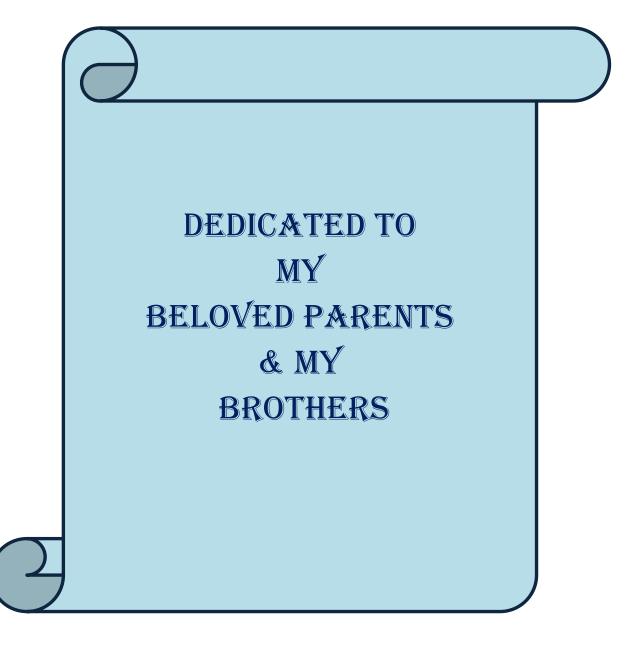
A New Avenue for the Synthesis of Some Biologically Active Isatin Derivatives

THESIS SUBMITTED IN PARTIAL FULFILLMENT FOR THE AWARD OF DEGREE

DOCTOR OF PHILOSOPHY

By


SURESH KUMAR MAURY

Department of Chemistry Indian Institute of Technology (Banaras Hindu University) Varanasi-221005

Roll No: 17051008

Year of Submission: 2022

Copyright © Department of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi-221005, India, 2022. All rights reserved.

CERTIFICATE

It is certified that the work contained in the thesis titled "A New Avenue for the Synthesis of Some Biologically Active Isatin Derivatives" by "Suresh Kumar Maury" has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy, and SOTA for the award of Ph.D. Degree.

Dr. Sundaram Singh

(Supervisor) Department of Chemistry Indian Institute of Technology (Banaras Hindu University) Varanasi - 221005

> Gr. (Mrs.) Suncefelin Sunge Associate Professor Bepartment of Chemistry Idian Institute of Technol 979, Marse Hindu University, Jacobie 2000

DECLARATION BY THE CANDIDATE

I, "Suresh Kumar Maury", certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of "Dr.(Mrs.) Sundaram Singh" from "July, 2017 to October, 2022", at the "Department of Chemistry", Indian Institute of Technology (B.H.U.), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports, dissertations, theses, etc., or available on websites and have not included them in this thesis and have not cited as my work.

Date: 09/11/2022

Suresh Kumar Signature of the student ("Suresh Kumar Maury")

Place: Varanasi

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the candidate is correct to the best of my/our knowledge.

Dr. Sundaram Singh

(Supervisor) Department of Chemistry Indian Institute of Technology (Banaras Hindu University)

Varanasi - 221005

Associate Professor Department of Chemistry Indian Institute of Technology, Tanaras Hindu University, Januar 2007

TIST STE Prof. Y. C. Sharma

(Head) Department of Chemistry Indian Institute of Technology (Banaras Hindu University) Varanasi – 221005 विभागाध्यक्ष / HEAD रसायन विज्ञान विभाग

रसायन विज्ञान विभाग Department of Chemistry भारतीय प्रौद्योगिकी संस्थान (का.हि.वि.वि.) Indian Institute of Technology (B.H.U.) वाराणसी–२२१००५ / Varanasi-221005 iii

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: A New Avenue for the Synthesis of Some Biologically Active Isatin Derivatives

Name of the Student: Suresh Kumar Maury

COPYRIGHT TRANSFER

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University), Varanasi, all rights under copyright that may exist in and for the above thesis submitted for the award of the *"Doctor of Philosophy"* degree.

Date: 09/11/2022 Place: Varanasi

Suresh Kumer Signature of the student (Suresh Kumar Maury)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for the author's personal use provided that the source and the Institute's copyright notice are indicated.

iv

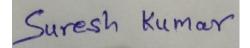
ACKNOWLEDGEMENT

I give honor to God, the creator and sustainer of life, for blessing me to be able to pursue and complete this milestone. I thank God for giving me much knowledge, wisdom, and health to complete this work on time.

