such that ωi (V ) ∩ ω j (V ) = ∅ for i 	= j .

Moreover, if A is an attractor of IFS such that V ∩ A 	= ∅, then the IFS is said to
satisfy the Strong Open Set Condition (SOSC).

3 Fractal Functions in C(I,K(R))

We know that space C(I ,K(R)) when endowed with metric dC is a complete metric
space, where

dC(F,G) = ‖F − G‖∞ = sup
u∈I

Hd(F(u),G(u)).
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Note 1 [16, Proposition 1.17] Recall some properties of the Hausdorff metric as fol-
lows.

1. Let X be a normed space. Then, For B,C, D, E ∈ K(X), we have

Hd(B + C, D + E) ≤ Hd(B, D) + Hd(C, E),

where Y + Z := {y+ z : y ∈ Y ∈ K(X), z ∈ Z ∈ K(X)} is known as Minkowski
sum of Y and Z .

2. For any λ ∈ R, Hd(λB, λD) = |λ|Hd(B, D).

Theorem 1 Assume F ∈ C(I ,K(R)). Let Δ := {(u1, . . . , uN ) : u1 < · · · < uN } be
a given data point such that it forms a partition of I , and let In = [un, un+1]. Let
Ln : I → In be contractive homeomorphism such that Ln(u1) = un and Ln(uN ) =
un+1 or Ln(u1) = un+1 and Ln(uN ) = un. Further, assume that the base function
S ∈ C(I ,K(R)) satisfies

S(u1) − F(u1) = S(uN ) − F(uN ),

where Y−Z = {y − z : y ∈ Y ∈ K(R) and z ∈ Z ∈ K(R)} and scaling factorα ∈ R.

If |α| < 1, then there exists a unique function Fα
Δ,S ∈ C(I ,K(R)) satisfying the

following self-referential equation

Fα
Δ,S(u) = F(u) + α[Fα

Δ,S(L
−1
n (u)) − S(L−1

n (u))] for every u ∈ In, (3)

where n ∈ J = {1, . . . , N − 1}.
Proof Let CF (I ,K(R)) = {G ∈ C(I ,K(R)) : G(u1) − S(u1) = G(uN ) − S(uN )}.
It is elementary to observe that CF (I ,K(R)) is a closed subset of C(I ,K(R)), hence
(CF (I ,K(R)), dC) is a complete metric space. DefineRead-Bajraktarević (RB) oper-
ator Φ : CF (I ,K(R)) → CF (I ,K(R)) by

(ΦG)(u) = F(u) + α[G(L−1
n (u)) − S(L−1

n (u))]

for every u ∈ In and n ∈ J . Well-definedness of Φ can be observed using the
assumptions we have taken for F, S, and α. With the reference to Note 1, we get

Hd((ΦG)(u), (ΦH)(u)) = Hd

(
F(u) + α[G(L−1

n (u)) − S(L−1
n (u))], F(u)

+ α[H(L−1
n (u)) − S(L−1

n (u))]
)

≤ Hd

(
αG(L−1

n (u)), αH(L−1
n (u))

)

= |α|Hd

(
G(L−1

n (u)), H(L−1
n (u))

)
≤ |α| sup

u∈I
Hd(G(u), H(u))

= |α|‖G − H‖∞.
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Since |α|‖G − H‖∞ is independent of u, hence we have

‖ΦG − ΦH‖∞ ≤ |α|‖G − H‖∞.

Because |α| < 1, Φ is a contraction on C(I ,K(R)). Hence, Φ has a fixed point
in C(I ,K(R)). Let Fα

Δ,S be that fixed point, and then it satisfies the self-referential
equation,

Fα
Δ,S(u) = F(u) + α[Fα

Δ,S(L
−1
n (u)) − S(L−1

n (u))]

for every u ∈ In and n ∈ J . ��
Note 2 Throughout the paper,

– we denote Fα
Δ,S as F

α if there is no ambiguity.
– we take Δ, S, and J as the same as it is in Theorem 1, unless specified.
– we have used the set difference as follows

Y − Z = {y − z : y ∈ Y ∈ K(R) and z ∈ Z ∈ K(R)} .

Remark 2 In the context of (3), we get

Fα(ui ) = F(ui ) + αFα(u1) − αS(u1) = F(ui ) + αFα(uN ) − αS(uN ) for every ui ∈ Δ,

where i = 1, . . . , N . Further, if Fα and S are single-valued at the end points such
that Fα(u1) − S(u1) = Fα(uN ) − S(uN ) = {0}, then Fα(ui ) = F(ui ) for each
i = 1, . . . , N , this implies that Fα is a set-valued fractal interpolation function.

Note 3 The above remark hints at the following: in case F and S are single-valued at
the end points such that F(u1) − S(u1) = F(uN ) − S(uN ) = {0}, then the set

CF (I ,K(R)) =
{
G ∈ C(I ,K(R)) : G(u1) − S(u1) = G(uN ) − S(uN ) = {0}

}

is a complete metric space, and the RB operator Φ : CF (I ,K(R)) → CF (I ,K(R)) as
defined in Theorem 1 is well-defined and a contraction mapping. Therefore, we have
a unique fixed point Fα of Φ satisfying Fα(ui ) = F(ui ) for all i = 1, . . . , N , this
shows that Fα is a set-valued fractal interpolation function.

Here we give some examples of base functions S ∈ C(I ,K(R)) satisfying S(u1)−
F(u1) = S(uN ) − F(uN ) :
(i). S(u) = F(t(u))+ (u−u1)(F(u1)− F(u1)+ (uN −u)(F(uN )− F(uN )), where

t : I → I be a continuous function which satisfies t(u1) = u1, t(uN ) = uN .

(ii). S(u) = t(u)F(u)+(u−u1)(F(u1)−F(u1)+(uN −u)(F(uN )−F(uN )), where
t : I → R be a continuous function which satisfies t(u1) = 1 and t(uN ) = 1.
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The Hölder space is defined as follows:

HCσ (I ,Kc(R)) := {G : I → Kc(R) : G ∈ σ -HC},

Let us recall [21] that if we endow the space HCσ (I ,Kc(R)) with metric

H (1)
σ (G, H) = sup

u∈I
Hd(G(u), H(u)) + sup

u,w∈I
Hd

(
G(u) + H(w), H(u) + G(w)

)
|u − w|σ .

Then, by [21, Proposition 1], it forms a complete metric space.

Note 4 Throughout the paper, unless specified, take Ln : I → In as affine maps, such
that Ln(u) = anu + bn for all n ∈ J , where an = un+1−un

uN−u1
and bn = unuN−u1un+1

uN−u1
.

