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ABSTRACT Long-Range networks are increasingly used in smart spaces due to their ability to provide
longer communication range while consuming low energy. To facilitate communication among different
Long-Range nodes, a gateway is used. For instance, in smart buildings such as airports, railway stations,
indoor stadiums, and auditoriums, sensory data from multiple sites are transferred to a base station through
a Long-Range gateway. However, when multiple nodes transmit data simultaneously to the gateway,
it generates network interference, especially in high-ceiling smart buildings where Long-Range nodes
with sensors are attached to monitor the building’s health. In this paper, we present a new method for
identifying interfering Long-Range Nodes (LNs) in high-ceiling smart buildings using a classification
model. Our approach involves gathering and analyzing network parameters, such as signal-to-noise ratio and
received signal strength indicator, from the signals to extract features that the classifier uses for interference
classification. The approach categorizes interference based on the number of interfering LNs, with each class
representing a distinct number of interfering LNs. We also introduce a push-based mechanism to detect and
adjust the power levels of faulty LNs, reducing interference. Our method is cost-effective as it is hardware-
independent, making it feasible to implement on the LG platform. Finally, we present a dataset of network
interference generated by varying the number of nodes, obstacles, and other parameters. We train the model
on the generated dataset and evaluate its effectiveness using a test bed. The experimental results demonstrate
that the approach can successfully identify interference nodes in a complex network.

INDEX TERMS Dataset, interference, LoRa gateway, LoRa node, signal-to-noise ratio.

I. INTRODUCTION
A smart building utilizes sensors, acoustics, and network-
ing devices to collect and analyze data about the complex
building, and it automatically makes decisions based on this
data. Depending on the size of the building, a smart building
can be classified as small, medium, or large [1]. Small and
medium-sized buildings have a limited number of devices and
smaller distances between them for environmental monitor-
ing, making maintenance simpler than in large-sized smart
buildings with a vast number of devices and larger distances
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among them.Monitoring buildings with high ceilings, such as
airport terminal structures, large workshops, warehouses, fac-
tories, malls, auditoriums, indoor stadiums, railway stations,
and theatres, is more challenging as they require frequent
maintenance of special safety equipments [2], [3].

Smart buildings are becoming more prevalent as they offer
several benefits such as improved energy efficiency, cost
savings, and increased comfort for occupants. One critical
aspect of a smart building is a monitoring system that uses
various types of sensors to monitor the health of building
structures [4]. However, the placement of such sensors in
high-ceiling smart buildings is cost-ineffective and challeng-
ing. The accuracy of the data collection mainly depends
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on the placement of the sensors. In addition, the frequent
replacement of batteries or maintenance of such sensors
becomes infeasible as it interrupts the running application of
the building area. For example, work on the roof of a public
building, such as an airport or railway station, requires the
evacuation of the area. Thus, a sensor is considered suit-
able for the smart building if it requires less maintenance,
battery replacement, and failure. To ensure the efficient and
effective functioning of a smart building monitoring system,
it is essential to carefully select the appropriate sensors and
strategically place them [1].

The exchange of sensory data among smart building
devices can be accomplished through various wireless com-
munication techniques. Short-range techniques such as WiFi,
BLE, and Zigbee, among others, consume less energy when
communicating sensory data to nearby devices [5], [6], [7].
However, long-range communication techniques such as 5G
and LTE consume huge amounts of energy when transferring
data over long distances. Despite their different advantages,
both short-range and long-range communication techniques
are unsuitable for smart buildings [8]. The former is because
of limited communication range, while the latter is because
of high power consumption. Additionally, the short-range
techniques cannot transfer sensory data from sensors attached
at the top of high-ceiling smart buildings, which poses a
significant challenge. Hence, there is a need for more suitable
wireless communication techniques that are energy-efficient
and can transmit data over long distances.

The Long RangeWide Area Network (LoRaWAN) utilizes
a star-of-stars network topology and medium access control
to provide low power and long-range communication, making
it an ideal wireless communication for high-ceiling smart
buildings [9]. The benefits of LoRaWAN include its long
communication range, low power consumption, and ease of
implementation. These advantages have resulted in exponen-
tial growth in the use of LoRaWAN applications in smart
buildings, particularly in high-ceiling smart buildings where
the distance between the sensors and devices is higher. The
LoRaWAN architecture consists of several entities, including
LoRa Nodes (LNs), LoRa Gateway (LG), Network Server
(NS), and Application Server (AS). LNs are embedded with
sensors to monitor the health of the buildings, and they trans-
fer the sensory data to the LG using LNs. Subsequently, the
LG transfers the data to the AS via NS [10], [11].
LoRa technology has several advantages in smart build-

ings, but it also presents certain challenges. LoRa employs
virtual channels known as Spreading Factors (SFs) to transfer
sensory data between LNs and LG. LoRa supports a limited
number of virtual channels, which means that an LG can
only connect to a limited number of LNs on a given SF.
Interference is a common issue in LoRa, especially when
multiple LNs simultaneously attempt to transmit data to a
single LG on a given SF. This interference problem is even
more severe when sensing and communicating the health
information of building structures, as it can prevent an LN
from transmitting its critical data to the LG [12].

FIGURE 1. Overview of system model with the illustration of interference
problem in LoRa network.

In this paper, we present a novel solution to the challenges
of wireless communication in a high-ceiling building, as illus-
trated in Figure 1. Conventional short-range communication
technologies are not suitable due to the large distance between
the sensors attached to the ceiling and the network devices on
the ground, while long-range communication techniques are
not viable due to their high energy consumption. To overcome
these challenges, we propose the use of LoRa, a low-power
and long-range wireless communication technology. In our
scenario, LNs are attached to the ceiling to sense the health
of building structures, and an LG is used to collect and
transmit the sensory data to the NS for further processing.
This scenario poses various challenges, such as:
• Interference in the network: LoRa’s limited virtual

channels can cause interference when multiple LNs attempt
to communicate with a single LG on a given SF.
• Identifying faulty sensors: Ensuring the proper func-

tioning of sensors is critical for the health and safety of
building occupants but identifying and maintaining faulty
sensors can be costly and time-consuming. Quick identifi-
cation of faulty sensors from a large number of sensors is
challenging, and delays in detection result in financial loss or
even endanger human life. Thus, efficient sensor fault detec-
tion and maintenance is a crucial challenge in the context of
smart buildings.
• Energy efficiency: Ensuring energy efficiency is the

main challenge in the network of smart buildings since the
sensors, which are powered by batteries, cannot be frequently
replaced or recharged.
• Cost-effectiveness: To ensure a cost-effective solution

for a large-size smart building, it is crucial to have a large
number of sensors that are low-cost.

To overcome the aforementioned challenges in the sce-
nario, this paper presents a novel machine learning-based
solution to identify and mitigate interference issues in the
LoRa network of a high-ceiling smart building. Specifically,
we aim to answer the following question: how can we quickly
identify the number of LNs causing interference in the
LoRa network of a smart building? Our proposed approach
involves analyzing network parameters of received signals
from LNs to LG. It includes data collection, preprocessing,
and training of a machine learning model to build a classifier
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that predicts the number of interfering LNs and identifies
them accurately. By leveraging our solution, we aim to
enhance the performance of the LoRa network in smart build-
ings and reduce maintenance costs, time, and interruptions
caused by faulty sensors.