Foremost, I would like to thank my Research Supervisor, **Dr. (Mrs.) Sundaram Singh,** for her wide experience, unrivaled knowledge of chemistry, learned guidance, stimulating discussion, and unstinting moral support, which helped me immensely in completing this work in time. I thank her for putting up with my shortcomings and helping me to improve and overcome the same. Particularly, in the final stages, she has sustained me with her paternal care and thoughtful advice.

I am thankful to Head **Prof. Y.C. Sharma** of the Department and **Prof. Dhanesh Tiwary**, former Head of the Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), for providing necessary lab facilities and a pleasant working atmosphere in the Department.

I would also like to thank my RPEC members, **Dr. Jeyakumar Kandasamy**, Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), **Prof. Vandana Srivastava**, (Internal subject expert), Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), and **Dr. Abha Mishra** (External subject expert), Department of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), for their valuable suggestions throughout this work. I'm highly indebted to Department of Chemistry for IR and CIFC, Indian Institute of Technology (BHU), for providing an NMR Spectroscopy facility.


I also wish to thank all the non-teaching staff of the Department of Chemistry, Indian Institute of Technology (BHU), for their cooperation and timely help.

I would also like to thank my friends **Shivchand**, **Dipendra**, **Vishal**, **Vimlesh**, and **Mangal** for their affection, prayer, and support in my research work.

My warm sense of gratitude is due to my lab members, **Dhirendra Kumar, Savita Kumari, Arsala Kamal, Himanshu Kumar Singh, Ambuj Kumar Kushwaha,** and **Kavita,** for their help and cooperation at every step of the research work.

I take this opportunity to register my sincere thanks to the Department of Chemistry, Indian Institute of Technology (BHU), for a Research Fellowship and valuable pecuniary support.

Last but not least, I thank all my well-wishers whose names I may have failed to mention here unintentionally. Thanks to all of you for being there for me when times were the toughest.

Date: 09/11/2022

Suresh Kumar Maury Research scholar

CONTENTS

DESCRIPTION	PAGE No.
Acknowledgements	v -vi
List of Titles	vii-x
List of Abbreviations	xi-xiv
List of Schemes	xv-xvi
List of Figures	xvii-xviii
List of Tables	xix
General Experimental Considerations	XX
Preface	xxi-xxii

LIST OF TITLES

Titles

Page No.

CHAPTER-1

Overview of Isatin derivatives

1.1	Brief Introduction	1
1.2	Synthetic approaches of Isatin	
1.3	Study of the reactivity of isatin	8
1.3.1	N- substitution at isatin	8
1.3.2	Reactivity due to the carbonyl group of isatin	10
1.3.3	Reactivity of C-3 carbonyl group of isatin	11
1.3.4	Oxidation	16
1.3.5	Ring expansion reactions	18
1.3.6	Reduction	19
1.3.7	Electrophilic Aromatic Substitution of Isatin	21
1.3.8	Synthesis of isatin based spiro-fused heterocyclic scaffolds	23
1.4	References	42

CHAPTER-2

A facile and efficient multicomponent ultrasound-assisted "on water" synthesis of benzodiazepine ring

2.1	Introduction	61
2.2	Results and Discussion	66

2.3	Gram-Scale synthesis of benzodiazepine ring	76
2.4	Conclusion	76
2.5	Experimental section	77
2.5.1	Typical procedure for preparation of compound	77
2.5.2	Analytical Data	77
2.5.3	Spectral Data of Product	87
2.6	References	.89

CHAPTER-3

Grinding induced catalyst free, multi-component synthesis

of Indoloindole pyrimidine

3.1	Introduction
3.2	Results and Discussion
3.3	Conclusion109
3.4	Experimental section110
3.4.1	General experimental procedure for synthesis of compound of (4)110
3.4.2	Analytical Data110
3.4.3	Spectral Data of Product118
3.5	References

CHAPTER-4

A Visible light triggered synthesis of spiro [indoline-3, 4'-quinoline] via oxidative coupling of indole with enaminone and malononitrile

4.1	Introduction	123
-----	--------------	-----

4.2	Results and Discussion	126
4.3	Conclusion	143
4.4	Experimental section	143
4.4.1	Typical procedure for preparation of compound	143
4.4.2	Analytical Data	143
4.4.3	Spectral Data of Product	151
4.4.4	Copies of HRMS data of product (4a)	153
4.4.5	Data of UV-Visible absorption Spectra	156
4.4.3	ON/OFF experiments	160
4.5	References	161