Theorem 2 Consider F, S ∈ HCσ (I ,Kc(R)) such that S(u1) − F(u1) = S(uN ) −
F(uN ), and let α ∈ (−1, 1). Then, Fα ∈ σ -HC provided (N−1)|α|

aσ < 1, where
a := min{a j : j ∈ J }.
Proof ConsiderHCσ

F (I ,Kc(R)) = {G ∈ HCσ (I ,Kc(R)) : G(u1)−S(u1) = G(uN )−
S(uN )}. It is easy to notice thatHCσ

F (I ,Kc(R)) is a closed subset ofHCσ (I ,Kc(R)),

and hence complete with respect to themetric H (1)
σ . Define amapΦ : HCσ

F (I ,Kc(R))

→ HCσ
F (I ,Kc(R)) as

(ΦG)(u) = F(u) + α (G − S)(L−1
j (u))

for each u ∈ I j , where j ∈ J . Clearly, Φ is well-defined. Now for G, H ∈
HCσ

F (I ,Kc(R)), we have

H (1)
σ (Φ(G), Φ(H)) ≤ sup

u∈I
Hd (Φ(G)(u), Φ(H)(u))

+(N − 1)max
j∈J

sup
u 	=w,u,w∈I j

Hd
(
Φ(G)(u) + Φ(H)(w), Φ(H)(u) + Φ(G)(w)

)
|u − w|σ

≤ |α| sup
u∈I

Hd (G(u), H(u))

+(N − 1)max
j∈J

sup
u 	=w,u,w∈I j

Hd

(
αG(L−1

j (u)) + αH(L−1
j (w)), αH(L−1

j (u)) + αG(L−1
j (w))

)
|u − w|σ

≤ |α| sup
u∈I

Hd (G(u), H(u))

+(N − 1)|α|max
j∈J

sup
u 	=w,u,w∈I j

Hd

(
G(L−1

j (u)) + H(L−1
j (w)), H(L−1

j (u)) + G(L−1
j (w))

)

|a j |σ |L−1
j (u) − L−1

j (w)|σ
≤ |α| sup

u∈I
Hd (G(u), H(u))

+ (N − 1)|α|
aσ

max
j∈J

sup
u 	=w,u,w∈I j

Hd

(
G(L−1

j (u)) + H(L−1
j (w)), H(L−1

j (u)) + G(L−1
j (w))

)

|L−1
j (u) − L−1

j (w)|σ
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≤ (N − 1)|α|
aσ

⎡
⎣sup

u∈I
Hd (G(u), H(u)) + sup

u 	=w,u,w∈I

Hd

(
G(u) + H(w), H(u) + G(w)

)
|u − w|σ

⎤
⎦

≤ (N − 1)|α|
aσ

H (1)
σ (G, H).

Since (N−1)|α|
aσ < 1, which implies Φ is a contraction map on HCσ

F (I ,Kc(R)). Now,
the Banach contraction principle ensures that a unique fixed point of Φ exists. This
completes the proof. ��
Definition 10 Assume F : I → K(R) be a set-valued map. For every partition P :=
{(t0, . . . , tm) : t0 < · · · < tm} of I , define

V (F, I ) = sup
P

m∑
i=1

Hd(F(ti ), F(ti−1)),

where the supremum runs over all partitions, P of I .
We set ‖F‖BV := ‖F‖∞ + V (F, I ), where ‖F‖∞ := sup

u∈I
‖F(u)‖ = sup

u∈I
Hd(F(u),

{0}). Then, F will be characterized as a bounded variation function if ‖F‖BV < ∞.
BV(I ,K(R)) will be denoted as the collection of all bounded variation functions on
I .

Remark 3 It is interesting to write the following small observation: define functions

F, T : [0, 1] → K(R) as follows F(x) =
{
sin

( 1
x

)
, when x 	= 0

0, otherwise
and T (x) =

[−1, 1]. Here F(x) ⊂ T (x) for each x ∈ [0, 1], such that T ∈ BV(I ,K(R)) while
F /∈ BV(I ,K(R)). This example shows that for set-valuedmappings satisfying F ≤ T
does not imply ‖F‖BV ≤ ‖T ‖BV .

As a prelude to our next result, we note the following lemma.

Lemma 2 Consider {Fn} is a sequence of set-valued continuousmaps which uniformly
converges to F : I → K(R). Then, for a given partition P = {(y0, . . . , ym) : y0 <

· · · < ym} of I , we have
m∑
i=1

Hd(Fn(yi ), Fn(yi−1)) →
m∑
i=1

Hd(F(yi ), F(yi−1)).

Moreover,

sup
P

m∑
i=1

Hd(F(yi ), F(yi−1)) ≤ lim inf
n→∞ sup

P

m∑
i=1

Hd(Fn(yi ), Fn(yi−1)).
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Proof Let P = {(y0, . . . , ym) : y0 < · · · < ym} be a partition of I . The uniform
convergence of {Fn} implies

lim
n→∞

m∑
i=1

Hd(Fn(yi ), Fn(yi−1)) =
m∑
i=1

Hd(F(yi ), F(yi−1)).

Now for a given partition P = {(y0, . . . , ym) : y0 < · · · < ym} of I , we get
m∑
i=1

Hd(F(yi ), F(yi−1)) =
m∑
i=1

Hd( lim
n→∞ Fn(yi ), lim

n→∞ Fn(yi−1))

= lim
n→∞

m∑
i=1

Hd(Fn(yi ), Fn(yi−1))

≤ lim inf
n→∞ sup

P

m∑
i=1

Hd(Fn(yi ), Fn(yi−1)),

completing the proof. ��

Theorem 3 The space
(
BV(I ,Kc(R)), HBV

)
is a complete metric space, where

HBV (G, H) := ‖G − H‖∞ + sup
P

m∑
i=1

Hd

(
G(yi ) + H(yi−1), H(yi ) + G(yi−1)

)
.

Proof Assume that {Fn} is a Cauchy sequence in BV(I ,Kc(R)) with respect to HBV .

Equivalently, for ε > 0, there exists n0 ∈ N such that

HBV (Fn, Fk) < ε for all n, k ≥ n0.

Using the definition of HBV , we obtain ‖Fn − Fk‖∞ < ε for all n, k ≥ n0. Since
(C(I ,Kc(R)), ‖.‖∞) is a complete metric space, there exists a continuous function
F with ‖Fn − F‖∞ → 0 as n → ∞. We claim that F ∈ BV(I ,Kc(R)) and
HBV (Fn, F) → 0 as n → ∞. Let P = {(y0, . . . , ym) : y0 < · · · < ym} be a
partition of I and n ≥ n0. From the reference to Lemma 2, we get

HBV (Fn, F) = ‖Fn − F‖∞ +
m∑
i=1

Hd

(
Fn(yi ) + F(yi−1), F(yi ) + Fn(yi−1)

)

= lim
k→∞

(
‖Fn − Fk‖∞ +

m∑
i=1

Hd

(
Fn(yi ) + Fk(yi−1), Fk(yi ) + Fn(yi−1)

))

≤ lim
k→∞

(
‖Fn − Fk‖∞ + sup

P

m∑
i=1

Hd

(
Fn(yi ) + Fk(yi−1), Fk(yi ) + Fn(yi−1)

))
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≤ sup
k≥n0

(
‖Fn − Fk‖∞ + sup

P

m∑
i=1

Hd

(
Fn(yi ) + Fk(yi−1), Fk(yi ) + Fn(yi−1)

))

≤ sup
k≥n0

HBV (Fn, Fk) < ε.

