LIST OF FIGURES

Figure No.	Caption	Page No.
Figure 1.1.	Typical image of different lubrication regime.	7
Figure 1.2.	Global demand for lubricant from 2000 to 2016.	9
Figure 1.3.	Worldwide consumption of the lubricant.	9
Figure 2.1.	Effect of nanoparticle size and surface roughness.	33
Figure 2.2.	Hypothetical mechanism of nanolubrication showing; (a) behavior of single particle under load; (b) rolling-sliding phenomena; (c) Surface mending with formation of nanoparticles film; and (d) polishing action.	36
Figure 2.3.	Exfoliation mechanism of multilayer nanoparticles.	37
Figure 3.1.	Flow diagram for synthesis of CCTO.	44
Figure 3.2.	Image of; (a) actual experimental set-up, (b) schematic arrangement of all four balls, and (c) SEM of top rotating ball.	48
Figure 3.3.	SEM set-up.	54
Figure 3.4.	TEM set-up.	54
Figure 3.5.	XRD set-up.	57
Figure 3.6.	AFM set-up.	57
Figure 3.7.	FTIR set-up.	57
Figure 3.8.	NMR set-up.	57
Figure 3.9.	GC-MS set-up.	57
Figure 3.10.	TGA set-up.	57
Figure 4.1.	Variation in fatty acid composition for different biolubricants.	61
Figure 4.2.	Variation in wear scar diameter for different biolubricants.	64
Figure 4.3.	SEM images of worn surface (at different magnifications) tested with castor oil at load 392N, speed 1200 rpm for 1h.	64

Figure 4.4.	SEM images of worn surface (at different magnifications) tested with rapeseed oil at load 392N, speed 1200 rpm for 1h.	65
Figure 4.5.	SEM images of worn surface (at different magnifications) tested with sunflower oil at load 392N, speed 1200 rpm for 1h.	65
Figure 4.6.	SEM images of worn surface (at different magnifications) tested with cottonseed oil at load 392N, speed 1200 rpm for 1h	65
Figure 4.7.	SEM images of worn surface (at different magnifications) tested with olive oil at load 392N, speed 1200 rpm for 1h.	66
Figure 4.8.	SEM images of worn surface (at different magnifications) tested with sesame oil at load 392N, speed 1200 rpm for 1h.	66
Figure 4.9.	SEM images of worn surface (at different magnifications) tested with neemseed oil at load 392N, speed 1200 rpm for 1h.	66
Figure 4.10.	AFM roughness topography of the worn surface tested with raw castor oil (load 392N, speed 1200 rpm for 1h)	69
Figure 4.11.	AFM roughness topography of the worn surface tested with raw rapeseed oil (load 392N, speed 1200 rpm for 1h)	69
Figure 4.12.	AFM roughness topography of the worn surface tested with raw sunflower oil (load 392N, speed 1200 rpm for 1hr)	70
Figure 4.13.	AFM roughness topography of the worn surface tested with raw cottonseed oil (load 392N, speed 1200 rpm for 1hr)	70
Figure 4.14.	AFM roughness topography of the worn surface tested with raw olive oil (load 392N, speed 1200 rpm for 1hr)	71

Figure 4.15.	AFM roughness topography of the worn surface tested with raw sesame oil (load 392N, speed 1200 rpm for 1hr)	71
Figure 4.16.	AFM roughness topography of the worn surface tested with raw neemseed oil (load 392N, speed 1200 rpm for 1hr).	72
Figure 4.17.	Variation in coefficient of friction for different biolubricants	73
	tested at load 392N, speed 1200 rpm for 1h.	
Figure 4.18.	TGA curve for different biolubricants to estimate decomposition temperature.	75
Figure 5.1.	XRD pattern of CCTO nanoparticles calcined at 800°C for 6	78
	hours.	
Figure 5.2.	EDS of synthesized CCTO nanoparticles.	79
Figure 5.3.	Images representing (a) TEM, (b) SEM and (c) nanoparticles size variation for synthesized CCTO nanoparticles.	80
Figure 5.4.	SEM image of CeO ₂ nanoparticles.	82
Figure 5.5.	FTIR spectra of SDS, CuO and S-CuO.	84
Figure 5.6.	The SEM topography of (a) CuO and (b) S-CuO nanoparticles.	85
Figure 5.7.	SEM image of PTFE nanoparticles.	86
Figure 5.8.	Typical suspension stability images S-CuO based	87
	nanolubricant.	
Figure 5.9.	Variations in WSD for different castor oil compositions with CCTO and ZDDP tested at 392N load for 1h.	89
Figure 5.10.	Variations in WSD for different paraffin oil compositions with CCTO and ZDDP tested at 392N load for 1h.	89
Figure 5.11.	SEM images of worn surface (at optimum concentration) lubricated with (a, b) CO+0.25%w/v ZDDP; and (c,d) CO +	91