CHAPTER-5

One-Pot Four-Component Synthesis of Spiro[Indoline-3,4'-Quinoline] Derivative

Using	DABCO	As A	Green	Catalyst
-------	-------	------	-------	----------

	Summary and Conclusions List of Research Publications	
5.5	References	194
5.4.3	Spectral Data of Product	192
5.4.2	Analytical Data	181
5.4.1	General experimental procedure for synthesis of compound of (4)	181
5.4	Experimental section	181
5.3	Conclusion	180
5.2	Results and Discussion	168
5.1	Introduction	164

List of Notations, Symbols and Abbreviations

Notations	Abbreviations
%	Percentage
<	Less than
>	More than
0	Degree
Å	Angstrom
Ac	Acetyl
Ac ₂ O	Acetic anhydride
AcOH	Acetic acid
brs	Broad singlet
Obser.	Observed
Calc.	Calculated
©	Copyright
CHCl ₃	Chloroform
CDCl ₃	Deuterated chloroform
cm	Centimeter
J	Coupling constant
DMF	Dimethylformamide
$DMSO-d^6$	Deuterated dimethyl sulfoxide
D_2O	Deuterated water
°C	Degree Celsius
d	Doublet
DMAP	4-Dimethylaminopyridine
DCE	Dichloroethane
DCM	Dichloromethane
CH ₃ CN	Acetonitrile
K_2CO_3	Potassium carbonate
dd	Doublet of doublet
ddd	Doublet of doublet of doublet
ddt	Doublet of doublet of triplet

DMSO	Dimethyl sulfoxide
dq	Doublet of quartet
dt	Doublet of triplet
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene
DABCO	1,4-Diazabicyclo[2.2.2]octane
equiv.	Equivalent
EtOH	Ethanol
EtOAc	Ethyl acetate
equiv.	Equivalent
g	Gram; Gravitational force
h	Hour
Hz	Hertz
IR	Infra-Red
m	Multiplet
MeOH	Methanol
mg	Milligram
MHz	Megahertz
min	Minute
mL	Milliliter
mm	Millimeter
mmol	Millimole
μm	Micrometer
M.p.	Melting point
nm	Nanometer
NMR	Nuclear Magnetic Resonance
n-BuLi	<i>n</i> -Butyllithium
КОН	Potassium hydroxide
pН	Potential of hydrogen
ppm	Parts per million
RT	Room temperature
S	Singlet
NMP	N-Methyl-2-pyrrolidone
<i>t</i> -Bu	Tertiary butyl
THF	Tetrahydrofuran
TLC	Thin-Layer Chromatography
TMS	Tetramethylsilane

TFA	Trifluoroacetic acid
UV	Ultraviolet
XRD	X-ray Diffraction
HRMS	High-resolution mass spectrometry
MWI	Microwave irradiation
MCR	Multicomponent reactions
NMR	Nuclear magnetic resonance
α	Alpha
β	Beta
γ	Gamma
δ	Chemical shift
[ox]	Oxidation
\mathbf{R}_{f}	Refractive Index
0	Ortho
т	Meta
р	Para
H_2O_2	Hydrogen peroxide
H_2SO_4	Sulfuric acid
Et ₃ N	Triethylamine
Sc(OTf) ₃	Scandium triflate
Cu(OTf) ₂	Copper (II) trifluoromethanesulfonate
Yb(OTf) ₃	Ytterbium (III) trifluoromethanesulfonate
TBHP	tert-Butylhydroperoxide
BHT	Butylatedhydroxytoluene
LiAIH ₄	Lithium aluminium hydride
ZnCl ₂	Zinc chloride
KMnO ₄	Potassium permanganate
$K_2S_2O_8$	Potassium persulfate
TEMPO	(2,2,6,6-Tetramethylpiperidin-1- yl)oxidanyl
ZnO	Zinc oxide
	Acetic acid
CH ₃ COOH	
p-TSA	<i>p</i> -Toluenesulfonic acid
NH_2SO_3H	Sulfamic acid

TiO ₂	Titanium dioxide
CuCl	Copper (I) chloride
AlCl ₃	Aluminium chloride
NaBH ₄	Sodium borohydride
DTBP	Di-tert-butyl peroxide
et al.	et alia, Latin for "and others"
i.e.	that is
e.g.	Example
equiv.	Equivalents