Since P was arbitrary, therefore we have HBV (Fn, F) < ε for all n ≥ n0.
It remains to show that F ∈ BV(I ,Kc(R)). Now by using Hd(B + D,C + D) =
Hd(B,C) for every B,C, D ∈ Kc(R) (see, for instance, [16]), we have

m∑
i=1

Hd(F(yi ), F(yi−1)) =
m∑
i=1

Hd(F(yi ) + Fn(yi−1), F(yi−1) + Fn(yi−1))

≤
m∑
i=1

Hd(F(yi ) + Fn(yi−1), F(yi−1) + Fn(yi ))

+
m∑
i=1

Hd(Fn(yi ) + F(yi−1), F(yi−1) + Fn(yi−1))

≤
m∑
i=1

Hd(F(yi ) + Fn(yi−1), F(yi−1) + Fn(yi ))

+
m∑
i=1

Hd(Fn(yi ), Fn(yi−1)) ≤ HBV (Fn, F) + ‖Fn‖BV .

Since HBV (Fn, F) < ε and Fn ∈ BV(I ,Kc(R)), the above inequality yields that
F ∈ BV(I ,Kc(R)). This completes the proof. ��
Theorem 4 Consider F ∈ BV(I ,Kc(R)), Δ as defined in Theorem 1, S ∈
BV(I ,Kc(R)) such that S(u1) − F(u1) = S(uN ) − F(uN ), and α ∈ (−1, 1) with
|α| < 1

N−1 . Then, α-fractal function, F
α corresponding to F is of bounded variation

on I .

Proof ConsiderBV∗(I ,Kc(R)) = {G ∈ BV(I ,Kc(R)) : G(u1)−S(u1) = G(uN )−
S(uN )}. It is easy to prove that BV∗(I ,Kc(R)) is a closed subset of BV(I ,Kc(R)),

hence completewith respect tometricHBV .DefineRBoperatorΦ : BV∗(I ,Kc(R)) →
BV∗(I ,Kc(R)) by

(ΦG)(u) = F(u) + α
[
G

(
L−1
j (u)

) − S
(
L−1
j (u)

)]

for each u ∈ I j and j ∈ J . It is easy to observe the well-definedness ofΦ. Form ∈ N,

assume P j = {(t j0 , . . . , t jm) : t j0 < · · · < t jm} is a partition of I j and j ∈ J . For
i ∈ {1, . . . ,m}, we have

Hd

(
Φ(G)(t ji ) + Φ(H)(t ji−1),Φ(H)(t ji ) + Φ(G)(t ji−1)

)

≤ Hd

(
αG

(
L−1
j (t ji )

) + αH
(
L−1
j (t ji−1)

)
, αH

(
L−1
j (t ji )

) + αG
(
L−1
j (t ji−1)

))
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≤ |α|Hd

(
G

(
L−1
j (t ji )

) + H
(
L−1
j (t ji−1)

)
, H

(
L−1
j (t ji )

) + G
(
L−1
j (t ji−1)

))
.

Summing over i = 1 to m, we have

m∑
i=1

Hd

(
Φ(G)(t ji ) + Φ(H)(t ji−1),Φ(H)(t ji ) + Φ(G)(t ji−1)

)

≤ |α|
m∑
i=1

Hd

(
G

(
L−1
j (t ji )

) + H
(
L−1
j (t ji−1)

)
, H

(
L−1
j (t ji )

) + G
(
L−1
j (t ji−1)

))

≤ |α| sup
P

m∑
i=1

Hd

(
G(ti ) + H(ti−1), H(ti ) + G(ti−1)

)
,

since P := {(L−1
j (t j0 ), . . . , L−1

j (t jm)) : L−1
j (t j0 ) < · · · < L−1

j (t jm)} is a partition of
I (without loss of generality), and the supremum is taken over all partitions P =
{(t0, . . . , tm) : t0 < · · · < tm} of I . The above inequality is true for any partition P j

of I j . Hence, we get

HBV (Φ(G),Φ(H)) = sup
u∈I

Hd(Φ(G)(u),Φ(H)(u))

+ sup
P

m∑
i=1

Hd

(
ΦG(ti ) + ΦH(ti−1),ΦH(ti ) + ΦG(ti−1)

)

≤ |α| sup
u∈I

Hd(G(u), H(u))

+ max
j∈J

sup
P j

m∑
i=1

Hd

(
Φ(G)(t ji ) + Φ(H)(t ji−1),

Φ(H)(t ji ) + Φ(G)(t ji−1)
)

≤ |α| sup
u∈I

Hd(G(u), H(u))

+ (N − 1)|α| sup
P

m∑
i=1

Hd

(
G(ti ) + H(ti−1), H(ti ) + G(ti−1)

)

≤ (N − 1)|α|HBV (G, H).

As |α| < 1
N−1 , Φ is a contraction map. Then, the Banach fixed point theorem ensures

that Φ has a unique fixed point, say Fα . Further, this fixed point will satisfy the
following self-referential equation,

Fα(u) = F(u) + α
[
Fα

(
L−1
j (u)

) − S
(
L−1
j (u)

)]
for each u ∈ I j , where j ∈ J .

��
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Notice that function Fα is a parametric function depending on parameters, the
base function S, scaling function α, partition Δ, and the function F itself. To observe
collective behavior of Fα depending on some such parameters, we define a set-valued
map, Fα

S : C(I ,K(R)) → C(I ,K(R)) such that

Fα
S (F) = Fα, where α ∈ (−1, 1). (4)

This map is known as a fractal operator.

Remark 4 The notion of the fractal operator has already been studied extensively for
single-valued maps. See, for instance, in [22, 24] fractal operator has been defined
for univariate single-valued maps. In [35], the fractal operator for bivariate single-
valued maps has been studied. Here, we have given the notion of the set-valued fractal
operator.

Theorem 5 Fα
S defined in (4) is a continuous map.

Proof Let {Fk} be a sequence in C(I ,K(R)) such that Fk → F , then to prove Fα
S is a

continuous function, it is sufficient to prove that Fα
n → Fα . Since Fn → F , then for

each ε > 0 there exists n0 ∈ N such that,

‖Fn − F‖∞ < ε(1 − |α|) for all n ≥ n0,

equivalently, sup
u∈I

Hd(Fn(u), F(u)) < ε(1 − |α|) for all n ≥ n0.

Now, we have

Hd(F
α
n (x), Fα(x)) = Hd

(
Fn(x) + α

[
Fα
n (L−1

j (x)) − S(L−1
j (x))

]
, F(x)

+ α
[
Fα(L−1

j (x)) − S(L−1
j (x))

] )

≤ Hd(Fn(x), F(x)) + |α|Hd(F
α
n (L−1

j (x)), Fα(L−1
j (x))).

This implies,

sup
x∈I

Hd(F
α
n (x), Fα(x)) ≤ 1

1 − |α| supx∈I
Hd(Fn(x), F(x)),

that is ‖Fα
n (x) − Fα(x)‖∞ < ε for all n ≥ n0.

This completes the proof. ��
Theorem 6 For a fixed partition Δ, the mapping T Δ

S : C(I ,K(R)) ⇒ C(I ,K(R))

defined as,

T Δ
S (F) = {

Fα : α ∈ (−1, 1)
}

is lower semi-continuous.