A. MAJOR CONTRIBUTIONS
To the best of our knowledge, this is the first study to develop
a machine-learning-based approach for identifying the LNs
that cause interference in high-ceiling smart buildings. Our
approach does not require any additional hardware and works
on the LG, making it a cost-effective solution. Furthermore,
the following are the major contributions of this work:
• We introduce a novel approach that utilizes a classifi-
cation model to identify interfering LNs in high-ceiling
smart buildings. Our approach involves collecting and
analyzing network parameters such as signal-to-noise
ratio (SNR) and received signal strength indicator
(RSSI) from the signals to extract features for the clas-
sifier. The approach classifies interference based on the
number of interfering LNs, where each class represents
a different number of interfering LNs. Additionally,
we propose a push-based mechanism for detecting and
adjusting the power levels of faulty LNs tomitigate inter-
ference. Our approach is hardware-independent, making
it a cost-effective solution that can be implemented on
the LG platform. We contribute to the field in two
ways: (1) a novel classification approach for identifying
interfering LNs, and (2) a push-based mechanism for
identifying faulty LNs and adjusting their power levels.

• Our next contribution is the creation of an open dataset
of LoRa interference. This labeled dataset includes vari-
ous deployment scenarios with multiple LNs, both with
and without interference. For each message sent by the
LN to the LG, the dataset includes important features
such as SNR, RSSI, payload, and time-stamp. The free
availability of this dataset will enable researchers to
compare the performance of different interference mit-
igation techniques and encourage the development of
new approaches for LoRa interference.

• Finally,We present a testbed that validates the feasibility
of our approach. The testbed consists of low-cost
in-house developed devices and modifies the exist-
ing LoRa device-to-device LMIC library to imple-
ment the approach. Our system achieves an average
accuracy of approximately 98.85%, demonstrating its
high performance. Additionally, our results highlight
the system’s ability to effectively detect faulty and
interference devices, providing an advantage over the
state-of-the-art.

B. BACKGROUND AND MOTIVATION
1) BACKGROUND
The interference problem in LoRaWAN has been addressed
using various approaches, including the use of RSSI-based
SF allocation schemes. However, in real-world deployments,
RSSI values can vary significantly due to obstacles, distance,

and the presence of other LoRa signals, among other factors.
This is particularly challenging in high-ceiling smart build-
ings where signals can experience significant attenuation and
multipath fading. As a result, RSSI-based SF allocation needs
to be more competent to solve the problem of interference
in LoRaWAN. Recently, authors in [13] proposed a solution
to the interference problem by using the CSMA protocol.
Although CSMA has shown promise in addressing interfer-
ence, it is also facing the issue of high delay. Moreover,
it does not solve the problem of collisions when a random
node joins and tries to send data simultaneously, which can
further worsen the interference problem. Therefore, there is
still a need for more effective and efficient solutions to the
interference problem in LoRaWAN, especially in challenging
environments like high-ceiling smart buildings.

Several papers have analyzed the performance of the LoRa
network, with a focus on improving network performance.
In particular, many of these studies have proposed different
SF allocation and channel orthogonalization techniques to
optimize the network. For instance, the paper uses a distance-
based SF allocation approach and channel orthogonaliza-
tion with different SF, CR, and bandwidth. In recent work,
authors in [14] proposed solving the interference problem in
LoRaWAN using game theory techniques. Specifically, the
authors used Bayesian and Stackelberg games to address the
interference issue. Other studies, such as [12], [15], [16], [17],
[18], [19], have examined the scalability of the LoRa net-
work, particularly in relation to distance-based SF allocation
techniques. The authors noted that as the network scales up,
the interference problem becomes more pronounced. They
highlighted the importance of SF scheduling in improving the
scalability of the network. Overall, these studies demonstrate
the ongoing efforts to optimize the performance of LoRa
networks and address their challenges, such as interference
and scalability.

Optimizing SF allocation in LoRa networks is a challeng-
ing task, as it involves addressing issues such as the capture
effect and fairness considerations. Several approaches have
been proposed in the literature, with a common thread being
the use of game theory techniques to model the behavior of
LoRa users and channels. In particular, some recent work
has proposed a game-theoretic framework for SF allocation,
where LoRa users and channels are characterized as greedy
players that aim to maximize their utility. By formulating
SF allocation as a many-to-one matching game, this frame-
work can account for capture effect and fairness concerns.
To improve the performance of LoRa networks, the authors
in [20], [21], [22] recently proposed a sequential strategy
for allocating SF to LN. This approach balances SF allo-
cation across the LoRaWAN and takes advantage of RSSI
information to improve resource allocation. These studies
demonstrate the use of game theory and other techniques to
address the challenges of SF allocation in LoRa networks. By
improving SF balancing and resource allocation, it is possible
to enhance the performance and fairness of LoRaWAN.

The authors in [23] introduced a Multi-Stream Orthog-
onal Network Decoupling protocol, MS-OND, for wireless
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communication systems with multi-antenna source and desti-
nation nodes. MS-OND also comprised some single-antenna
half-duplex relay nodes. The primary motivation of the work
was to successfully deliver multiple data streams for each
multi-antenna source-destination pair by exploiting multiuser
diversity gain in fading channels. The authors identified that
the proposed MS-OND protocol is suitable for scenarios like
massive Machine-Type Communications (mMTC) and the
Internet of Things (IoT) in 5G wireless networks. It can be
applied to low-cost devices with a half-duplex and single-
antenna configuration, making them potential candidate relay
nodes. Next, the authors in [24] highlighted the role of multi-
hop Device-to-Device (D2D) communications in underlying
cellular networks. Apart from the objective of [23], here the
authors tried to effectively address the increasing demand
for Internet access from mobile users. They concluded that
the direct single-hop D2D communication mechanism has
limitations in delivering quality transmissions over a large
area. In addition, they investigated the impact of interference
and network traffic conditions on the quality of D2D commu-
nications and derives analytical expressions for end-to-end
packet loss probability (E2EPLP) in the presence or absence
of XOR coding.

Further, Behnad et al. [25] has thoroughly analyzed the
performance of opportunistic relaying in a dual-hop Amplify-
and-Forward (AF) relay network. The authors have consid-
ered the scenario, where the relaying nodes are distributed
according to a homogeneous two-dimensional Poisson point
process with a fixed density. Such assumption of a random
spatial distribution of relaying nodes not only distinguish
the proposed work from other but also leads to more real-
istic results. The considered scenario is more realistic as
the number of relays and their distances from the source
and destination are typically unknown in practical cases.
Finally, Zanella et al. [26] explored a scenario where mul-
tiple sources are transmitting messages to their intended
destinations using relays in a decode-and-forward two-hop
mechanism. The objective of the authors was to minimize
interference using two opportunistic relay selection mech-
anisms. These mechanisms aimed to select relays that can
minimize interference and improve overall performance. The
authors analytically evaluated the performance of these selec-
tion mechanisms in terms of outage probability and average
achievable rate. The analysis assumed that the relay nodes
are distributed according to a Poisson point process, which
is a commonly used mathematical model for random spatial
distributions.