LIST OF SCHEME

Scheme		Page
		No.
1.1	Most common synthetic approaches for the preparation of isatin	7
1.2	Synthesis of N- substituted isatin derivatives	9
1.3	Synthesis of Indurabins	10
1.4	Synthesis C-3 functionalized 2-oxindoles	12
1.5	Synthesis of 3-alkylidene-2-oxindoles	13
1.6	Synthesis of 3-substituted 3-hydroxy-2-oxindoles	13
1.7	Synthesis of Morita-Baylis-Hillman adducts of isatin	14
1.8	Synthesis of enantioselective isatin derivatives	15
1.9	Synthesis of isatoic anhydride	16
1.10	Synthesis of tryptanthrin and its derivatives	17
1.11	Synthesis of derivative of isatoic anhydride	17
1.12	Synthesis of 1,4-Benzoxazine-2, 3(4H)-dione	18
1.13	Synthesis of dibenzo [b,d]azepin-6-one scaffold	18
1.14	Synthesis of derivatives of indole	19
1.15	Synthesis of <i>N</i> -alkylindoles	20
1.16	Synthesis of indole	21
1.17	Synthesis of 5-nitroisatin	22
1.18	Synthesis of 5-chloroisatin	22
1.19	Synthesis of 5, 7-dibromoisatin	23
1.20	Synthesis of spiro- <i>N</i> , <i>N</i> -dimethylimidazolidine-oxindole	25
1.21	Synthesis of spiro-dioxolane-oxindoles derivatives	27
1.22	Synthesis of spiro-hexahydroazoceneoxindole derivatives	28
1.23	Synthesis of pyrrolidine-2-spiro-3-(2-oxindole) derivatives	28
1.24	Synthesis of spiropyrrolizidine oxindole derivatives	29
1.25	Synthesis of spiro cyclic 2-oxindole derivatives	29
1.26	Synthesis of fused spiro[4H pyran- oxindole] heterocycles	30
1.27	Synthesis of pyrazolopyridinyl spirooxindole derivatives	30
1.28	Synthesis of spiro[indoline-3,4'-pyrazolo[3,4-b]pyridine derivatives	31
1.29	Synthesis of spirooxindole compound containing isatin moiety	31
1.30	Synthesis of regioselective spirooxindole-based framework	32

1.01		
1.31	Synthesis of dicyano-functionalized spiropyrrolidine and	33
	spiropyrrolizidine	
1.32	Synthesis of ferrocenylmonospirooxindolo pyrrolidines	33
1.33	Multicomponent reaction ([3+2] cycloadditionreaction) of 3-	34
	cyano-acetylindoles amino acids aldehydes and isatin	
1.34	Synthesis of Spiro[3 <i>H</i> -indole-3,2'-[4 <i>H</i>]pyrido[3,2-e]-1,3-thiazine]-	35
	2,4'(1 <i>H</i>)diones	
1.35	Synthesis of spiropyrrolidines derivatives	36
1.36	Synthesis of pyrrolo-benzothiophene 1, 1-dioxide derivatives	36
1.37	Synthesis of spiro[1,3] oxazino [2,3-a] <i>N</i> -heterocyclic derivatives	37
1.38	Synthesis of spiroheterocycles in SO ₃ H-functionalized ionic	38
	liquid/water system	
1.39	Synthesis of spiro[indoline-3,4'-pyridine]-3'-carboxylate	40
	derivatives	
1.40	Synthesis of dispiro[oxazolidine-2-thione]bisoxindoles and	40
	dispiro[imidazolidine-2-thione]bisoxindoles	
2.1	Kajal De et al.—ChemCatChem	64
2.2	Wang, Shi et al.—Chem. Eur. J	65
2.3	Current procedure for the synthesis of 1, 4- benzodiazepine ring	65
2.4	Proposed mechanism for the synthesis of benzodiazepine ring	75
2.5	Gram-scale synthesis of benzodiazepine ring under ultrasound	76
	irradiation	
3.1	Synthesis of indoloindole pyrimidine derivatives	98
3.2	Plausible reaction mechanism	109
4.1	Synthesis of spiro[indoline-3,4'-quinoline] by previous method	125
4.2	Synthesis of Spiro[indoline-3,4-quinoline] Derivatives	126
4.3	Control experiment for reaction	140
4.4	Proposed reaction mechanism	142
5.1	Strategies for the synthesis of Spiro [Indoline-3, 4'-Quinoline]	167
5.2	Synthesis of Indoloindole pyrimidine derivatives	178
5.3	A plausible mechanism for the synthesis of Spiro [Indoline-3, 4'-	179
	Quinoline] (5a)	
5.4	Synthesis of Spiro [Indoline-3, 4'-Quinoline] in gram scale.	180

