Certificate	ii
Acknowledgments	V
Abstract	ix
Table of contents	xii
List of figures	xix
List of tables	xxviii
List of abbreviations and symbols	xxxii
Preface	xxxiv
Chapter-1 Introduction	1-12
1.1.Tribology	1
1.2.Function of lubricants	2
1.3. Types of lubricants and additives	3
1.4. Nanoparticles as a lubricant additive and its advantage over conventional additives	5
1.4.1 Role of nanoparticles in lubricant	6
1.5. Lubrication regime	6
1.6. Ongoing lubricant market	7
1.6.1. International status	8
1.6.2. Indian status	10
1.7. Green Tribology	10
1.8. Importance of Green Lubrication	11
1.8.1. Reasons to move towards Green Lubricant over petroleum/synthetic oil	11
1.8.1.1. Continuous increasing lubricant demand	11

1.8.1.2. Impact of petro-products from extraction point to dump	11
1.8.1.3. Human health and environment	12
1.8.1.4. Green lubricants: Superior in boundary lubrication	12
1.9. Summary of the chapter	12
Chapter-2 Literature Review	13-40
2.1. Background	13
2.2. Base oils: Composition and properties	15
2.2.1. Petroleum based oils	15
2.2.2. Synthetic oil	15
2.2.3. Vegetable oil based biolubricants	16
2.3. Characteristic of biolubricants and approach to improve thermo-oxidative stability	18
2.3.1. Effect of fatty acid composition on tribological properties	18
2.3.2. Improvement in oil stability	20
2.3.2.1. Modification of the base oil	20
2.3.2.2. By using chemical reagent in base oil	21
2.4. Additive evolution	22
2.4.1. Low SAPS lubricant additive	22
2.4.2. Zero-SAPS lubricant additive	23
2.4.3. Nanoparticles as a lubricant additive	24
2.4.3.1. Metallic nanoparticles	24
2.4.3.2. Metal oxide nanoparticles	26
2.4.3.3. Polymeric nanoparticles	28
2.4.3.4. Carbon allotropes	28
2.4.3.5. Other nanoparticles	30

2.4.4. Biolubricants with different nanoparticles in tribological contact	31
2.5. Effect of nanoparticle parameters on tribological behavior	33
2.5.1. Effect of nanoparticles size in the contact zone	33
2.5.2. Effect of nanoparticles shape in contact zone	34
2.5.3. Effect of nanoparticles concentration in the contact zone	34
2.6. Hypothesis of nanolubrication mechanism	34
2.7. Problem formulation	37
2.7.1. Unprecedented work, motivation, and problem identification	37
2.7.2. Problem definition	39
2.7.3. The objective of the work: Considering lubricant availability, tribological prospect, and environmental health	39
2.8. Summary of the chapter	40
Chapter-3 Materials and Methodology	41-58
Chapter-3 Materials and Methodology 3.1. Materials	41-58 41
3.1. Materials	41
3.1. Materials 3.1.1. Base oils	41 41
3.1. Materials 3.1.1. Base oils 3.1.2. Chemicals	41 41 42
3.1. Materials 3.1.1. Base oils 3.1.2. Chemicals 3.1.3. Additives	41 41 42 42
 3.1. Materials 3.1.1. Base oils 3.1.2. Chemicals 3.1.3. Additives 3.1.4. Synthesis of calcium-copper-titanate nanoparticles 	 41 41 42 42 43
 3.1. Materials 3.1.1. Base oils 3.1.2. Chemicals 3.1.3. Additives 3.1.4. Synthesis of calcium-copper-titanate nanoparticles 3.1.5. Test specimen 	 41 41 42 42 43 45
 3.1. Materials 3.1.1. Base oils 3.1.2. Chemicals 3.1.3. Additives 3.1.4. Synthesis of calcium-copper-titanate nanoparticles 3.1.5. Test specimen 3.2. Experimentation: Details of tribo-tester and test procedure 	 41 41 42 42 43 45 45
 3.1. Materials 3.1.1. Base oils 3.1.2. Chemicals 3.1.3. Additives 3.1.4. Synthesis of calcium-copper-titanate nanoparticles 3.1.5. Test specimen 3.2. Experimentation: Details of tribo-tester and test procedure 3.3. The significance of the tribological test of the lubricants 	 41 41 42 42 43 45 45 51