Furthermore, the authors in [27] discussed a substantial
review of emerging trends in future smart grid research inte-
grated with the technical work. The primary focus was on
visualising an innovative smart grid that utilizes the power
of artificial intelligence, IoT, and 5G networks. In addition,
the authors have addressed the challenges inherent in build-
ing next-generation smart grids, particularly integrating AI,
IoT, and 5G to boost smart grid technology. They also pro-
vided potential solutions to these challenges and suggested

standards that can support this innovative direction. Simi-
larly, the authors in [28] highlighted the role of adversarial
attack methods in evaluating the robustness of deep learning-
based classifiers, particularly in wireless signal classification.
They introduced a real-world threat model that bridges the
gap between idealized assumptions and real-world conditions
in adversarial attack scenarios. By presenting an innovative
IC-UAP crafting method and a physical attack algorithm,
this approach enhances the effectiveness and applicability of
malicious attacks against deep learning-based wireless signal
classifiers.

2) MOTIVATION
Existing work on interference in LoRa networks has largely
focused on two types of SF allocation schemes: distance-
based and RSSI-based [29]. However, in practice, only
distance-based allocation may be needed to address inter-
ference and scalability concerns. One key limitation of the
existing work is the lack of consideration for SNR pattern
analysis in LoRa networks. SNR patterns provide a useful
indicator of interference signals in the network, which can
be particularly relevant in scenarios where multiple LNs of
the same SF are located in close proximity and attempt to
transmit data simultaneously. In such cases, only a subset of
nodes may be able to send data to the LG, leading to data loss
and the creation of interference signals. By accounting for
SNR patterns and other factors, it may be possible to design
more efficient LoRa networks that can handle interference
and other challenges more effectively.

This paper focuses on addressing interference in LoRa
networks using a novel approach based on real-time SNR
pattern analysis. Specifically, we propose leveragingmachine
learning techniques to predict interference signals in the
LoRa network, providing a more effective means of address-
ing this challenge. By analyzing SNR patterns in real-time,
our approach can help to identify and address interference
issues quickly and efficiently, leading to improved network
performance and reliability.

The rest of the paper is structured as follows: Section II for-
mally defines the notations, and assumptions, and presents an
overview of the system. In Section III, the proposed system is
presented in detail. Section IV presents the dataset collection
and testbed results, and Section V concludes the paper with a
discussion of the findings and future work.

II. PRELIMINARIES AND PROBLEM STATEMENT
This section presents the system model for the considered
LoRaWAN network, along with the key terminologies and
notations used throughout this work. Additionally, we draw
attention to the issue of co-SF interference in the network.

A. PRELIMINARIES
1) LoRa AND LoRaWAN
Long-Range Wide Area Network (LoRaWAN) is a widely
adopted protocol in the Low-Power WANs (LPWANs)
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family. It facilitates a long communication range while
consuming low power. LoRa Alliance is responsible for pro-
viding public specifications and promotion for LoRaWAN.
The LoRaWAN uses IEEE 802.15.4 at the physical or
radio layer, also known as Long-Range (LoRa). We can
use conventional network protocols above the LoRa physi-
cal layer [30]. However, the LoRa alliance recommends the
LoRaWAN protocol with radios having the duty cycle≤ 1%.
The working principle of the LoRa modulation technique
relies upon the Chirp Spread Spectrum (CSS). LoRa encodes
data via frequency chirps with linear frequency variations
over time. Chirp modulation is a technique of transmitting
symbols, where symbols are encoded into multiple signals
of decreasing (down-chirp) or increasing (up-chirp) radio
frequencies.

2) LoRa COMMUNICATION
LoRa supports a flexible communication range using differ-
ent Spreading Factors (SFs), i.e., SF 7, SF 8, SF 9, SF 10,
SF 11, and SF 12. The lower SF (e.g., SF 7) possesses a high
data rate, less communication range, and low packet loss and
vice-versa for higher SF (e.g., SF 12). LoRaWAN defines an
Adaptive Data Rate (ADR) scheme by the network server
to control the uplink transmission of LN. A network server
optimizes data rate and transmission power using the ADR
bit. LoRaWAN uses three signal bandwidths, i.e., 125 kHz,
250 kHz, and 500 kHz. Furthermore, LoRaWAN uses the
logic of the Media Access Control (MAC) protocol speci-
fication of the data link layer, which allows the end node
to exchange information with the network server through a
gateway (or relay). After getting a message from the end
node, the network server sends that message to the application
server, which is directly connected to the users.

3) LoRa ENCRYPTION AND PARAMETERS
LoRaWAN uses two Advanced Encryption Standard (AES),
i.e., AES-128, techniques to secure the data: 1) AES-128
security protocol between LN and NS and 2) AES-128
security protocol between the LN and AS. The parameters
impacting communication via LoRa are the spreading fac-
tor, bandwidth, coding rate, and transmission power. These
parameters impacted the received signal strength, power con-
sumption, and coverage range. Table 1 illustrates the LoRa
communication parameters with their corresponding symbols
and range of values.

Further, the three factors that affect data rate, dr , in the
networks are b, s, and cr . The expression for dr is expressed
as follows:

dr = b×
s
2s
× cr . (1)

The symbol duration using spreading factor and bandwidth
is expressed as follows:

Tsym =
2s

b
. (2)

TABLE 1. List of symbols and abbreviations used in this paper.

TABLE 2. Illustration of different SFs with their SNR limit, receiver
sensitivity, and range.

4) INTERFERENCE NODE PREDICTION USING SVM
There is a separate SNR limit for each SF. LoRa network’s
receiver sensitivity determines the communication range.

Rx sensitivity = −174+ 10 log10(b)+ NF + SNR(limit),

(3)

where NF denote the noise factor. SNR(limit) value decreases,
receiver sensitivity decreases, and communication range
increases, as shown in Table 2. SNR value fluctuates when
the number of LN increase or decreases. Fluctuation is more
visible when the number of simultaneous messages sends
by the LN to the LG. We collect different combination data
in SQM dataset. We apply SVM techniques to predict the
number of interference nodes in the LoRa network. Using
SVM techniques we analyse the pattern of SNR fluctuation
to predict the interference LNs.

The SNR can be further defined as PtxA0gr−α

σ 2 , where Ptx
denotes the transmit power of transmission, σ 2 denotes the
noise power, g denotes their corresponding channel fading
power and r denotes the distance between the gateway and
LoRa node. LoRa network, LoRa messages decode at the
gateway based on signal strength. Additionally, A0 is the Friis
transmission equation defined as A0 = ( c

45fc
)2, where the

Friis transmission equation comes with carrier frequency fc
and velocity of light c.
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5) RECEIVER SENSITIVITY WITH SHADOWING/FADING
FACTOR
The receiver sensitivity defined in (3) is simpler and utilized
during the result analysis. In this section, we describe the
more complicated expression for receiver sensitivity consid-
ering the shadowing/fading factor. To incorporate shadowing
or fading factors into the equation ((3)) for Rx sensitivity,
we have to employ stochastic terms that represent the random
variations caused by these effects. Here, Shadowing refers to
large-scale signal variations due to obstacles or other physical
factors while fading refers to small-scale signal variations
caused by multi-path propagation.