LIST OF FIGURES

Figure No.	. Description	Page No.
1.4	Structure of isatin	2
1.2	Biologically Active compound with isatin Moieties	2
1.3	Biological importance of isatin derivatives	3
1.4	Study of reactivity of isatin	8
1.5	Reactivity due to C-3 carbonyl group of isatin	11
1.6	Structure of spiro-heterocyclic compound	24
2.1	Some biologically active compounds having	
	1, 4-benzodiazepine scaffold	63
2.2	¹ H NMR of 3, 4, 5, 10-tetrahydrospiro[dibenzo[b,e]	
	[1, 4] diazepine-11,3'-indoline]-1,2'(2H)-dione (4a)	87
2.3	¹³ C NMR of 3,4,5,10-tetrahydrospiro[dibenzo[b,e][1,4]diazepine-	
	11,3'-indoline]-1,2'(2H)-dione (4a)	88
3.1	Few natural products having indole moieties	97
3.2	¹ H NMR of 5-(9-chloro-5-(4-chlorophenyl)-5a-hydroxy-3,3-	
	dimethyl-1-oxo-1,3,4,5,5a,6-hexahydroindolo[2,3-b]indol-10b(2H)-	
	yl)pyrimidine-2,4,6(1H,3H,5H)-trione (4a)	118
3.3	¹³ C NMR of 5-(9-chloro-5-(4-chlorophenyl)-5a-hydroxy-3,3-	
	dimethyl-1-oxo-1,3,4,5,5a,6-hexahydroindolo[2,3-b]indol-10b(2H)-yl	l)
	pyrimidine-2,4,6(1H,3H,5H)-trione (4a)	119
4.1	The experiment showed the effect of "On-off" switching of the	
	visible light source on reaction.	137
4.2	¹ H NMR 2'-Amino-1'-(4-chlorophenyl)-7',7'-dimethyl-2,5'-dioxo-5',6',	
	7',8'-tetrahydro-1'H-spiro[indoline-3,4'-quinoline]-3'-carbonitrile (4a)	151
4.3	¹³ C NMR 2'-Amino-1'-(4-chlorophenyl)-7',7'-dimethyl-2,5'-dioxo-	
	5',6',7',8'-tetrahydro-1'H-spiro[indoline-3,4'-quinoline]-3'-carbonitrile (4a) 152

4.4	HRMS data of 2'-Amino-1'-(4-chlorophenyl)-7',7'-dimethyl-2,5'-dioxo-	
	5',6',7',8'-tetrahydro-1'H-spiro[indoline-3,4'-quinoline]-3'-carbonitrile (4a)) 153
4.5	HRMS data of 2'-amino-5-bromo-1'-(4-chlorophenyl)-7',7'-dimethyl-	
	2,5'-dioxo-5',6',7',8'-tetrahydro-1'H-spiro[indoline-3,4'-quinoline]-3'	
	-carbonitrile (4b)	154
4.6	HRMS data of (E)-3-((4-chlorophenyl)imino)-5,5-dimethyl-2-	
	((2,2,6,6-tetramethylpiperidin-1-yl)oxy)cyclohexan-1-one (5a)	155
4.6	UV spectrum of Indole in methanol	156
4.7	UV spectrum of Malononitrile in methanol	157
4.8	UV spectrum of Demidone in methanol	157
4.9	UV spectrum of Aniline in methanol	158
4.10	UV spectrum of reaction mixture of aniline and demidone in methanol	158
4.11	UV spectrum of reaction mixture in methanol	159
5.1	¹ H NMR of ethyl 2'-amino-7',7'-dimethyl-2,5'-dioxo-1'-(p-tolyl)-5',6',7',	
	8'-tetrahydro-1'H-spiro[indoline-3,4'-quinoline]-3'-carboxylate (5a)	192
5.2	¹³ C NMR of ethyl 2'-amino-7',7'-dimethyl-2,5'-dioxo-1'-(p-tolyl)-5',6',	
	7',8'-tetrahydro-1'H-spiro[indoline-3,4'-quinoline]-3'-carboxylate (5a)	193

