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ABSTRACT Recently, society/industry is getting smarter and sustainable through artificial intelligence-
based solutions. However, this rapid advancement is also polluting our air ambience. Hence real-time
detection and estimation of hazardous gases/odors in the air ambiance has become a critical need. In this
paper, a convolutional neural network (CNN) based multi-element gas sensor arrays signature response
analysis approach has been presented to achieve higher accuracy in detection and estimation of hazardous
gases. Accordingly, the real-time gas sensor array responses are spatially upscaled and processed on the
edge, using lightweight CNNs. For the verification of our hypothesis, we have used a four-element metal-
oxide semi-conductor (MOS)-based thick-film gas sensor array, fabricated by our group, by using SnO2,
ZnO, MoO, CdS materials for detection and estimation of four target hazardous gases, viz., acetone, car-
bon-tetrachloride, ethyl-methyl-ketone, and xylene. The four-element (2× 2) raw sensor responses are first
upscaled to 6 × 6 responses and a lightweight CNN is trained on 42 samples of 6 × 6 input vectors. The
trained system is then tested using 16 unknown (not used during training) test samples of the considered
gases/odors. All the 16 test samples are detected correctly. The Mean Squared Error (MSEs) of detection
has been 1.42×10−14 while the estimation accuracy of 2.43×10−3 were achieved for the considered gases.
Our designed system is generic in design and can be extended to other gases/odors of interest.

INDEX TERMS Spatial upscaling, convolutional neural networks (CNNs), electronic nose, gas sensor array,
Internet of Things (IoT).

I. INTRODUCTION
Artificial intelligence (AI)-based pattern recognition tech-
niques can achieve high performance in gas sensor systems
(electronic nose). With the advent of the internet of things
(IoT), the development of low-cost intelligent gas sensor
systems are the prime contributors in transforming a city to
be smart and sustainable, which is at-attracting the attention
of researchers to develop such high-performance systems.

The associate editor coordinating the review of this manuscript and

approving it for publication was Md. Moinul Hossain .

Gas sensor systems are helpful to detect (classify) and esti-
mate (quantify) various types of gases/odors, volatile organic
compounds, aromas, etc. The gas sensing systems includes
several contexts of application for smart cities [1], [2], [3].
The air quality monitoring in a smart city has been demon-
strated on hazardous gases/odors such as carbon monox-
ide, nitrogen dioxide, sulfur dioxide, and particulate matter
(e.g., PM10) [1]. Except for gas sensors, the role of advanced
sensing and smart sensors can be seen through [2] and [3]
in the context of smart city scenarios. Further, gas sensors
work on the phenomenon of adsorption of gas/odormolecules
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on the sensor’s surface, thereby, lowering the resistance of
the sensing elements. This percentage change in resistance
of the sensor element is proportional to the affinity of vari-
ous molecules with different gas sensing elements, typically
called the sensor response of the sensing element to that
particular gas/odor [4], [5]. Therefore, intelligent gas sensor
systems can be designed by creating a gas sensor array using
more distinct sensor elements and employing pattern recog-
nition techniques [6], [7], [8], [9], [10], [11], [12], [13], [14].
A schematic diagram for a gas sensing system’s processing
has been shown in Figure 1.
The conception of gas sensor array was firstly considered

by Persaud et al. to mimic the mammalian olfactory sys-
tem [6]. They had used an array of non-specific gas sen-
sors followed by pattern recognition using neural model.
Depending on the demand of application, viz., detection
and/or estimation, analysis has been carried out using var-
ious pattern recognition techniques [11], [15]. In published
literature, principal component analysis (PCA) and its vari-
ants [8], [9], [10], [11], [12], [13], [14], [15], [16], linear
discriminant analysis (LDA) [9], [10], [11], [14], stepwise
discriminant analysis [9], hierarchical cluster analysis
[12], [14], average slope multiplication [17], support vector
machine (SVM) [18] etc. have been used for the detection of
gases delivering different accuracies and success rates. Vari-
ous neural network-based approaches such as artificial neu-
ral net-works (ANNs) [7], [19], [20], the back-propagation
neural network [9], [17], multi-layer perceptron (MLP) clas-
sifier [21], [18], neural-genetic classification algorithm [15],
and field-programmable gate array-basedMLP classifier [22]
have also been used for pattern recognition in gas sensor array
responses (types of responses are shown in Figure 2).