In this work, we have added random variables to the
equation ((3)) that follow specific distributions representing
shadowing and fading. Themodified expression is as follows:

Rx sensitivity = −174+ 10 log10(b)+ NF

+ SNR(limit)+ Xshadow + Xfade. (4)

where Xshadow is the shadowing term (shadow fading), a ran-
dom variable following a log-normal distribution and Xfade
is the fading term (small-scale fading), a random variable
following a Rayleigh distribution.

However, the distribution may be varied as the specific
distribution of the shadowing and fading terms depends on the
characteristics of the environment and the wireless channel.
In this work, we employ log-normal distribution for shad-
owing, while the Rayleigh or Rician distributions for fading
in different scenarios. Further, adding shadowing and fading
terms makes the equation probabilistic; thus, we have to
analyze the statistical behaviour of the system rather than
looking for deterministic solutions. This kind of analysis
resembles that of wireless communication systems to assess
their performance under real-world conditions.

B. OVERVIEW OF NETWORK MODEL
This work considers a LoRaWAN network scenario compris-
ing N LNs and a single LG. The network uses the uplink
model for this single LG network and is assumed to pos-
sess co-SF interference. The interference of different SFs
is beyond the scope of this work. In the network scenario,
we consider multiple sensors connected to an LN to sense
environmental activities like temperature, humidity, wind
speed, air quality, etc. Each LN transfers the collected sen-
sory data to the LG using the LoRaWAN protocol. Later,
LG transmits the received data to NS using conventional
internet protocols. NS processes the received data for mak-
ing circumstance-specific decisions such as early warning
alarms. Afterwards, NS conveyed these processed results
(or decisions) to the AS via conventional internet protocols.
Finally, the users can easily access the results from the AS.

C. PROBLEM STATEMENT
LoRa uses the random access control protocol, i.e., unslotted
ALOHA for access control; thus, prone to signal interfer-
ence. This simultaneous transmission of data from multiple
LNs introduced the problem of signal interference; therefore,

FIGURE 2. Flow diagram of our proposed model.

we only receive data from one LN on LG, as shown in
Figure 2. The interference problem becomes more compli-
cated in the dense LoRa network, where an LG connects
multiple LNs. The inference leads to message loss in the
network. If we can detect the number of interfering signals
or LNs, then we can provide an adequate mechanism to
overcome message loss.

III. LoRa DEVICES INTERFERENCE SYSTEM
In this section, we first discuss the device designs used dur-
ing the experiment. We next discuss the deployment of the
devices for creating the dataset and testing the accuracy of
the approach. Next, this section presents the LoRa Devices
Interference (LDI) system to recognize the LDs which create
interference in the network of the smart buildings. Figure 2
illustrates the block diagram of the LDI system. In the data
collection step, an LG collects the SNR and RSSI with a
time-stamp of messages from LNs. The collected data then
work as input for the preprocessing step where the raw data
are windowing. The windowed and preprocessed data finally
process to reorganize the LDs, creating an interference issue.

A. DESIGN OF LNs AND LG
The approach uses LNs and LG to identify the interference
issue, as shown in Figure 2. We design the LNs using the
available micro-controller, LoRa shield, and sensors. The
motivations for developing LNs are to reduce the cost, mak-
ing them based on the requirement, and suitable for India
located free frequency spectrum. The components of the LN
are Arduino nano, LoRa shield, sensors, and a 5V battery.
We select Arduino nano because it has 14 input/output digital
pins, a crystal oscillator of 16 MHz, an operating voltage that
varies from 5V to 12V , supports the serial protocol, and has a
mini USB Pin upload code and charges the battery. The LoRa
shield is attached to a micro-controller. The SX1276 Shield
is attached with Arduino to send data and reach extremely
long ranges at low data rates. It provides ultra-long-range
spread spectrum communication and high interference immu-
nity while minimizing current consumption. Finally, we use
accelerometers and vibration sensors, attached to LNs.

The main objective of the paper is to handle the interfer-
ence. We design a single channel LG for facing interference
whenever multiple LNs simultaneously transfer the data.
Another motivation for developing single-channel LG is to
make it a low-cost and 5V battery-powered device. Such
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FIGURE 3. An overview of sensory deployment in our department for
dataset collection.

LG can easily be deployed in the field. The LG consists of
Raspberry Pi, LoRa shield, display, and laptop connection.

B. DATASET CREATION FOR THE TRAINING OF THE
SYSTEM
We created the dataset by considering SNR and RSSI as net-
work parameters, different locations, number of LNs, and size
of the payloads. The dataset is available at IEEE dataport [31].

1) DEPLOYMENT SCENARIO
To illustrate the impact of the obstacles, we consider indoor
and outdoor scenarios. We consider the department of CSE
IIT(BHU) building as an indoor building and the railway
platform as an outdoor scenario. The floor map and the
locations of the devices are shown in Figure 3. Here, we use
single-channel LG, and devices change from 8 to 15. The
distance between LNs and LG varies from 5 to 50meters. The
floor map illustrates the walls, doors, and windows between
LNs and LG. We consider railway stations for the outdoor
environment. The outdoor environment did not consist of
obstacles between LNs and LG. The number of LNs varies
from 5 to 100 meters, and the number of LNs 8 to 15.

2) NETWORK PARAMETERS
The designed devices support SF 7 to 12. We use 7 to 12 SFs
with 0.3 kbps to 27 kbps data rate and 4

5 to 4
8 coding rate. We

used 12 dbi transmission power during the experiment. While
collecting the dataset, we consider the interference between
2 to 6 devices on a fixed SF. We called it different levels of

interference. For creating the interference, two or more LNs
simultaneously transmits the data to the LG.

The signal quality measure in the LoRa network is either
the received signal strength indicator (RSSI) or SNR. RSSI
changes over obstacles, distance, noise, and interference.
Therefore, detecting interfering LNs in the LoRaNetwork via
only RSSI is not feasible. On the other hand, SNR fluctuates
primarily because of interference with other signals. LN away
from LG may experience a high SNR value in a real-time
environment, while LN near LG may experience a low SNR.
SNR varies differently at the receiver’s end (LG) for each
SF, where the SNR limit for different SFs is non-identical.
Thus, we can exploit SNR and RSSI values to predict the
number of interfering LNs in the LoRa network. The dataset
consisted time stamp when the message was received at LG,
the SNR of each message with a different label of interfer-
ence, and the RSSI values of the received message. Figure 2
summarized the selected dataset. Here, we illustrate the SNR
and RSSI with interference for the different numbers of LNs,
placement, and SFs. The dataset consists of two payloads,
text messages and sensory data. The size of the payload
is 10 and 60 bytes.