0.25%w/v CCTO at different magnification.

Figure 5.12.	AFM images of worn surface lubricated with (a,b) CO, (c, d) CO+0.25%w/v ZDDP(optimum concentration); (e,f) CO + 0.25%w/v CCTO (optimum concentration) at different magnification; and (g) PSD spectrum of worn surface for CO + 0.25%w/v CCTO.	92
Figure 5.13.	SEM images of worn surface (at optimum concentration) lubricated with (a, b) PO+1.0%w/v ZDDP; and (c,d) PO + 0.25%w/v CCTO at different magnification.	94
Figure 5.14.	AFM images of worn surface lubricated with (a,b) PO, (c, d) PO+0.25%w/v CCTO (optimum concentration); and (e,f) PO + 1.0%w/v ZDDP (optimum concentration) at different magnification.	95
Figure 5.15.	Typical EDS spectrum of worn surfaces tested with (a) ZDDP and (b) CCTO compositions.	97
Figure 5.16.	Possible in-situ phenomena for the lubricated sliding contacts; (a) reduction in real contact area, (b) lubrication with base oil and (c) synergistic interaction of nanolubricant-surface.	99
Figure 5.17.	Variation in average COF for (a) PO and (b) CO compositions tested at 392N load for 1h.	101
Figure 5.18.	Optical image of heavily worn surface of detached welded ball.	104
Figure 5.19.	SEM image of worn steel balls with (a,b) CO; (c,d) PO [load 392N, speed 1200 rpm, time 1hr; a and c at 100x ; b and d at 2000x]	107
Figure 5.20.	SEM images of worn steel balls (at different magnification) tested at load 392N for 1h with (a,b) RO; (c,d) SO.	108
Figure 5.21.	Micrograph of worn steel balls with (a) 0.1CCu, (b) 0.25CCu, (c) 0.5CCu, (d) 1.0CCu (a ₁) 0.1PCu, (b ₁) 0.25PCu, (c ₁) 0.5PCu and (d ₁) 1.0PCu. (load 392N, speed 1200 rpm, time 1h)	109

- Figure 5.22. Micrograph of worn steel balls at optimum concentrations; (a, 110 b) 0.1RCu, (c, d) 0.5SCu at different magnifications.
- Figure 5.23. AFM roughness images of worn surfaces for different CO 111 compositions; (a) CO, (b) 0.1CCu (c) 0.25CCu (d) 0.5CCu and (e) 1.0CCu. [load 392N, sliding speed 1200 rpm, time 1h]
- Figure 5.24. AFM roughness images of worn surfaces for different PO 111 compositions; (a₁) PO, (b₁) 0.1PCu (c₁) 0.25PCu (d₁) 0.5PCu and (e₁) 1.0PCu. [load 392N, sliding speed 1200 rpm, time 1h]
- Figure 5.25. AFM roughness images of worn surfaces for different RO 112 compositions; (a) RO, (b) 0.1RCu (c) 0.25RCu, and (d) 0.5RCu. [load 392N, sliding speed 1200 rpm, time 1h]
- Figure 5.26. AFM roughness images of worn surfaces for different SO 112 compositions; (a) SO, (b) 0.1SCu (c) 0.25SCu, and (d) 0.5SCu. [load 392N, sliding speed 1200 rpm, time 1h]
- Figure 5.27. MWV of worn surfaces lubricated with different oils with S-CuO nano-additives.
- Figure 5.28. Specific wear rate for the worn surfaces lubricated with 114 different oils with S-CuO nano-additives.
- Figure 5.29. Typical chemical elemental analysis of worn surface for 116 0.1CCu.
- Figure 5.30. Variation in COF for different compositions of (a) CO, (b)PO, 119 (c) RO and (d) SO; tested at load 392N, speed 1200 rpm for 1h.
- Figure 5.31. Variation in interfacial shear stress for different S-CuO base 121 nanolubricant compositions.
- Figure 5.32. Comparative variation in WSD for all CeO₂ based 124