123



Constructive Approximation

Proof Let F ∈ C(I ,K(R)) and let Fα ∈ T Δ
S (F) and a sequence Fk ∈ C(I ,K(R))

such that Fk → F . Using Theorem 5, we have Fα
k → Fα , then clearly Fα

k ∈ T Δ
S (Fk),

establishing the result. ��

4 Approximation of Set-Valued Functions

In Sect. 3, we observe that Fα satisfies the following self-referential equation:

Fα(u) = F(u) + α
[
Fα

(
L−1
j (u)

)
− S

(
L−1
j (u)

)]

for every u ∈ I j , where j ∈ J .
The following proposition will give the perturbation error between the map F and its
α-fractal function Fα . We shall use this proposition as a prelude to our next theorem.

Proposition 1 Between F and Fα , the following perturbation error will be obtained:

‖Fα − F‖∞ ≤ |α|
1 − |α| ‖F − S‖∞ + 2|α|

1 − |α| ‖F‖∞.

Proof Using the self-referential equation and Note 1, we get

Hd(F
α(u), F(u)) = Hd

(
F(u) + α

[
Fα

(
L−1
j (u)

)
− S

(
L−1
j (u)

)]
, F(u)

)

≤ Hd

(
α

[
Fα

(
L−1
j (u)

)
− S

(
L−1
j (u)

)]
, {0}

)

= |α|Hd

(
Fα

(
L−1
j (u)

)
− S

(
L−1
j (u)

)
, {0}

)

≤ |α|Hd

(
Fα

(
L−1
j (u)

)
− S

(
L−1
j (u)

)
,

F
(
L−1
j (u)

)
− F

(
L−1
j (u)

) )

+ |α|Hd

(
F

(
L−1
j (u)

)
− F

(
L−1
j (u)

)
, {0}

)

≤ |α|Hd

(
Fα

(
L−1
j (u)

)
, F

(
L−1
j (u)

) )

+ |α|Hd

(
− S

(
L−1
j (u)

)
,−F

(
L−1
j (u)

) )

+ 2|α|Hd

(
F

(
L−1
j (u)

)
, {0}

)

≤ |α| sup
u∈I j , j∈J

Hd

(
Fα

(
L−1
j (u)

)
, F

(
L−1
j (u)

) )
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+ |α| sup
u∈I j , j∈J

Hd

(
S

(
L−1
j (u)

)
, F

(
L−1
j (u)

) )

+ 2|α| sup
u∈I j , j∈J

Hd

(
F

(
L−1
j (u)

)
, {0}

)

≤ |α|‖Fα − F‖∞ + |α|‖F − S‖∞ + 2|α|‖F‖∞.

This in turn yields ‖Fα − F‖∞ ≤ |α|‖Fα − F‖∞ +|α|‖F − S‖∞ +2|α|‖F‖∞. This
establishes the proof. ��
Remark 5 Perturbation error between single-valued maps and its corresponding α-
fractal function have already been studied in the literature. For instance, in [23], a
perturbation error between a univariate single-valued map and its corresponding α-
fractal function has been given. In [35], a perturbation error between a bivariate single-
valued map and its corresponding α-fractal function has been studied. Here, we have
studied the perturbation error between a set-valuedmap and its correspondingα-fractal
function.

Definition 11 LetP ∈ C(I ,K(R)) be a set-valued polynomial function, then α-fractal
function Pα corresponding to P is defined as set-valued fractal polynomial.

Theorem 7 Consider F ∈ C(I ,Kc(R)). For any ε > 0, there is a set-valued fractal
polynomial Pα such that

‖F − Pα‖∞ < ε.

Proof For ε > 0 using [37], there is a set-valued polynomial function P such that

‖F − P‖∞ <
ε

3
.

Choose a partition ΔP = {y0, . . . , yM } of I and a continuous function SP satisfying
SP (y0) − P(y0) = SP (yM ) − P(yM ), and α ∈ (−1, 1) such that

|α| < min

{ ε
3

ε
3 + ‖P − SP‖∞

,

ε
3

ε
3 + 2‖P‖∞

}
.

Then, we get

‖F − Pα‖∞ ≤ ‖F − P‖∞ + ‖P − Pα‖∞ (using triangle inequality)

≤ ‖F − P‖∞ + |α|
1 − |α| ‖P − SP‖∞ + 2|α|

1 − |α| ‖P‖∞ (using Proposition 1)

<
ε

3
+ ε

3
+ ε

3
= ε.

��
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Remark 6 We took α ∈ R in the above proof, such that

|α| < min

{ ε
3

ε
3 + ‖P − SP‖∞

,

ε
3

ε
3 + 2‖P‖∞

}
.

In this situation, α may be “close” to 0, Pα may not be self-referential, and it may
behave as a classical polynomial. In alter, if we fix α ∈ (−1, 1) such that |α| < 1,
but otherwise arbitrary and choose a polynomial P and a function SP ∈ C(I ,Kc(R))

satisfying SP (y0) − P(y0) = SP (yM ) − P(yM ) and

‖P − SP‖ <
(1 − |α|)ε

3|α| and ‖P‖∞ <
(1 − |α|)ε

6|α| .

This forces F to be a zero set function. Hence, the analog of [35, Remark 5.2] cannot
be established in set-valued mappings. In particular, the recently developed notion of
Bernstein fractal functions will not be useful in approximating set-valued functions.

With the reference to Theorem 7, we have

Theorem 8 The set of set-valued fractal polynomials with a non-zero scale vector is
dense in C(I ,Kc(R)).

4.1 Constrained Approximation

Here we target to study some constrained approximation aspects of fractal functions.
Before proving the next theorem, let us recall a result and prove a lemma as a prelude.

Result 1 Consider X , Y are topological spaces, f : X → Y is a continuous function,
and S is a dense subset in X . If f (u) ≤ 0 ( f (u) ≥ 0) for each u ∈ S, then f (u) ≤
0 ( f (u) ≥ 0) for each u ∈ X .

Lemma 3 The set C = ⋃
n∈N

( ⋃
1≤i1,...,in≤N

Li1...in

( {u1, . . . , uN } ))
is dense in interval

I = [0, 1], where Li1...in (u) = Li1(Li2(. . . (Lin (u)))) and n ∈ N.

Proof Let u ∈ I be any point. Observe that for some w ∈ {u1, . . . , uN }, we have

|u − w| ≤ max
i∈J

{
ui−ui−1

2

}
. Since each Li is a contraction mapping with contraction

coefficient ai . Choose a = max
i∈J

{ai }, then for each u ∈ I and for each ε > 0 we can

choose w ∈ Li1...in

( {u1, . . . , uN } )
for some n ∈ N such that,

|u − w| ≤ anmax
i∈J

{
ui − ui−1

2

}
< ε.

This completes the proof. ��
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Theorem 9 Let F,G ∈ C(I ,K(R))andΔasdefined inTheorem1, and F(u1), F(uN ),

G(u1),G(uN ) are single-valued. If F ≤ G, then Fα ≤ Gα provided SF , SG ∈
C(I ,K(R)) satisfying SF ≤ SG and SF (u1) = F(u1), SF (uN ) = F(uN ), SG(u1) =
G(u1), SG(uN ) = G(uN ).