FIGURE 1. Schematic diagram of a gas sensing system’s processing for
classification (detection) and quantification (estimation) of hazardous
gases/odors in smart city scenario.

Mishra et al. proposed a modular ANN in which two ANN
modules are connected using a 4× 1 multiplexer. The classi-
fier module has two blocks for pre-processing (NDSRT [23])
and detection, respectively. These blocks are single-layer
feed-forward neural networks. On the other hand, the quanti-
fier module has parallel blocks for quantifying the respective
gas/odor [24]. In [23], authors have proposed a technique
NDSRT which enhances the suitability of data for pattern
recognition by adjusting inter- and intra-cluster compaction
accordingly. They have assessed the proposed technique but
not demonstrated the experiment for classifying and quanti-
fying the gases/odors. Also, in [25], Mishra et al. proposed a
normalized difference-based classifier in which multi-layer

perceptron ANN (MLPANN) is used for detection. Their
proposed technique NDSRT [23], outperformed the popular
statistical data processingmethods viz. PCA, and LDA. Apart
from the traditional neural network-based approaches, Peng
et al. have proposed a deep convolutional neural network
(DCNN) called as GasNet and used for gas classification
only, with a success rate of 95.2%. The obtained result by
using GasNet has been compared with two other classifiers,
SVMandMLP (a traditional fully connected neural network).
It is shown that GasNet outperforms the other two classifiers
in the context of classification accuracy [18].

This paper uses a spatial upscaling approach to transform
steady-state gas sensor responses into a two-dimensional tem-
plate, with significant data points on which CNNs can be
applied. The proposed transformation also retains the infor-
mation as contained in the raw sensor response. It has been
shown using 3D scattering plots of three initial principal com-
ponents (PCs) for raw and transformed sensor responses (see
Figure 8(a)-(b)). It can be observed that the sensor character-
istics remain the same after the transformation. A gas sensor
system designed with our proposed approach can detect (clas-
sify) and estimate (quantify) various types of gases/odors,
volatile organic compounds, aromas, etc., with a very high
degree of accuracy. This work has been demonstrated the
responses of a gas sensor array consisting of four gas sensing
elements fabricated using thick-film technology. Considered
responses had been recorded using four gases, viz., acetone,
carbon-tetrachloride, ethyl-methyl-ketone, and xylene.

FIGURE 2. A schematic curve of response modalities of a gas sensor.

Utilities of this work are highlighted as follows:
1. The referred datasets have been customized using spatial

upscaling to achieve high-performance detection of consid-
ered gases/odors using the steady-state responses.

2. The convolutional neural networks (CNNs) have been
applied to the customized (scaled-up) dataset, which was not
possible on the original dataset.

3. The proposed approach is generic and can be used
universally on multi-sensor limited-datapoint responses for
high performance using CNNs.
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FIGURE 3. A schematic of gas sensing by a sensing material.

TABLE 1. Gas sensor array’s brief detail.

II. MATERIALS AND METHODS
A. GAS SENSOR ARRAY RESPONSES/DATASET
The dataset used to assess our proposed approach is steady-
state responses of a gas sensor array, fabricated using
thick-film technology. Electrical resistance of the sensor
elements changes when it is exposed to analyte gases.
Schematic structure of a gas sensor element and the sensing
mechanism is shown in Figure 3. It is an integrated four-
element chip, as show in figure 1 and the required materials/
components were supplied by Electro Science Laboratories
(ESL), USA [26].

The gas sensing elements were fabricated on tin oxide
(SnO2) as its base material while cadmium sulfide (CdS),

molybdenum oxide (MoO), and zinc oxide (ZnO), were used
as dopants, for fabricating respective sensor elements, taken
10% by weight to parent material. Firstly, it was calibrated in
different ambiances (e.g., closed air, open air, closed nitrogen,
air flow, and nitrogen flow). It was then characterized for four
gases/odors, viz., acetone (ace), carbon-tetrachloride (car),
ethyl-methyl-ketone (emk), and xylene (xyl), respectively,
capturing responses at different concentration levels of each
gas. The detailed type and specification about the correspond-
ing gas sensor array fabrication and experimentation has been
shown in Table 1. Comprehensive details can be found in [26].