nanolubricant compositions tested with load 392N, speed 1200 rpm for 1h.

Figure 5.33.	SEM image of 0.25PCe composition of paraffin oil at different magnifications. [load 392N, sliding speed 1200 rpm, time 1h]	126
Figure 5.34.	SEM image of worn surfaces for optimum compositions of bio- nanolubricants (a, b) 0.25CCe ; (c,d) 0.1RCe ; and (e, f) 0.1SCe at different magnifications. [load 392N, sliding speed 1200 rpm, time 1h]	126
Figure 5.35.	Comparative variation in specific wear rate for all compositions of CeO_2 based nanolubricants.	127
Figure 5.36.	AFM roughness images of worn track tested with 392N load, speed 1200 rpm, for 1h at optimum concentration (a) 0.25PCe ; (b) 0.25CCe ; (c)0.1RCe and (d) 0.1SCe.	127
Figure 5.37.	Typical image of nanoparticle based lubricant interaction at mating surfaces showing mending, polishing, rolling effect.	128
Figure 5.38.	Variation in friction coefficient for all concentration of CeO_2 in (a) PO; (b) CO; (c) RO and (d) SO; at load 392N, sliding speed 1200 rpm, time 1h.	131
Figure 5.39.	Variation in interfacial shear stress for all CeO_2 based nanolubricant compositions.	133
Figure 5.40.	Proposed hypothetical mechanism of nanolubricant in contact zone to influence the tribological behaviour.	133
Figure 5.41.	Comparative WSD variation for all PTFE based nanolubricant compositions tested at 392N load, 1200 rpm speed for 1h.	137
Figure 5.42.	Schematic diagram showing the effect of SDS dispersant on the suspension of nanoparticles in lubricant.	137
Figure 5.43.	SEM morphology of worn surfaces tested with (a, b) 0.1CP and (c, d) 0.1RP at different magnification (optimum concentration). (load 392N, speed 1200 rpm, time 1h)	138

Figure 5.44.	SEM morphology of worn surfaces tested with PTFE in SO at; (a, b) 0.1 , (c,d) 0.25 and (e, f) 0.5%w/v concentration. (load 392N, speed 1200 rpm, time 1h)	140
Figure 5.45.	Typical image of the worn track lubricated with PTFE based nanolubricants.	141
Figure 5.46.	Variation in specific wear rate for all nanolubricant composition with PTFE.	141
Figure 5.47.	Roughness images of the worn surfaces (for optimum compositions) (a) 0.1CP (b) 0.1RP and (c) 0.5SP. (tested at 392N load, 1200 rpm speed for 1h)	142
Figure 5.48.	Variation in COF for all the PTFE concentration tested at 392N load for 1h with (a) PO, (b) CO, (c) RO and (d) SO.	144
Figure 5.49.	Interfacial shear stress for PTFE based nanolubricants.	145
Figure 6.1	Typical experimental set-up for epoxidation consist of; (1) condensation system; (2) solution containing three-necked flask; (3) thermocouple; (4) magnetic stirrer cum hot plate.	148
Figure 6.2.	Typical image of unmodified and epoxidized oil.	149
Figure 6.3.	Proton NMR of (a) RO, (b) ERO, (c) SO, (d) ESO, (e) CO and (f) ECO.	151
Figure 6.4.	FTIR image of (a) RO and ERO, (b) SO and ESO, and (c) CO and ECO.	152
Figure 6.5.	SEM morphology of worn surfaces tested at load 392 N for 1h with; (a,b) RO and (c,d) ERO. [b and d at 500x]	155
Figure 6.6.	Comparative WSD variation with different nano-additive concentrations in RO and ERO tested at 392N load, 1200 rpm speed for 1h.	155
Figure 6.7.	SEM morphology of worn surfaces tested with nanolubricants	158

at optimum concentration of; (a, b) S-CuO, (c, d) CeO₂ and (e, f) PTFE nanoparticles in RO with 392N load, 1200 rpm speed for 1h.