Proof Let SF , SG ∈ C(I ,K(R)) such that SF ≤ SG and SF (u1) = F(u1), SF (uN ) =
F(uN ), SG(u1) = G(u1), SG(uN ) = G(uN ). Using Note 3, we have

Fα(ui ) = F(ui ), Gα(ui ) = G(ui ) for each i = 1, . . . , N .

From the self-referential equation,

Fα
(
L j (u)

) = F
(
L j (u)

) + α
[
Fα(u) − SF (u)

]
, and Gα

(
L j (u)

)
= G

(
L j (u)

) + α
[
Gα(u) − SG(u)

]

for each u ∈ I j , where j ∈ J . For u ∈ Δ, we deduce

Fα
(
L j (u)

) ⊂ Gα
(
L j (u)

)
for any j ∈ J .

Applying the process repeatedly, we get

Fα
(
Li1...in (u)

) ⊂ Gα
(
Li1...in (u)

)
for any i1, . . . , in ∈ J , u ∈ {u1, . . . , uN },

where Li1...in (u) = Li1(Li2(. . . (Lin (u)))) and n ∈ N.

This implies that Fα(u)⊂Gα(u) for eachu∈ ∪
n∈N

(
∪

1≤i1,...,in≤N
Li1...in

( {u1, . . . , uN } ))
.

Now using Lemma 3 and Result 1, we are done. ��

5 Dimensional Results

To move further in this section, we shall first observe some examples to understand
the motivation behind this section.

Example 1 Let F1 : [0, 1] ⇒ R be a set-valued map defined as F1(u) = {0}, then
according to (1) graph of this function will be a line segment in R

2, and hence
dimH (GF1) = 1.

Example 2 Let F2 : [0, 1] ⇒ R be a set-valued map defined as F2(u) = [−1, 1], then
by (1), we have GF2 = [0, 1] × [−1, 1], and hence dimH (GF2) = 2.

Example 3 Let F3 : [0, 1] ⇒ R be a set-valued map defined as F3(u) = C , whereC is
Cantor set. Then, by (1) we haveGF3 = [0, 1]×C, and hence dimH (GF2) = 1+ log 2

log 3 .

Notice that F1, F2, and F3 are constant maps. Therefore, these are Lipschitz and
bounded variation maps as well. Unlike the case of a single-valued map, here we
witness that the Hausdorff dimension of the graph of a set-valued Lipschitz map is
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other than 1, and the same observation holds for the graph of a set-valued bounded
variation map also. One can always find a set-valued Lipschitz map or set-valued
bounded variation map whose graph has dimension β for any 1 ≤ β ≤ 2. We observe
that with the definition of the graph as in (1), we could not find any fascinating
dimensional result. Therefore, we give a new definition of the graph of a set-valued
map and study some dimensional results for this new definition of the graph.

Definition 12 Let F : [0, 1] → K(R) be a set-valuedmap, then a graph of F is defined
as;

G(F) = {(u, F(u)) : F(u) ∈ K(R)} ⊂ [0, 1] × K(R). (5)

Define a metric on this graph,

DG((u, F(u)), (w, F(w))) = |u − w| + Hd(F(u), F(w)).

Next, we prove the graph of Fα defined in (5) is an attractor of an IFS defined on
I × Kc(R).

Let us note the following lemma as a prelude. The motivation for this following
lemma comes from [8, Proposition 1].

Lemma 4 Let F be a set-valued continuousmap and Fα be its correspondingα-fractal
function. Define a function d : I × Kc(R) → [0,∞) as

d
(
(u, A), (w, B)

) = |u − w| + Hd
(
A + Fα(w), B + Fα(u)

)
.

Then, I × Kc(R) with respect to d is a complete metric space.

Proof Clearly, d
(
(u, A), (w, B)

) = d
(
(w, B), (u, A)

) ≥ 0. Suppose that d
(
(u, A),

(w, B)
) = 0, then

|u − w| + Hd
(
A + Fα(w), B + Fα(u)

) = 0

i.e., |u − w| = 0 and Hd
(
A + Fα(w), B + Fα(u)

) = 0

i.e., u = w and Hd
(
A + Fα(w), B + Fα(u)

) = Hd(A, B) = 0

i.e., u = w and A = B

i.e., (u, A) = (w, B).

Now to prove that d satisfies the triangle inequality. Take (ui , Ai ) ∈ I × Kc(R) for
i = 1, 2, 3. Then, we have

d
(
(u1, A1), (u2, A2)

) = |u1 − u2| + Hd
(
A1 + Fα(u2), A2 + Fα(u1)

)
= |u1 − u2| + Hd

(
A1 + Fα(u2) + A3 + Fα(u3), A2

+ Fα(u1) + A3 + Fα(u3)
)

≤ {|u1 − u3| + |u3 − u2|
} + {

Hd
(
A1 + Fα(u3), A3 + Fα(u1)

)
+ Hd

(
A3 + Fα(u2), A2 + Fα(u3)

)}
.
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Hence,

d

(
(u1, A1), (u2, A2)

)
≤ d

(
(u1, A1), (u3, A3)

)
+ d

(
(u3, A3), (u2, A2)

)
.

To prove completeness, let {(un, An)} is a Cauchy sequence in I ×Kc(R). For ε > 0
there is an integer N (ε) such that

|un − um | + Hd
(
An + Fα(un), Am + Fα(um)

)
< ε, whenever m, n ≥ N (ε).

This shows {un} is a Cauchy sequence of I . Hence, it converges to, say, u∗ ∈ I . Since
Fα is a uniformly continuous map, consequently {Fα(un)} will also be a Cauchy
sequence with respect to Hausdorff metric, and hence converges to Fα(u∗) ∈ Kc(R).
Then,

Hd(An, Am) = Hd
(
An + Fα(un), Am + Fα(un)

)
≤ Hd

(
An + Fα(un), An + Fα(um)

) + Hd
(
An + Fα(um) + Am + Fα(un)

)
= Hd

(
Fα(un), F

α(um)
) + Hd

(
An + Fα(um) + Am + Fα(un)

)
<

ε

2
+ ε

2
= ε.

This implies, {An} is a Cauchy sequence of Kc(R) and so it converges to, say A∗ ∈
Kc(R). Hence, {(un, An)} converges to (u∗, A∗) ∈ I × Kc(R). This completes the
proof. ��
Proposition 2 Let F ∈ C(I ,Kc(R)) be a set-valued continuous map and S ∈
C(I ,Kc(R)) be the base function. Define Wj : I × Kc(R) → I × Kc(R) for each
j ∈ J such that

W j (u, A) = (
L j (u), αA + F(L j (u)) − αS(u)

)
.

Then, each Wj is a contraction map with respect to the metric defined in Lemma 4,
provided max{|α|, a j } < 1 for each j ∈ J .