The sensor characteristics of the observed gases/odors are
shown in Figure 4(a)-(d). Data extraction from the character-
istics has been explained in [16]. Further-more, the formula
for calculating concentration in parts per million (ppm) and
a table of basic parameters of each respective gas are given
in [23]. This dataset has been organized in two parts viz.,
the training and testing dataset consisting of 42 samples dis-
tributed as 8, 10, 12, 12, and 16 samples distributed as 2, 3,
6, 5, respectively, with a four-element vector in each, also
called ‘signature patterns’ of the gas sensor array for respec-
tive gas samples. When we sample the gas sensor responses
(10-100Hz sampling rate), both the transient and steady state
responses are captured. However, Steady-state samples are
the prime representative of respective gas and its sample
concentration. Therefore, in this proposed work, we have
utilized the concept of steady state gas sensor responses of
the gas sensor array and have reduced the needful samples
to only a hundred steady state samples taken from a total
of sixty thousand samples consisting of transient and steady
state responses [27].

B. THE PROPOSED APPROACH
Motivation: CNNs require a specific input format for their
one-dimensional (1D) and two-dimensional (2D) versions,
respectively [28]. 1D-CNN is effectively used to analyze
the time-series sensor response where the response feature
vector has sufficient length. Also, n filters in 1D-CNN contain
only n feature vector instead of n × n feature vector in
2D-CNN. As aforesaid, the steady-state sensor response has a
limited feature vector size; therefore, 2D-CNN can get more
feature vectors using the same number of filters. Neverthe-
less, the feature vector of steady-state response cannot be
converted into a 2D array of sufficient dimension as required
by 2D-CNN.

Hence, steady-state samples acquired from a sensor array
are incompatible with 2D-CNN in its present form. It could
have been possible to transform this limited data at the sample
level. Accordingly, in this paper, a spatial upscaling-based
approach is used which the upscales the input vectors to
leverage the 2D-CNN providing high-performance analysis.

C. SPATIAL UPSCALING
The feature vector of each gas sample obtained from a gas
sensor array consists of data points corresponding to each gas
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FIGURE 4. Sensor characteristics for observed hazardous gases/odors
using gas sensor array.

sensor element’s steady-state values. Therefore, each sam-
ple’s gas sensor array response will be a feature vector having
a length equal to the number of gas sensor array’s sensing
elements. Each of these sample vectors can be rearranged into
a 2D array. The number of sensing elements (sensor) may or
may not be equal to a perfect square number, thereby, two
cases have been discussed below:
Case I: If the number of features is a non-perfect square

number n, it cannot be converted into the format such that:
p × p = n, where p is a natural number, i.e., p ∈ N
Here, the zero-padding will increase the number until the

nearest perfect square number. This zero-padding makes the
modified number of features (n + δ) where δ is the number
of added null features, ensuring that it is a perfect square
number. Further, find a factor p of (n + δ) such that:
p × p = (n + δ), where p is a natural number, i.e., p ∈ N
Case II: If the number of features is a perfect square

number n, it is possible to represent it such that:
p × p = n, where p is a natural number, i.e., p ∈ N
Let’s say the dataset is in the form of S × L, where S

represents the total number of samples and L represents the
total number of features (sensor elements) in each response
for the gas sensor array to the respective sample.

ALGORITHM: As per workflow, it has been shown in
Figure 5, for obtaining a suitable 2D array from sensor array
responses for each sample. Pseudocode is given as follows:

INPUT: Sample’s feature vector length L≥2.
OUTPUT: 2D array corresponding to each sample.
1) BEGIN
2) Calculate the total number of features L.
3) Check whether L is a non-perfect square or a perfect

square number.
4) If L is a non-perfect square number, then

FIGURE 5. Flowchart for experiment execution.

FIGURE 6. Directions corresponding to spatial upscaling.

i) Using zero padding, add δ null features to the dataset
to make L(new) = (L + δ), the next nearest perfect square
number.