C. DATA COLLECTION FOR TESTING OF THE SYSTEM
LoRa gateway receives data from LoRa nodes that trans-
mit at different spreading factors (SF), which determine the
transmission range and data rate. The gateway calculates
the RSSI and SNR values of the received data, which are
measures of the received signal strength and signal-to-noise
ratio, respectively. These values are crucial in determining the
quality of the received signal and the ability to decode the
transmitted data. The LoRa gateway then sends the received
data, along with the RSSI, SNR, and SF values, to the LoRa
network server. The server stores the received data in dif-
ferent groups according to the spreading factors used. For
example, data received at SF7 is stored in one group, while
data received at SF8 is stored in another. This categorization
is important because data transmitted at different spreading
factors have different trade-offs between transmission range
and data rate. Lower SFs (e.g., SF7) allow for high data rates
but have a shorter range, while higher SFs (e.g., SF12) allow
for larger ranges but lower data rates. This organization of
data can help in managing and analyzing the network’s per-
formance, as it facilitates the comparison of data transmitted
at different SFs. Moreover, it can assist in troubleshooting
and identifying issues that may arise in the network, as data
received at different SFs may exhibit different characteristics
or potential sources of interference.

D. DATA FILTERING USING JOINT KALMAN FILTER
The Joint Kalman filter is a variant of the Kalman filter that
is used to estimate multiple state variables simultaneously. In
our system, we used a Joint Kalman filter to estimate both the
RSSI and SNR of a received signal.

Let xk denote the state vector at time instant k . In our
proposed work, the state vector will consist of two elements:
1) RSSI and 2) SNR. Thus, the measurement vector zk will
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consist of the RSSI and SNR measurements at time instant k .
The Joint Kalman filter proceeds in two stages, i.e., prediction
and update.

In the prediction stage, we use the state transition matrix
Fk to predict the state vector at the next time instant, based
on the state vector and process noise covariance matrix Qk at
the current time instant. Mathematically, it is given as:

xk|k−1 = Fkxk−1|k−1, (5)

Pk|k−1 = FkPk−1|k−1FTk + Qk . (6)

In the update stage, we use the measurement matrix Hk
and measurement noise covariance matrix Rk to update our
estimate of the state vector based on the current measurement.
The Kalman gain Kk is also computed in this stage. Mathe-
matically, this can be defined as:

Kk = Pk|k−1HT
k (HkPk|k−1H

T
k + Rk )

−1, (7)

xk|k = xk|k−1 + Kk (zk − Hkxk|k−1), (8)

Pk|k = (I − KkHk )Pk|k−1. (9)

In this work, we use a 2 × 2 identity matrix for both Fk and
Hk , as we have two state variables and two measurements.
The process noise covariance matrix Qk and measurement
noise covariance matrix Rk can be determined experimentally
based on the characteristics of the system.
Example 1 (Numerical Example): Let’s illustrate a numer-

ical example of the Joint Kalman filter for estimating RSSI
and SNR of a received signal.

Assume we have a measurement vector zk of RSSI and
SNR at time instant k as:

zk =
[
−75 20

]
.

We start with an initial estimate of the state vector x0|0 and
covariance matrix P0|0 as:

x0|0 =
[
−70 25

]
P0|0 =

[
10 0 0 10

]
.

Assuming the process noise covariance matrix Qk and
measurement noise covariance matrix Rk are as follows:

Qk =
[
0.01 0 0 0.01

]
,

Rk =
[
1 0 0 1

]
.

We can define the state transition matrix Fk and measurement
matrix Hk as 2× 2 identity matrices:

Fk =
[
1 0 0 1

]
,

Hk =
[
1 0 0 1

]
.

Assuming we have already calculated Kalman gain Kk as:

Kk =
[
0.498 0 0 0.498

]
.

We can use the update stage equations to compute the new
estimate of the state vector and covariance matrix:

xk|k = xk|k−1 + Kk (zk − Hkxk|k−1),

xk|k =
[
−73.49 22.51

]
,

Pk|k = (I − KkHk )Pk|k−1,

Pk|k =
[
5.01 0 0 5.01

]
.

The new estimate of the state vector at time instant k is
xk|k , which gives us the estimated values of RSSI and SNR.
We can continue this process at each time instant to update
our estimate of the state vector and covariance matrix. Let us
consider, we have the following measurements of RSSI and
SNR over time:

Time (k) RSSI Measurement SNR Measurement
0 −70 20
1 −65 22
2 −68 21
3 −71 18
4 −67 19

 .

We can use the Joint Kalman filter to estimate the true
values of RSSI and SNR, given these measurements. Let’s
assume that the initial state vector is:

x0 =
[
−75 15

]
.

and the initial error covariance matrix is:

P0 =
[
25 0 0 25

]
.

We also assume that process noise covariance matrix is:

Qk =
[
0.01 0 0 0.01

]
.

The measurement noise covariance matrix is:

Rk =
[
1 0 0 1

]
.

We can now perform the steps to apply Joint Kalman filter:

1) PREDICTION STAGE
Weuse the state transitionmatrixFk to predict the state vector
at time k = 1 based on the state vector and process noise
covariance matrix at time k = 0:

Fk =
[
1 0 0 1

]
,

x1|0 = Fkx0|0 =
[
−75 15

]
,

P1|0 = FkP0|0FTk + Qk =
[
25.01 0 0 25.01

]
.

At the time k = 2, we use the state transition matrix Fk to
predict the state vector at time k = 2 based on the state vector
and process noise covariance matrix at time k = 1:

x2|1 = Fkx1|1 =
[
−65 22

]
,

P2|1 = FkP1|1FTk + Qk =
[
25.01 0 0 25.01

]
.

2) UPDATE STAGE
We use the measurement matrix Hk and measurement noise
covariancematrixRk to update our estimate of the state vector
based on the RSSI and SNR measurements at time k = 1:

Hk =
[
1 0 0 1

]
,

Kk = P1|0HT
k (HkP1|0H

T
k + Rk )

−1,

=
[
0.9615 0 0 0.961

]
.
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We repeat this process for the remaining time steps. In this
example, both RSSI (Received Signal Strength Indicator)
and SNR (Signal-to-Noise Ratio) are expressed in decibels
(dB). It is because decibels are a commonly used unit for
quantifying signal strength and ratio measurements in various
fields, including telecommunications and signal processing.
By utilizing decibels, we can conveniently represent the rel-
ative power levels and ratios in a logarithmic scale, which
allows for easier comparison and interpretation of the values.
The logarithmic nature of decibels allows us to express a wide
range of values within a more comprehensible range.