Proof Let (u, A), (w, B) ∈ I × Kc(R), then for each j ∈ J , we have

d
(
Wj (u, A),Wj (w, B)

) = d
((

L j (u), αA + F(L j (u)) − αS(u)
)
,

(
L j (w), αB + F(L j (w)) + αS(u)

))

= ∣∣L j (u) − L j (w)
∣∣ + Hd

(
αA + F(L j (u)) − αS(u) + Fα(L j (w)),

αB + F(L j (w)) − αS(w) + Fα(L j (u))
)

= ∣∣L j (u) − L j (w)
∣∣ + Hd

(
αA

+ F(L j (u)) − αS(u) + F(L j (w)) + αFα(w) − αS(w),
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αB + F(L j (w)) − αS(w) + F(L j (u)) + αFα(u) − αS(u)
)

= a j
∣∣u − w

∣∣ + Hd

(
αA + αFα(w), αB + αFα(u)

)

= a j
∣∣u − w

∣∣ + |α|Hd

(
A + Fα(w), B + Fα(u)

)

≤ max{|α|, a j }
(∣∣u − w

∣∣ + Hd

(
A + Fα(w), B + Fα(u)

))

= max{|α|, a j }d
(
(u, A), (w, B)

)
.

Since max{|α|, a j } < 1, each Wj is a contraction mapping. ��
Now, to prove the next theorem, we first note the following basic results. Their

proofs can be found in the literature, but we decided to include them here for the sake
of completeness.

Lemma 5 The space (Kc(R), Hd) is a complete metric space.

Proof Let {An}n∈N be a Cauchy sequence in Kc(R). This implies that {An}n∈N is
Cauchy in K(R). Then, by the completeness of the space (K(R), Hd), there exists
A∗ ∈ K(R) such that An → A∗ with respect to the Hausdorff metric Hd . It is well-
known that for x∗ ∈ A∗, there exists a sequence {xn}n , where xn ∈ An for each n ∈ N,
such that xn → x∗ as n → ∞.
Now it remains to prove that A∗ is a convex set. For this let x, y ∈ A∗, then there exist
sequences {xn}n∈N, {yn}n∈N, where xn, yn ∈ An for each n ∈ N such that xn → x
and yn → y. Since xn, yn ∈ An and An is convex, therefore λxn + (1 − λ)yn ∈ An

for all λ ∈ [0, 1]. This implies that lim
n→∞(λxn + (1 − λ)yn) = λx + (1 − λ)y ∈ A∗.

This completes the proof. ��
Lemma 6 The space (C(I ,Kc(R)), dC is a complete metric space.

Proof To prove this, it is sufficient to show that C(I ,Kc(R)) is a closed subset of
C(I ,K(R)). For this, let F∗ be a limit point of C(I ,Kc(R)). Then, there exists a
sequence {Fn}n∈N of C(I ,Kc(R)) such that Fn → F∗ with respect to the metric dC .
This implies that Fn(x) → F∗(x) for all x ∈ I with respect to the Hausdorff metric.
Since Fn(x) ∈ Kc(R) for each x ∈ I , hence using Lemma 5, F∗(x) ∈ Kc(R) for each
x ∈ I . This completes the proof. ��
Theorem 10 For each j ∈ J , let W j : I × Kc(R) → I × Kc(R) be the map defined
in Proposition 2. Then, by Definition 12, the graph of Fα will be an attractor of the
IFS, {(I × Kc(R), d) ;W1, . . . ,WN−1} .

Proof First we establish that Fα ∈ C(I ,Kc(R)). But this can be observed by using
Lemma 6 and Theorem 1. Now since I = ⋃

j∈J
L j (I ). Then, from (3), we have

⋃
j∈J

W j (G(Fα)) =
⋃
j∈J

{
Wj (u, Fα(u)) : u ∈ I

}
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=
⋃
j∈J

{(
L j (u), αFα(u) + F(L j (u)) − αS(u)

) : u ∈ I
}

=
⋃
j∈J

{ (
L j (u), Fα(L j (u))

) : u ∈ I
}

=
⋃
j∈J

{
(u, Fα(u)) : u ∈ L j (I )

}

= G(Fα).

This completes the proof. ��
Schief [31] noted that the dimensional results for Euclidean spaces do not have

simple generalizations to complete metric spaces. Following his work, Nussbaum
et al. [26] proved a more general result in the setting of a complete metric space.
Answering a question raised in [26], Verma [33] has shown the Hausdorff dimension
of the invariant set under the SOSC. He explores several dimensional aspects of sets
in complete metric space. In his book [15], Falconer studied the dimensional results
of sets in Euclidean spaces. Given [33], we may assure the reader that some results,
which we will use, also hold in a general complete metric space.

Theorem 11 Let I = {I × Kc(R);W1, . . .WN−1} be the IFS defined in Theorem 10
such that

ri DG
(
(u, A), (w, B)

) ≤ DG
(
Wi (u, A),Wi (w, B)

) ≤ Ri DG
(
(u, A), (w, B)

)

for every (u, A), (w, B) ∈ I × Kc(R), where 0 < ri ≤ Ri < 1 for all i ∈ J . Then,

t∗ ≤ dimH (G(Fα)) ≤ t∗, where t∗ and t∗ are characterized by
N∑
i=1

r t
∗
i = 1 and

N∑
i=1

Rt∗
i = 1, respectively.

Proof For purposed upper bound one can refer [15, Proposition 9.6]( see also, [33, The-
orem 2.12]). For the lower bound of the Hausdorff dimension of G(Fα), we progress
as follows.
Set V = (u1, uN )×Kc(R), an open set in I ×Kc(R). Since for each i, j ∈ J with i 	=
j, we have

L j
(
(u1, uN )

) = (u j , u j+1) and Li
(
(u1, uN )

) ∩ L j
(
(u1, uN )

) = ∅,

hence for each i, j ∈ J and i 	= j , we have

Wj (V ) = (u j , u j+1) × Kc(R) and Wi (V ) ∩ Wj (V ) = ∅.

Therefore,

N−1⋃
i=1

Wi (V ) =
N−1⋃
i=1

{
(ui , ui+1) × Kc(R)

} ⊆ V and Wi (V ) ∩ Wj (V ) = ∅.
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Then, by using Definition 9 IFS satisfies OSC. We have V ∩ G(Fα) 	= ∅ this implies
that IFS is satisfying SOSC. Since V ∩ G(Fα) 	= ∅, we have an i ∈ J ∗ such that
G(Fα)i ⊂ V , where J ∗ = ∪

m∈N{1, . . . , N − 1}m, collection of all finite sequences

whose terms are in J and

G(Fα)i = Wi (G(Fα)) := Wi1 ◦ Wi2 ◦ · · · ◦ Wim (G(Fα))

for i ∈ Jm = J × · · · × J (m-times) and m ∈ N. Observe that for any j ∈ Jm and
k ∈ N, the sets, G(Fα) ji , are disjoint. Further, the IFS {Wji : j ∈ J k} satisfies the
hypothesis of [15, Proposition 9.7] ( see also, [33, Theorem 2.35]). Therefore, with
the notation r j = r j1r j2 · · · r jk we have tk ≤ dimH (G∗), where G∗ is an attractor of
the IFS and

∑
j∈J k

r tkji = 1. Since G∗ ⊂ G(Fα), tk ≤ dimH (G∗) ≤ dimH (G(Fα)). Let

if possible dimH (G(Fα)) < t∗, where
N∑
i=1

r t∗i = 1. Then, tk < t∗. Now, we have

r−tk
i =

∑
j∈J k

r tkj ≥
∑
j∈J k

rdimH (G(Fα))
j =

∑
j∈J k

r t∗j r
dimH (G(Fα))−t∗
j

≥
∑
j∈J k

r t∗j r
k(dimH (G(Fα))−t∗)
max

= rk(dimH (G(Fα))−t∗)
max ,

where rmax = max{r1, r2, . . . , rN }.Since rmax < 1, rk(dimH (G(Fα))−t∗)
max tends to infinity

as k tends to infinity, and therefore r−tk
i is unbounded, which is a contradiction. Hence,

dimH (G(Fα)) ≥ t∗, which is the required result. ��
The following theorem is an immediate application of the Theorem 11.