LIST OF TABLES

Table N	o. Description Pa	ge No.
2.1	Optimization reaction for the model reaction 4g	67
2.2	Investigation of substrate scope for the synthesis of 1,4-benzodiazepine ring	70
3.1	Optimization condition for the model reaction 4c	100
3.2	Investigation of substrate scope for the synthesis of Indoloindole pyrimidine	102
4.1	Optimization condition for the synthesis of Spiro[indoline-3,4 -quinoline]	
	derivatives 4a	128
4.2	Library of compounds and versatility of reaction	131
5.1	Optimization condition for the synthesis of Spiro	
	[Indoline-3, 4'-Quinoline] 5a	169
5.2	Effect of molar proportion of reaction mixture	171
5.3	Exploration of substrate scope for the synthesis of Spiro	
	[Indoline-3, 4'-Quinoline]	172

General Experimental Considerations

All the chemicals were procured from Aldrich, USA and E. Merck, Germany and were used as received. The solvents were purchased from Merck, India and Ranbaxy, India and were purified before its use. The preparation and particulars of the substrates employed for the work undertaken are given in their respective chapters. **Melting points** were measured using Stuart Melting point apparatus SPM10 in open capillary tubes and are uncorrected. **Infrared (IR)** spectra were recorded on Perkin-Elmer FT-IR-5300 spectrophotometer (v_{max} expressed in cm⁻¹). The ¹H (500 MHz) and ¹³C (126 MHz) **NMR** spectra were run on a Bruker Advance 500 MHz FT-NMR at 500 MHz spectrometers. Chemical shifts are given in δ ppm, using tetramethylsilane (TMS) as an internal standard. **HRMS** (m/z) were recorded in an electron ionization or electrospray ionization (ESI) mode on Water-Q-TOF premier-HAB213 and Sciex X500RQTOF instruments. The **elemental microanalyses** were performed on Exeter Analytical Inc Model, CE-440 elemental analyzer.

Thin-layer Chromatography (TLC) was performed on glass plates $(7.5 \times 2.5 \text{ and } 7.5 \times 5.0 \text{ cm})$ coated with Merck silica gel GF 254 using various combinations of ethyl acetate and n-hexane as an eluent. Visualization of spots was accomplished either in iodine chamber or by exposure to UV light. Merck silica gel (100-200 mesh) was used for column chromatography (approximately 15-20 g per 1 g of the crude product).

Preface

A central objective in synthetic organic chemistry has been to develop a greener and more economically competitive processes for the efficient synthesis of biologically active compounds with potential application in the pharmaceutical and related industries.

Isatin and its derivatives represent an important class of 'privileged structures' capable of serving as ligands for a wide range of biological targets. Due to this reason, in past few decades, isatin and its derivatives have been used extensively as key intermediate in organic synthesis.

The content of the thesis have been divided into five chapters.

Chapter 1 gives an overview of the chemistry of isatin, it starts from short introduction followed by methods of synthesis and after that chemical reactivity of isatin. In this section, reduction, oxidation, electrophilic aromatic substitution, N-substitution and reactivity of the carbonyl group of isatin are briefly covered. After that, synthesis of isatin based spiro-fused heterocyclic scaffolds and at least, recent application of isatin in organic synthesis have been briefly included. The actual investigation and findings are presented in the subsequent four chapters.

Chapter 2 deals with a facile and efficient multicomponent synthesis of benzodiazepine ring via the reaction of isatin, diphenylamine, and 1,3-diketone under ultrasound irradiation in water. **Chapter 3** gives an account for a grinding induced catalyst-free, multicomponent synthesis of indoloindole pyrimidine from isatin, barbituric acid and enaminone under ethanol as a solvent at room temperature.

Chapter 4 investigates of a facile and ecologically friendly one-pot multicomponent synthesis of biologically active spiro [indoline-3, 4'-quinoline] derivatives via oxidative coupling of indole with enaminone and malononitrile under EtOH: H_2O (4:1) as a solvent. **Chapter 5** describes a facile, efficient and environment friendly , easy work, short reaction time approach for the synthesis of Spiro[Indoline-3,4'-Quinoline] via one pot, four component reaction of amine, dimedone, isatin , and malononitrile using DABCO in the presence of ethanol at 80°C.