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Abstract Key words Sonogashira, heterogeneous catalysis, sup-
ported nanoparticles, aryl acetylenes, palladium

Sonogashira reaction is an important C–C cross-cou-

pling reaction employed for the synthesis of biologically ac-

tive aryl or vinyl acetylenes using terminal acetylenes and

aryl or vinyl halides, in the presence of Pd/Cu salt or Pd

metal catalysts.1,2 Aryl and vinyl acetylenes are structural

moieties in polymers, natural products, agrochemicals, and

pharmaceuticals. Their constant demand stimulates the up-

grading of their synthetic methodologies and the design of

newer catalysts.3

Currently, the worldwide demand for palladium sur-

passes the supply, leading to the excessive cost of the cata-

lysts.4 Therefore, sustainable use and recycling of Pd is vital.

Nanocatalysis is a green and benign approach, which is de-

sirable for sustainability and economic viability.5 These cat-

alytic systems are cheap, ligand-free, and are generally sta-

ble to air and moisture.5 Nanoparticles (NPs) with con-

trolled compositions, uniform and low particle sizes, high

number of surface atoms, large surface area, shape selectiv-

ity, zeta potential values, and superior surface chemistry

exhibit tailorable catalytic properties and selectivity.6 Se-

lection of a suitable solid support for nanocatalysts is criti-

cal as it not only controls the shape, size, and distribution of

NPs on its surface but also eases a cooperative and efficient

pathway to achieve the target product through strong met-

al-support interaction (SMSI), high surface area, a substan-

tial number of participating active sites, increased stability,

decreased leaching and agglomeration of metal nanoparti-

cles and increased recyclability.7,8 Solid-supported heterog-

enized Pd nanoparticles are now being explored as useful
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catalysts for Sonogashira, Heck, Suzuki–Miyaura, and sever-

al other C–C cross-coupling reactions.9–11 The recent re-

ports on the synthesis of heterogenized Pd nanoparticles

with controlled shapes, sizes, detailed structures, and

choice of a plethora of nanostructured solid supports has

led to meaningful progression in the field.[8–11] This spot-

light article lists some examples of solid supports used for

tailoring Pd nanoparticles (Figure 1, Table 1) and their cata-

lytic application in Sonogashira cross-coupling reaction (Ta-

ble 1).

Figure 1  Some solid supports for Pd nanoparticles

Table 1  Examples of Sonogashira Reaction Catalyzed by Solid-Supported Heterogenized Pd Nanoparticles

(A) Pd@MGO-D-NH2
11

– solid support: graphene oxide
– higher yields
– fast reaction
– simple operation
– easy catalyst separation

4 times

(B) Pd@COP12

– solid support: covalent organic polymer
– excellent yield
– fast reaction
– electron-deficient aryl halides preferred
– mild conditions

8 times

(C) PdNPs@NCmw13

– solid support: nanocellulose
– renewable source
– short reaction time
– size-controlled spherical NPs
– wide substrate scope, including heteroaryl halides

3 times

(D) Pd@TMU-314

– solid support: metal-organic framework
– facile preparation
– excellent yields
– high efficiency
– high purity
– fast reaction
– easy transfer

5 times

(E) Pd@Fe3O4/AMOCAA15

– solid support: functionalized magnetite
– excellent yield
– fast reaction
– easy recovery

7 times

R
X +

Pd@MGO-D-NH2
 
H2O–EtOH
K2CO3, reflux, 0.4-2 h

R

8 examples
85-95%

R = NO2, CHO
X = Cl, Br, I

R1

X + R2
      Pd@COP, CuI
 
DMSO, K2CO3, RT, 5 h R1

R2

26 examples
54-97%

R1 = H, 4-NO2, 4-CN, 4-NH2, 4-NHAc, 4-NHBz, 2-F, 4-CHO, 4-Ac
X = Cl, Br, I

R2 = Ph, C4H9, C3H6OH, CH2Br, C3H6CN

Y

Y

I +
PdNPs@NCmw, K2CO3
 
H2O/EtOH, 70 °C, 7-12 h

Y

Y
8 examples
70-98%

R2
R1

R2

Y = C, N
R1 = COMe, CH3, NO2

R2 = Ph, C4H9, C6H11, p-CH3-C6H5

R1

R1 H +

X

R2

Pd@TMU-3
 
K2CO3, EtOH
reflux, 7-260 min

R2

13 examples
40-95%R1 = Ph

R2 = NO2, Me, OMe, H
X = Cl, Br, I

R1

XR1 +
Pd@Fe3O4/AMOCAA
 
K2CO3; EtOH/H2O
80 °C, 1-3 h

R1

12 examples
79-96%R1 = H, 4-Me, 4-OMe, 1-naphthyl, 4-NO2

X = I, Br, Cl
R2 = Ph, CH2OH

R2 R2
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The data reviewed in this spotlight has revealed that

nanomaterial-supported Pd NPs have unveiled several op-

portunities for the accomplishment of economical, greener,

and sustainable Sonogashira cross-coupling transforma-

tions by preventing oxidation, agglomeration, and promot-

ing recycling of NPs. The future of supported Pd NPs will

depend on how well the scientific community can address

challenges like low cost, simple procedures for synthesis,

leaching, falling-off of activity, regio- and chemoselectivity

in asymmetric transformations, utilization of biowaste ma-

terials for support. The key to all pertinent issues probably

lies in the design of superior heterogeneous support sys-

tems using diverse material design philosophies.
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(F) Pd@SBA-Pr-imine-furan16

– solid support: mesoporous organosilicate (SBA)
– excellent yield
– fast reaction
– stable catalyst

7 times

(G) Pd/PiNe17

– solid support: biochar
– circular economy
– continuous-flow protocol
– high catalyst stability
– good yield
– low E-factor

5 times

(H) Pd@CS/Al-Fe-Mt18

– solid support: chitosan
– well-encaged Pd NPs
– thermally stable
– high selectivity
– high TON, TOF
– high yields with ArI and ArBr

18 times

+

Y

X

Pd@SBA-Pr-imine-furan
 
KOH, DMF
120 °C, 20 min to 1 h

X

9 examples
89-100%

X = 4-NO2, 3-NO2, 4-Cl, 3-Me, 4-Me, H, 4-NH2, 4-OMe, 4-Br
Y = 1-Br, I

I

R1

+

R2

Pd/PiNe, DABCO
  
CPME/H2O
85 °C, 12-24 h

R2

R1

14 examples
70-97%

R1 = H, Me, NO2, Ac
R2 = H, 2-CF3, Me

X

R1

+

R2

Pd@CS/Al-Fe-Mt
 
DMSO + ethylene glycol
110 °C, 1 h

R2

R1

15 examples
48-99%X = I, Br

R1 = H, 3-OCH3, 4-OCH3, 4-Cl, 2-Cl, 3-F, 2-CH3, 1-naphthyl, 2-(9H-fluorenyl)
R2 = H, CH3, Cl
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