Theorem 12 Consider F : I → Kc(R) is a set-valued map. If |α| < min{ai : i ∈ J },
then dimH (G(Fα)) = 1.

Proof Using Proposition 2 for every pair (u, A), (w, B) ∈ I × Kc(R), we have

DG(Wi (u, A),Wi (w, B)) ≤ ai DG((u, A), (w, B)) for i ∈ J .

Since
N−1∑
i=1

ai = 1, then by Theorem 11, dimH (G(Fα)) ≤ 1. This concludes the proof.

��
Theorem 13 If F : [0, 1] → K(R) is a set-valued Lipschitz map having Lipschitz
constant l and the graph of F is as defined in (5), then dimH (G(F)) = 1.

Proof To prove this theorem, it will be sufficient to define a bi-Lipschitz map between
[0, 1] and G(F). Define T : [0, 1] → G(F) such that T (u) = (u, F(u)). Then, we
have

DG(Tu, Tw) = DG((u, F(u)), (w, F(w)))
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= |u − w| + Hd(Fu, Fw)

≤ |u − w| + l|u − w|
≤ (1 + l)|u − w|,

that is, DG(Tu, Tw) ≤ (1 + l)|u − w| (6)

and

DG(Tu, Tw) = DG((u, Fu), (w, Fw))

= |u − w| + Hd(Fu, Fw)

that is, DG(Tu, Tw) ≥ 1

2
|u − w|. (7)

Equations (6) and (7) will prove the bi-Lipschitz nature of T .
Hence, dimH (G(F)) = 1. ��

Theorem 14 Let F, S ∈ C(I ,Kc(R)) are Lipschitz functions such that S(u1) −
F(u1) = S(uN ) − F(uN ), and let α ∈ (−1, 1). Then, dimH (G(Fα)) = 1 provided
that |α| < a := min{a j : j ∈ J }.
Proof In view of Theorems 13 and 2, the proof follows; hence we omit. ��

Lemma 7 Let F, T : [0, 1] → K(R) be set-valued Lipschitz maps with Lipschitz
constant l, then dimH (G(F+T )) = dimH (G(T )), where (F+T )(u) := F(u)+T (u)

and F(u) + T (u) denotes the Minkowski sum of F(u) and T (u).

Proof To establish the proof of this lemma, it will be sufficient to show the existence
of a Lipschitz map from G(T ) to G(F + T ). Define Φ : G(T ) → G(F + T ) such
that Φ(u, T (u)) = (u, F(u)+ T (u)). It is easy to see that Φ is well defined and onto.
Now to get its Lipschitz behavior, we have

DG(Φ(u, T (u)),Φ(w, T (w))) = DG((u, F(u) + T (u)), (w, F(w) + T (w)))

= |u − w| + Hd(F(u) + T (u), F(w) + T (w))

≤ |u − w| + Hd(F(u), F(w)) + Hd(T (u), T (w))

≤ |u − w| + l|u − w| + Hd(T (u), T (w))

≤ (1 + l) {|u − w| + Hd(T (u), T (w))} .

That is, DG(Φ(u, T (u)),Φ(w, T (w))) ≤ (1 + l)DG((u, T (u)), (w, T (w))). Hence,
Φ being a Lipschitz map implies that

dimH (G(F + T )) ≤ dimH (G(T )) and dimB(G(F + T )) ≤ dimB(G(T )).

For another side of the inequality, let t > dimH (G(F + T )). Then, by definition of
the Hausdorff dimension, we have the following.
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For each ε > 0 and for each η > 0, there is an open cover {Un : n ∈ N} of G(F + T ))

such that |Un| < η and
∑

n∈N|Un|s < ε. Note that

G(T ) = {(u, T (u)) : u ∈ I }
⊆{(u, T (u) + F(u) − F(u)) : u ∈ I }
⊆{(u, T (u) + F(u)) : u ∈ I } + {(0,−F(u)) : u ∈ I }

= G(F + T )) + {(0,−F(u)) : u ∈ I }.
(8)

Define Vn = Un + {(0,−F(u)) : u ∈ I such that (u, T (u) + F(u)) ∈ Un}.
Observe that each Vn is open and G(T ) ⊆ ∪

n∈NVn . Further, |Vn| ≤ (1 + l)|Un| and
|Vn| < (1 + l)η. Then,

∑
n∈N

|Vn|t ≤ (1 + l)t
∑
n∈N

|Un|t ≤ (1 + l)tε.

This givesHt
η(G(T )) = 0, that is, the t-dimensional Hausdorff measure,Ht (G(T )) =

0. Therefore, we have dimH (G(T )) ≤ dimH (G(F + T )), proving dimH (G(T )) =
dimH (G(F + T )). Next, using (8), we obtain

dimB(G(T )) = lim
δ→0

log N(1+l)η(G(T ))

− log((1 + l)η)

≤ lim
η→0

log Nη(G(F + T ))

− log((1 + l)η)
= lim

η→0

log Nη(G(F + T ))

− log(η)
= dimB(G(F + T )),

as desired. ��

Remark 7 The above lemma holds for single-valued maps also (see, for instance, [34,
Lemma 3.2]), but proof of this is neither straightforward nor just a simple extension of
the single-valued map. Because Hausdorff metric does not satisfy the parallelogram
law while in [34, Lemma 3.2] metric is the usual metric defined on Rn which satisfies
the parallelogram law and gives the privilege to enjoy the bi-Lipschitz property to T
defined in [34, Lemma 3.2] (Φ in our case).

In view of the Lipschitz invariance property of dimension, one may conclude that
the upcoming theorem holds for all aforementioned dimensions.

Theorem 15 Consider 1 ≤ β. Then, set Sβ := {F ∈ C(I ,K(R)) : dimH (G(F)) = β}
is dense in C(I ,K(R)).

Proof Let F ∈ C(I ,K(R)) and ε > 0. Using the density of Li p(I ,K(R)) in
C(I ,K(R)), there exists G in Li p(I ,K(R)) such that

‖F − G‖∞ <
ε

2
.
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Further, we consider a non-vanishing function H ∈ Sβ. Let H∗ = G + ε
2‖H‖∞ H ,

which immediately gives

‖G − H∗‖∞ ≤ ε

2
.

This together with Lemma 7 implies that dim(Gr(H∗)) = dim(Gr(H)) = β. Hence,
we have H∗ ∈ Sβ and

‖F − H∗‖∞ ≤ ‖F − G‖∞ + ‖G − H∗‖∞ < ε.

This completes the proof. ��
Before proving our next result, let us note the following lemma as a prelude.