E. GENERATING DATA STREAM EVENT USING SLIDING
WINDOWS
In a LoRa network, k different types of interference are
created and are denoted as {a1, a2, · · · , ak}. Whenever a
sensor detects an event, the system generates a data stream
event sequence. The system segments the event sequence
into fixed-size event count-based windows, each contain-
ing an equal number of events. The length of a window
is denoted by l, and the event stream and window vec-
tor are denoted by e = {e1, e2, · · · , ei, · · · }T and W =

{W1,W2, · · · ,Wj, · · · }
T , respectively. A windowWj consists

of events {ej, ej+1, · · · , ej+l−1}, where ej and ej+l−1 are the
first and last events of Wj, respectively. The length of a
window l is empirically derived by observing the effect of
different values of l on the system’s performance, where l ∈
[lmin, lmax]. The minimumwindow length lmin is calculated as
follows: lmin = min{1E1, · · · , 1Ei, · · · , 1En}, where 1Ei
corresponds to the mean window size of sensor data sequence
ai. The maximum window length lmax is the median of the
number of events that occur for the sensory data generated by
all LoRa networks: lmax = median{1E1, · · · , 1En}.
Based on experimental results, a window size of 90 for

previous events is found to be a good choice. Let’s say we
have a LoRa network with 3 types of interference, denoted
as a1, a2, and a3. Each type of interference generates a data
stream event sequence of different lengths:

• a1 generates event sequences of length 1000.
• a2 generates event sequences of length 800.
• a3 generates event sequences of length 1200.

We want to segment each event sequence into fixed-size
event count-based windows, with the length of each window
denoted as l. We can choose l to be any value between the
minimum and maximum window length:

• lmin is the minimum value of 1E for all three types of
interference: lmin = min(1000, 800, 1200) = 800

• lmax is the median value of 1E for all three types of
interference: lmax = median(1000, 800, 1200) = 1000

So we can choose any value of l between 800 and 1000.
Let’s say we choose l = 900. Then we can divide each event
sequence into windows of length 900:

• a1 will have
⌈ 1000

900

⌉
= 2 windows.

• a2 will have ⌈ 800900⌉ = 1 window.
• a3 will have ⌈ 1200900 ⌉ = 2 windows.

TABLE 3. Time and frequency domain features considered in this work
during implementation.

In eachwindow, wewill have an equal number of events (in
this case, 900). We can then analyze each window to detect
events of interest and filter out interference.

F. IDENTIFY THE INTERFERENCE DEVICES
This section covers the mechanism of identifying the inter-
fering devices, which is a multi-class classification problem.
It comprises feature extraction and classification steps. The
system extracts the features from the preprocessed data and
uses them to identify the interference LNs. We use different
features, as presented in Table 3.

During the determination of interfering devices, we iden-
tify the best-performing classifier for predicting relapses in a
high-ceiling smart building. To accomplish this goal, we eval-
uate the performance of four popular classifiers: logistic
regression, linear SVM,RBF SVM, and random forest. To
avoid over-fitting, we apply elastic net regularization to logis-
tic regression and linear SVM, which linearly combines L1
and L2 penalties. We also use a grid search to identify the best
hyper-parameters for each model. To classify a data stream
event sequence of RSSI and SNR in a high-ceiling smart
building, we propose a classification function that combines
the SVM loss function, RSSI propagation module, and hand-
crafted features. We optimize this function using gradient
descent or other numerical optimization methods to find the
optimal values of the weight vector, bias term, and Lagrange
multipliers that minimize the loss function and maximize the
classification accuracy.

The SVM loss function is defined in terms of minimizing
the following equation subject to the given constraints:

min
w,b,ξ

1
2
wTw+ C

∑
i

ξi, (10)

where yi(wT hi + b) ≥ 1− ξi and ξi ≥ 0.
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Further, we use an RSSI propagation module to model the
effects of signal propagation in a high-ceiling smart building.
This module takes into account the distance between two
sensors and the corresponding path loss factor to model the
received signal strength. The module’s equation is:

RSSI = Pt + G(d)− 10n log10(d)+ X , (11)

where, Pt is transmitted power, n is path loss exponent, and
X is a random variable for additive white Gaussian noise.

We derive a feature vector h from the sequence of RSSI and
SNR measurements x using handcrafted feature engineering.
The feature vector consists of statistical features such as
mean, variance, and autocorrelation, which capture different
aspects of the raw data. An example of a handcrafted feature
vector with ten features is:

h = [f1(x), f2(x), . . . , f10(x)], (12)

where, f1(x) is the mean of RSSI measurements, f2(x) is the
standard deviation of RSSI measurements, f3(x) is the mean
of SNRmeasurements, f4(x) is the standard deviation of SNR
measurements, f5(x) is the correlation between RSSI and
SNR measurements, f6(x) is the mean of the absolute differ-
ences, and so on. Finally, we define the overall classification
function as:

f (x) = sign
(
wT (f (W1h+ b1)⊙ G(d))+ b

)
, (13)

where,W1 and b1 are the weights and biases of the high-level
feature extraction function,⊙ is the element-wise multiplica-
tion operator, and G(d) is the path loss factor derived from
the RSSI propagation module.

The joint classification function of the multiclass classifier,
path loss module, and high-level features can be written as
follows using Karush-Kuhn-Tucker (KKT) conditions and
Lagrange multipliers:

min
w,b,ξ,α

1
2
wTw+ C

∑
i

ξi −

N∑
i=1

K∑
k=1

yikαik , (14a)

s.t.yik (wTk hi + bk ) ≥ 1− ξi, (14b)

ξi ≥ 0, (14c)
K∑
k=1

yik = 1, (14d)

αik ≥ 0, (14e)
K∑
k=1

αik = 1,

i = 1, · · · ,N , k = 1, · · · ,K , (14f)

where,wk and bk are the weight vector and bias term for class
k , hi is the high-level feature vector for data sample i, yik is
the target variable which takes the value 1 if data sample i
belongs to class k and 0 otherwise. ξi is the slack variable,
C is the penalty parameter, and αik is the Lagrange multiplier.
The path loss module is incorporated into the high-level

feature vector hi as follows:

hi = [f1(xi), · · · , f10(xi), g1(di), · · · , g10(di)], (15)

where, fj(xi) is the j-th statistical feature of the raw data,
as defined previously, and gj(di) is the j-th path loss feature
derived from the path loss module based on the distance di
between the sensor and the access point.

Finally, the joint classification function can be written as:

f (x) = argmax
k

 K∑
j=1

αijyij(wTj hi + bj)⊙ G(di)

 , (16)

where ⊙ is the element-wise multiplication operator, and
G(di) is the path loss factor derived from the path loss module
based on the distance di between the sensor and the access
point. The function f (x) returns the class with the highest
score among all classes k = {1, · · · ,K }. The complete
process is shown in Algorithm 1.
Example 2: Let us assume, we have a training dataset with

N = 100 samples, each sample having 2 features RSSI and
SNR and belonging to one of the 3 classes. We set the penalty
parameter C to be 1 and the learning rate η to be 0.01. Next,
we can compute the high-level feature vectors for all data
samples in Step 1 using the function f (x), which could be
a neural network. For example, let us say the output of this
function for each sample is a vector of length 10. In Step 2,
we compute the path loss factor for all data samples using the
function G(d). Let us assume the output of this function for
each sample is a scalar value between 0 and 1.