- Figure 6.8. SEM morphology of worn surfaces tested with nanolubricants 159 at optimum concentration with (a, b) S-CuO, (c, d) CeO₂ and (e, f) PTFE nanoparticles in ERO with 392N load, 1200 rpm speed for 1hr. [b,d and f at 500x]
- Figure 6.9. Variations in; (a) MWV and (b) interfacial shear stress for 160 different RO and ERO compositions.
- Figure 6.10. SPM roughness images of worn surfaces tested with; (a) RO, 161
 (b) ERO, (c) RO with CeO₂, (d) ERO with CeO₂ and (e) RO with PTFE nanoparticles. (load 392N, speed 1200 rpm and time 1h)
- Figure 6.11. EDS spectra of worn surfaces tested with ERO containing (a) S-CuO, (b) CeO₂ and (c) PTFE nanoparticles at optimum concentration.
- Figure 6.12. Variation in COF for all RO and ERO compositions with S-CuO, CeO₂ and PTFE nano-additives. (load 392N, speed 1200 rpm and time 1h)
- Figure 6.13. Variation of (a) WSD and (b) MWV with different SO and ESO 167 compositions.
- Figure 6.14. SEM micrographs of worn surfaces tested with (a) SO (b) ESO 169
 (c) SO + 0.25%w/v S-CuO (d) ESO + 0.10%w/v S-CuO (e) SO + 0.10%w/v CeO₂ and (f) ESO +0.10%w/v CeO₂. (load 392N, speed 1200 rpm and time 1h)
- Figure 6.15. Typical EDS spectra of worn surfaces obtained with (a) S-CuO 170 and (b) CeO₂ based nanolubricants.
- Figure 6.16. SPM roughness images of the worn surfaces tested with (a) SO 172
 (b) ESO (c) SO + 0.10%w/v S-CuO (d) SO + 0.10%w/v CeO₂
 and (e) ESO + 0.10%w/v CeO₂. [load 392N, speed 1200 rpm and time 1h; Inset: 2-D image of corresponding image]

- Figure 6.17. Variation in COF for SO and ESO lubricants containing 174 different nano-additives in amount of (a) 0.10 %w/v, (b) 0.25%w/v and (c) 0.50 %w/v. (load 392N, speed 1200 rpm and time 1h)
- Figure 6.18. Variations in interfacial shear stress for all SO and ESO 175 compositions.
- Figure 6.19. Proposed in-situ mechanism for tribological contacts containing 176 nanolubricant to improve tribo-performance in boundary lubrication regime.
- Figure 6.20. SEM images of worn surfaces lubricated with (a, b) CO and (c, 179 d) ECO at different magnification. (load 392N, speed 1200 rpm and time 1h)
- Figure 6.21. SEM images of worn surfaces lubricated at optimum 182 concentrations with (a, b) ECO+0.1%w/v S-CuO ; (c, d) ECO+0.1%w/v CeO₂ and (e, f)) ECO+0.5%w/v PTFE at different magnifications. (load 392N, speed 1200 rpm and time 1h)
- Figure 6.22. SPM roughness images of worn surfaces for (a) ECO, (b) 183
 ECO+0.1%w/v S-CuO, (c) ECO+0.1%w/v CeO2 and (d)
 ECO+0.5%w/v PTFE. (Optimum concentrations) [Tsted at load
 392N, speed 1200 rpm and time 1h]
- Figure 6.23. Variation of MWV and specific wear rate for all nano-additive 183 concentration in CO and ECO.
- Figure 6.24. Variation in friction coefficient for all ECO compositions with 186 (a) S-CuO, (b) CeO₂ and (c) PTFE. (load 392N, speed 1200 rpm and time 1h)
- Figure 6.25. Interfacial stress variation for different nanoparticle 187 concentration in CO and ECO.