Lemma 8 Consider A, B,C are compact subsets of R. Then,

Hd(AB,CB) ≤ sup
b∈B

|b|Hd(A,C),

where Y Z = {yz : y ∈ Y ∈ K(R), z ∈ Z ∈ K(R)} .

Proof We have

Hd(AB,CB) = max
{

sup
ab∈AB

inf
cb′∈CB

|ab − cb′|, sup
cb′∈CB

inf
ab∈AB

|cb′ − ab|
}

≤ max
{

sup
ab∈AB

inf
cb∈Cb

|ab − cb|, sup
cb′∈CB

inf
ab′∈Ab′|cb′ − ab′|

}

≤ max
{

sup
ab∈AB

inf
cb∈Cb

|b||a − c|, sup
cb′∈CB

inf
ab′∈Ab′|b′||c − a|

}

≤ max
{

sup
a∈A,b∈B

(|b| inf
cb′∈CB

|a − c|), sup
c∈C,b′∈B

(|b′| inf
ab′∈Ab′|c − a|)

}

≤ sup
b∈B

|b|max
{
sup
a∈A

inf
c∈C|a − c|, sup

c∈C
inf
a∈A

|c − a|
}

= sup
b∈B

|b|Hd(A,C),

proving the assertion. ��
Next we define the multiplication of set-valued maps F, L : W ⊆ R ⇒ R by

(FT )(w) = F(w)T (w).

Lemma 9 Consider F, T : [0, 1] → K(R) to be set-valued Lipschitz maps with
Lipschitz constant l. Then,

dimH (G(FT )) ≤ dimH (G(T )).
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Proof Define Φ : G(T ) → G(FT ) such that

Φ
(
(u, T (u))

) = (
u, F(u)T (u)

)
.

Choose M = max{1 + l sup
z∈ ∪

u∈[0,1]Tu
|z|, sup

v∈ ∪
w∈[0,1]Fw

|v|}.

Notice thatΦ is well-defined and surjective. To prove our lemma, it is enough to prove
Φ is a Lipschitz map. For this,

DG(Φ(u, Tu),Φ(w, Tw)) = DG((u, FuTu), (w, FwTw))

= |u − w| + Hd(FuTu, FwTw)

≤ |u − w| + Hd (FuTu, FwTu) + Hd(FwTu, FwTw)

≤ |u − w| + sup
z∈Tu

|z|Hd (Fu, Fw) + sup
v∈Fw

|v|Hd(Tu, Tw)

≤ |u − w| + sup
z∈Tu

|z|l|u − w| + sup
v∈Fw

|v|Hd(Tu, Tw)

≤ M {|u − w| + Hd(Tu, Tw)} .

Hence, DG(Φ(u, Tu),Φ(w, Tw)) ≤ MDG((u, Tu), (w, Tw)).

This completes the proof. ��
Remark 8 In the Lemma 9, equality may not generally hold. For instance, consider
T to be a Weierstrass function whose Hausdorff dimension is strictly greater than 1
(refer [32]) and F to be the zero function. Then, we obtain 1 = dimH (G(FT )) <

dimH (G(T )).

Definition 13 Consider W be a bounded and closed interval of R and F : W ⇒ R is
a set-valued map. The maximum range of F over the rectangle W is defined as

RF [W ] = sup
x,y∈W

sup
w,z∈F(x)∪F(y)

|w − z|.

As indicated in the introductory section, next, we shall provide a set-valued analog
of [15, Proposition 11.1].

Proposition 3 Assume F : [w, u] ⇒ R be a set-valued continuous map, 0 < η <

u − w, and u−w
η

≤ m ≤ 1 + u−w
η

for some m ∈ N. If Nη(GF ) is the number of
η-boxes that intersect the graph of F, then

1

η

m∑
i=1

RF [Wi ] ≤ Nη(GF ) ≤ 2m + 1

η

m∑
i=1

RF [Wi ],

where Wi = [iη, (i + 1)η].
Proof The count of squares having η side length in the part above Wi intersecting the
graph of F is at least RF [Wi ]

η
and at most 2+ RF [Wi ]

η
, using the continuity of F . Taking

sum over all such parts yield the required bounds. ��
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Example 4 Consider F : [0, 1] ⇒ R is a set-valued map defined as F(x) = [−1, 1].
By Proposition 3, we have

dimB(GF ) = lim
η→0

log Nη(GF )

− log(η)
≤ lim

η→0

log
(
2m + 1

η

m∑
i=1

RF [Wi ]
)

− log(η)

≤ lim
η→0

log
(
2m + 1

η

m∑
i=1

2
)

− log(η)
= 2,

because RF [Wi ] = 2 for each i = 1, . . . ,m and Wi = [iη, (i + 1)η]. Similarly,

dimB(GF ) = lim
η→0

log Nη(GF )

− log(η)
≥ lim

η→0

log
(
1
η

m∑
i=1

RF [Wi ]
)

− log(η)
= lim

η→0

log
(
1
η

m∑
i=1

2
)

− log(η)
= 2.

Therefore, dimB(GF ) = 2. This shows that Proposition 3 will be very useful in
estimating or finding box dimensions of set-valued functions.

6 Conclusion and Future Direction

In this paper, the term α-fractal function has been introduced (Theorem 1), corre-
sponding to set-valued maps. Next, we noticed that, unlike a single-valued α-fractal
function, a set-valued α-fractal function is generally not interpolatory. Still, under cer-
tain conditions, it is interpolatory in nature (Remark 2, Note 3). Also, some properties
of this fractal function have been observed (Theorems 2, 4). After that, the existence of
a fractal polynomial, which approximates the convex set-valued map, was established
(Theorem 7). Also, the concept of constrained approximation for set-valued maps is
introduced (Theorem 9). Further, we added the definition of a graph of a set-valued
map (Definition 12) and calculated the fractal dimension of this graph for some class
of set-valued maps (Theorem 13, Lemmas 7, and 9).
In this paper, we have taken Minkowski’s sum of two sets. In the future, we may study
the fractal functions using the metric linear sum of two sets introduced by Dyn and
her group [9]. Here most of the results are available for convex set-valued maps, but
using the metric linear sum of two sets, we may try to establish these results for the
compact set-valued map.
Further, fractional calculus for the single-valued map has been widely explored. See,
for instance, [12, 19]. In the future, we may try to extend this concept of fractional
calculus for set-valued maps and estimate some dimensional results for the graph of
the fractional integral and fractional differentiation of set-valued maps.
Another future direction of work is in the selection of set-valued maps. The following
remark can work as a motivation.

Remark 9 Consider F : I → K(R) to be a set-valued function, then a function
f : I → R will be characterized as a selection of F if f (x) ∈ F(x) for all x ∈ I . It is
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an interesting fact to note that for any 1 ≤ β ≤ 2,we are getting a selection fβ : I → R

of the map F2 of Example 2 such that dimH (Gr( fβ)) = β. This motivates us to ask
a natural question of whether such a selection respecting dimension exists or not.

Moreover, we have worked in this paper by taking the same scaling factor αn = α

for all n. One may also try to generalize the result for different scaling factors, and
also one may try to generalize the result for non-constant scaling factors.
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