Further, Step 3 initializes the weight vector wk, bias term
bk , slack variable ξi, and Lagrange multiplier αik for each
class k = 1, · · · ,K , data sample i = 1, · · · ,N . Let us
assume K = 3, so we need to initialize 3 weight vectors
and bias terms, and for each sample, we need to initial-
ize 3 slack variables and 3 Lagrange multipliers. Assuming
each high-level feature vector is a column vector of length
10, the weight vector and bias term for each class can be
initialized as:

w1 =


0.1
0.2
...

0.9

 , w2 =


−0.1
0.3
...

−0.9

 , w3 =


0.3
−0.2

...

0.1

 .

b1 = 0.5 b2 = 0.2 b3 = −0.3.

For each sample, we can initialize the slack variables and
Lagrange multipliers to be 0. In Step 4, we can start training
the model using the gradient descent algorithm. We compute
the gradient of the objective function with respect to the
parameters and update them using the learning rate until
convergence. The objective function involves maximizing the
margin between the decision boundary and the closest data
points of each class while minimizing the misclassification
error. The update equations involve the Lagrange multipli-
ers and slack variables to enforce the Karush-Kuhn-Tucker
(KKT) conditions. Once the model has converged, we can use
the joint classification function in Step 5 to predict the class
of a new data sample. We compute the score for each class
using the weight vector, bias term, and Lagrange multipliers
and select the class with the highest score. The path loss factor
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Algorithm 1: Training a Multi-Class Classifier Model
Input: Training data X and labels y, high-level feature function f (x), path loss module G(d), penalty parameter C ;
Output: Trained multi-class classifier model;

1 for i← 1 to N do
2 Compute the high-level feature vectors for all data samples: hi = f (xi);
3 Compute the path loss factors for all data samples: pi = G(di);
4 for k ← 1 to K do
5 Initialize the weight vector wk , bias term bk , slack variable ξi, and Lagrange multiplier αik ;
6 Set the learning rate η;
7 Train the model using the following steps until convergence;
8 do
9 I. Compute the gradient of the objective function with respect to the parameters:

∇wL = w−
N∑
i=1

K∑
k=1

yikαikhi,

∇bL = −
N∑
i=1

K∑
k=1

yikαik ,

∇ξiL = C −
K∑
k=1

αik ,

∇αikL = yik (wTk hi + bk )− 1+ ξi.

II. Update the parameters using the learning rate:

wk ← wk − η∇wL,

bk ← bk − η∇bL,

ξi← ξi − η∇ξiL,

αik ← αik − η∇αikL.

III. Enforce the KKT conditions:

αik = 0 if yik (wTk hi + bk ) ≥ 1− ξi,

αik = C if yik (wTk hi + bk ) ≤ 1− ξi,

0 ≤ αik ≤ C otherwise.

10 while convergence;
11 Once the model has converged, the joint classification function can be used to predict the class of a new data sample:
12

f (x) = argmax
k

( K∑
j=1

αijyij(wTj hi + bj)⊙ pi
)
, (17)

where pi is the path loss factor for the new data sample and ⊙ is the element-wise multiplication operator;
13 The function f (x) returns the class with the highest score among all classes k = {1, · · · ,K };

return Trained multi-class classifier model;

is also taken into account by multiplying the score with the
path loss factor for the new data sample.

IV. EXPERIMENTAL RESULTS
This section presents the evaluation of the proposed approach
to SQM dataset. Moreover, this work carried out several
experiments to answer the following questions:

• What is the impact of the number of data samples on the
SNR values in the LoRa network? (Section IV-A)

• How to study the impact of the number of LNs on SNR
values in the LoRa network? (Section IV-B)

• How to determine the impact of different parame-
ters on the performance of the proposed approach?
(Section IV-C)
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• What is the impact of increasing LGs count on the
inference? (Section IV-D)

• What is the impact of using different ML models on
performance? (Section IV-E)

• How different ML models are impacted by the change
in the number of LNs? (Section IV-F)

A. IMPACT OF NUMBER OF SAMPLES ON SNR VALUES
WITH VARYING DISTANCE AMONG LNs AND SF
The objective of this experiment is to investigate the impact of
the number of data samples on SNR values. The experiment
involved considering two distances between the LNs and LG,
which were 10 and 60 meters, and using the SQM dataset and
SVM model. Table 4 showed that the SNR values exhibited
fluctuating behavior with minimal variance at different num-
bers of LNs and SF. This was due to the fixed data rate for
the LoRa network as the number of data samples increased.
Additionally, the results showed that the SNR values changed
from 9 − 11 to 12 − 15 for one LN and SF7 to SF12,
respectively. Furthermore, with an increase in the number of
LNs, there was a higher chance of interference, leading to a
reduction in SNR values from LNs count 1 to 5.

In conclusion, this result highlights the importance of
considering the number of samples in determining the SNR
values. Additionally, the results demonstrate that an increase
in the number of LNs can result in a reduction in SNR values
due to the possibility of interference. Overall, these findings
have implications for the design and implementation of LoRa
networks, particularly in situations where SNR values are
critical to network performance.

B. IMPACT OF NUMBER OF LNs ON SNR
The experiment aimed to investigate how the number of LNs
affects the SNR values of LNs in a LoRa network. Figure 5
shows the SNR fluctuations on different SFs at various com-
binations of LNs. In a one-way communication scenario, LNs
send data to the LG, which calculates the SNR and RSSI
values of the received data. LG sends datawith RSSI and SNR
values to the LoRa network server, which makes a window
size of 20 SNR as an input vector for machine learning
models. The results reveal that an increase in the number of
LNs leads to higher interference and simultaneous message
transmission, resulting in higher SNR fluctuation and lower
SNR values of the received signal. Additionally, the LoRa
network suffers from the capture effect, where LG gets only
the strongest signal among multiple signals approaching it.
Figure 5 also highlights the high variation in the SNR values,
where the pattern of SNR is inconsistent for any number of
LNs due to the increasing noise at higher SF. These findings
provide insights into the impact of the number of data samples
on the SNR values of LNs in a LoRa network, which is crucial
for optimizing the network’s performance.

C. IMPACT OF DIFFERENT PARAMETERS ON
PERFORMANCE
The experiment aims to assess how various parameters,
namely Obstacle (with or without a wall), LN, LG, and

payload message Size (PS), impact the accuracy and SNR
values. Table 4 presents the observations collected from the
experiment. The study examines the different positions of
LNs in collecting data for combinations, including various
data sizes and locations, with and without walls. Four distinct
scenarios were used to collect datasets. The first scenario
involved deploying LNs and LG at a distance of 10 meters
without any walls. The second scenario involved placing a
concrete wall between LNs and LG, both at a distance of
10 meters. The third scenario involved deploying LNs and
LG at a distance of 60 meters without any walls. Lastly, the
fourth scenario involved placing a wall between LNs and LG,
both at a distance of 60 meters. Table 4 illustrates all these
scenarios for different SFs (SF7 to SF12).