3.4.3. X-ray diffractometer (XRD)	53
3.4.4. Atomic force microscope (AFM)	55
3.4.5. Fourier transform infrared (FTIR) spectroscopy	55
3.4.6. Nuclear magnetic resonance (NMR) spectroscopy	55
3.4.7. Gas chromatography mass spectroscopy (GC-MS)	56
3.4.8. Thermogravimetric analysis (TGA)	56
3.5. Other instruments involved in experimentation	58
3.5.1. Magnetic stirrer cum hot plate	58
3.5.2. Ultrasonicator	58
3.6. Summary of the chapter	58
Chapter-4 Tribological evaluation of raw biolubricants	59-76
4.1. Composition of the selected vegetable oils	59
4.2. Evaluation of antiwear performance	62
4.3. Evaluation of antifriction performance	72
4.4. Thermal stability of the biolubricants	74
4.5. Summary of the chapter	76
Chapter-5 Tribological evaluation of biolubricants with ZDDP additive,	77-146
various oxides and polymeric nano-additives	
5.1. Morphology and size of the nanoparticles	77
5.1.1. Calcium-copper-titanate (CCTO) nanoparticles	77
5.1.1.1. Phase analysis of synthesized CCTO nanoparticles	77
5.1.1.2. Elemental analysis of synthesized CCTO nanoparticles	79
5.1.1.3. Particle size and morphology	80
5.1.2. CeO_2 nanoparticles	81
5.1.3. CuO and surface modified CuO nanoparticles	82

5.1.3.1. Surface treatment	82
5.1.3.2. Confirmation of S-CuO formation	83
5.1.3.3. Size and morphology of S-CuO	84
5.1.4. PTFE nanoparticles	86
5.2. Formulation of nanolubricants and suspension stability of nanoparticles	86
5.3. Tribological results and discussion	88
5.3.1. Evaluation of tribo-performance for ZDDP and CCTO based lubricants	88
5.3.1.1. Antiwear study	88
5.3.1.2. Antifriction study	100
5.3.1.3. Extreme-pressure (EP) study	102
5.3.2. Evaluation of tribo-performance for S-CuO based lubricants	105
5.3.2.1. Antiwear study	105
5.3.2.2. Antifriction study	117
5.3.2.3. Extreme-pressure study	121
5.3.3. Evaluation of tribo-performance for CeO_2 based lubricants	123
5.3.3.1. Antiwear study	123
5.3.3.2. Antifriction study	129
5.3.3.3. Extreme-pressure study	134
5.3.4. Evaluation of tribo-performance for PTFE based lubricants	135
5.3.4.1. Antiwear study	135
5.3.4.2. Antifriction study	142
5.3.4.3. Extreme-pressure study	146
5.4. Summary of the chapter	146

Chapter-6 Tribological studies of chemically modified biolubricants and 147-188 their admixture with different nano-additives

6.1. Modification of biolubricants by epoxidation method	147
6.1.1. Epoxidation of rapeseed oil, sunflower and castor oil	147
6.1.2. Characterization of epoxidized oils	149
6.2. Comparative evaluation of tribo-performance for unmodified and epoxidized oils	154
6.2.1. Rapeseed and epoxidized rapeseed oil with different nano-additives	154
6.2.1.1. Antiwear study of modified and unmodified rapeseed oil	154
6.2.1.2. Antifriction study of modified and unmodified rapeseed oil	163
6.2.1.3. Extreme-pressure study of modified and unmodified rapeseed oil	165
6.2.2. Sunflower and epoxidized sunflower oil with different nano- additives	166
6.2.2.1. Antiwear study of modified and unmodified sunflower oil	166
6.2.2.2. Antifriction study of modified and unmodified sunflower oil	173
6.2.2.2.1. Compatibility of nano-additives with SO and ESO	177
6.2.3. Castor and epoxidized castor oil with different nano-additives	178
6.2.3.1. Antiwear study of modified and unmodified castor oil	178
6.2.3.2. Antifriction study of modified and unmodified castor oil	184
6.2.3.3. Extreme-pressure study of modified and unmodified castor oil	188
6.3. Summary of the chapter	188
Chapter-7 Conclusions and Scope for Future Work	189-196
7.1. Conclusions	189
7.1.1. Fatty acid structure of the biolubricants before and after epoxidation	190
7.1.2. Dispersion stability of nano-additives in various lubricants	191
7.1.3. Effect of nanolubricants on tribological properties	191
7.1.4. Overall general conclusion	195

7.2. Scope for the future work	196
References	197-218
Appendix-A: Calculation of film thickness and Hertzian diameter	219-222
Appendix-B: Calculation of friction factor and Sommerfeld number	223-224
Appendix-C: Suspension images of PTFE based lubricants	225-226
List of publications	227
List of National/International Conferences	228