The following discussion delves into the impact of various
parameters on accuracy and SNR:
• Impact of the obstacles: To assess the impact of
obstructions between the LNs and LG, we have specif-
ically chosen concrete walls as the barriers for our
analysis. We conducted data collection under two sce-
narios: with walls (labeled ‘‘w’’) and without walls
(labeled ‘‘wo’’). Our findings indicate that the presence
of obstacles compromised the accuracy of our model but
did not affect the SNR, as indicated in Table 4. This
is because the obstructions slowed down the movement
of signals, causing interference on the server. However,
radio signals were able to penetrate the concrete walls
easily, and therefore the SNR values remained unaf-
fected, regardless of whether walls were present during
data collection.

• Impact of LNs with and without obstacles: We used
the same range of LNs counts as in previous experi-
ments, ranging from 1 to 5 (Table 4). Our results show
that the accuracy of the collected dataset was unaffected
by the varying LN counts. However, we observed a
significant variance in the SNR values across all SF
(i.e., SF7 to SF12), ranging from 9− 10 to−1− 3. This
variancewas due to the increased interference among the
LNs, which negatively impacted the SNR value on the
LG.Wemade similar observations in other experimental
scenarios, such as varying payload size and the presence
of obstacles.

• Impact of LG with and without obstacles: During the
experimental evaluation, we focused solely on single
gateways as increasing the number of LG counts leads
to less interference. We will also delve into the impact
of LoRa gateways in greater detail later on.

• Payload message Size: Payload message size is a crit-
ical factor in data transmission from LNs to LGs. Our
experiment involves two payload sizes: 10 and 60 bytes.
Table 4 shows a marginal compromise in accuracy when
increasing the payload size due to the longer duration
that the allocated radio channel is locked and increased
chance of inference. This makes it difficult to estimate
interference accurately and can compromise accuracy.

• Spreading Factor: Finally, we investigated the impact
of spreading factors from SF7 to SF12 on the accuracy
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FIGURE 4. Average SNR value vs. the number of samples using simultaneous communication at different SFs at different distances between LNs and LG,
i.e., distance = 10 meters and 60 meters.

TABLE 4. Impact of different parameters on accuracy (in %) of SVM to predict interfering LNs in LoRa network on SQM dataset. Acc = Accuracy,
Obs = Obstacle (with or without wall denoted as w and wo, respectively), LN = LoRa Nodes, LG = LoRa Gateway, PS = Payload message Size,
SNR = Singnal-to-Noise ratio.

and SNR in the scenario of collecting the SQM dataset.
We found that increasing the spreading factors led to an
increase in the SNR value, but only a marginal fluctua-
tion in accuracy. For instance, when using SF7 and one
LN, the range of SNR was between 9 − 10, while for
SF12, the SNR range was between 11−14. This is likely
due to the fact that higher SFs provide stronger signal
strength than lower SFs.

D. IMPACT OF NUMBER OF GATEWAYS
The experiment investigates how the performance of our
proposed approach is affected by the number of gateways.
To conduct the experiment, we sent 100 messages from
each of the five LNs and five LGs, varying the number of
LNs and LGs to observe the impact of different gateway
configurations. Our results show that increasing the num-
ber of gateways leads to a reduction in interference and
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TABLE 5. Illustration of impact of the number of gateways on inference and fraction of message loss. LN = LoRa Node and LG = LoRa gateway.

FIGURE 5. Average SNR value on different SFs (SF7 to SF12) with multiple
combinations of LNs (1 to 5).

message loss. We have presented our findings in Table 5,
which highlights the impact of the number of gateways on
the varying count of LNs. We observed that when the number
of LGs matches the number of LNs, there is no interference
as direct communication is possible between the LG and
LN. However, if a large number of LNs are associated with
a single LG, the interference fraction is higher. When only
one LG is present, it receives the message with the strongest
received signal strength index, while other signals undergo
interference in the LoRa network, resulting in a decrease in
SNR when messages are sent simultaneously. To mitigate
these issues, the gateway in the developed system sends a
message containing payload, SNR, and RSSI to the server for
analysis. The server then applies machine learning techniques
to predict the number of interference LNs and schedules
the interference node accordingly. This approach reduces the
number of message losses in the LoRa network. In summary,
our experiment highlights the importance of having multiple
gateways in a LoRa network to minimize interference and
message loss. Additionally, our proposed system offers an
effective solution for managing interference in LoRa net-
works using machine learning techniques.

E. ANALYZING THE IMPACT OF MULTI-CLASS
CLASSIFICATION ML MODELS
Our study focuses on evaluating the impact of various
multi-class classification machine learning models, namely

TABLE 6. Accuracy (in %) of different machine learning models, while
predicting interfering LNs in LoRa network on SQM dataset.

Gaussian Naive Bayes (GNB), k-Nearest Neighbor (KNN),
Logistic Regression (LR), and Support Vector Machine
(SVM), on the performance of our proposed approach. We
apply these models to analyze the collected SNR pattern
and predict the number of interference nodes in the LoRa
network. The results presented in Table 6 demonstrate that
SVM outperforms the other classifiers, achieving the highest
accuracy for interference prediction in the LoRa network.
This can be attributed to SVM’s ability to build the most
differentiable hyper-plane on the SQM dataset. Notably, our
experiment employs data from three LNs.

Although all other machine learning models deliver com-
parable accuracy, SVM is more robust against underfitting
and overfitting. We observe that as the number of LN
increases in the network, the SNR value of the received mes-
sage decreases, causing interference between simultaneous
message transmissions. However, the accuracy of the differ-
ent machine learning models does not change significantly.
Regardless of the scenario, we always achieve high accuracy,
exceeding 90%.

F. IMPACT OF INCREASING LN ON ML MODELS
PERFORMANCE
In this study, we build upon our previous experiment by
examining the effect of increasing the number of LNs on
the performance of various learning models discussed in
Table 6. Figure 6 shows that the impact of changing SFs
on the models’ performance is minimal, while the impact
of the number of LNs is significant. Our findings suggest
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FIGURE 6. Illustration of impact of different machine learning models on the varying count of LoRa Nodes (1 to 5).

that as the number of LNs increases, the accuracy of the
models decreases due to a higher chance of interference.
This reduces the ability to accurately identify the number
of interfering signals, ultimately leading to a decrease in the
proposed approach’s performance, as depicted in Figure 6.

V. CONCLUSION AND FUTURE WORK
In this paper, we present a novel approach for identifying
interference nodes in LoRa networks. Our approach utilizes
machine learning techniques, using SNR and RSSI values
to accurately identify nodes that cause network interference.
We conducted experiments in different deployment scenarios,
including a high-ceiling smart building, and observed that
network parameter-based interference solutions work well in
scenarios with few obstacles and static LNs and LG. Our
approach successfully estimates interference from up to five
devices on a given SF with high accuracy. We also observed
that interference among LNs with low SF is higher, likely due
to the proximity of all devices to each other and the LG.

In future work, we plan to allocate optimal SF and trans-
mission power to LNs based on the number of interference
LNs detected, optimizing the energy consumption of the
LoRa network. We also plan to explore scenarios where LNs
and LG can change position, expanding the applicability of
our approach.
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