17734 VOLUME 11, 2023



S. Srivastava et al.: Spatial Upscaling-Based Algorithm for Detection and Estimation of Hazardous Gases

ii) Find a factor p such that: p × p = L(new).
5) If L is a perfect square number, then
i) Find the factors p such that p × p = L.
6) The Dataset is converted into the form of S × p × p.
7) END
Once a suitable 2D array is formed with the help of

padding [27], spatial upscaling can now be applied. The
spatial upscaling procedure is described below:

Suppose that there are eight mirrors placed at the edges of
the sample’s 2D array in directions: east, west, north, south,
north-west, south-east, north-east, and south-west. These
directions are shown in Figure 6. Hence, the obtained mirror
images of the original sample array aremosaicked around it at
their respective places. A schematic diagram of the obtained
augmented sample (valid to process with CNN called CNN
Ready) is shown in Figure 7. From this figure, it can also be
observed that the raw sensor responses of shape (2× 2) have
been scaled up into a transformed sample of shape (6 × 6).
Thus, the obtained data with transformed samples can now
be processed with CNNs as 2-D input with good choices of
suitable kernels for classifying and quantifying gases/odors.
It can further be observed that the original sensor response
characteristics (signature patterns) and that of the augmented
samples show the same cluster distribution as shown in Figure
8(a)-(b), respectively, indicating that the information has not
been altered.

D. CONVOLUTIONAL NEURAL NETWORK (CNN)
A 2D-CNN has been customized to classify and quantify the
gas sensor array responses by taking the scaled-up (6×6) 2D
inputs. This section provides a brief introduction to special-
ized layers of CNN [29]:

Convolutional Layers: This layer is used for automatic
feature extraction with the help of kernels. Multiple kernels
convolve with the input image and extract composite features
in the form of a map. The stack of obtained feature maps is
then forwarded as input to the next layer.

Pooling Layers: This layer is used to reduce the number of
trainable parameters, concerning the input size.

Flatten and Fully Connected Layers: After using the con-
volutional and pooling layers, a flattened layer is used to
convert the 2-D/3-D output feature maps into a single vector.
Subsequently, dense or fully connected layers having con-
nected each neuron to each neuron of the previous and suc-
cessive layers are used.

The Output Layer: For detection, a layer named ‘softmax’
is used, with neurons equal to targets. On the other hand,
the linear activation layer is used as the output layer for
regression.

In this experiment, we have chosen a CNN model consist-
ing of a pair of convolutional layers, a flatten layer, a fully
connected or a dense layer, and the output layer (softmax
or linear activation). Pooling layers are unnecessary since
the spatial extent of input is already limited compared to
image-like data. Interestingly, our designed CNN can classify

TABLE 2. CNN configuration.

respective gas/odor samples and quantify the concentration of
the samples very accurately. The schematic block diagram of
the customized 2D-CNN is shown in Figure 9. The related
parameters of the trained CNN model have been given
in Table 2.

III. RESULS
This paper uses spatial upscaling approach, which can up-
scale samples having a limited number of features, e.g.,
(2 × 2) obtained as the steady-state response from a gas
sensor array to a (6 × 6), as in our case. The upscaled
samples are used for training and testing purposes for pattern
analysis using CNNs, followed upscaling uses the recursion
as depicted in Figure 6 [30]. A CNN has been then trained and
tested to verify the effectiveness of the scaled-up dataset at
the sample level. It may be noted that CNN cannot be applied
on initially captured 1D or 2D steady-state sensor responses
wherever the sensor array consists of a few sensor elements.
Design details of this CNN have been shown in Table 2. The
feature maps automatically extract the features contained in
the local area of the input. The feature maps obtained from the
first convolutional layer are fed to the next convolutional layer
as inputs. The convolved feature maps obtained from succes-
sive convolutional layers have been shown in Figure 10(a)-(b)
in the form of an image.

A. DETECTION PERFORMANCE
The detection performance of the designed CNN has been
shown in Figure 11, in the form of a normalized confusion
matrix. The unknown 16 test samples belonging to four dis-
tinct classes of considered gases have been classified accu-
rately as the values in the principal diagonal of the confusion
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FIGURE 7. A schematic of the augmented sample (CNN Ready).

matrix are well-matched with the sample’s actual class. Also,
all other elements of the confusionmatrix are zeros, only indi-
cating that there are ‘zero’ wrongly classified test samples.
Further, Cohen’s kappa coefficient [31] is also calculated
from the confusion matrix given in Figure 11 in the form
of another metric for detection assessment. It attains a value
between 0 and 1. It is also a robust measure to know the
quality of detection. The level of agreement has been defined
based on the obtained value of the kappa coefficient (k). It is
calculated using the equation (1).

k = ((N × D−

∑
(Ri × Pi))/(N × N −

∑
(Ri × Pi)))

(1)

where i = {ace: acetone, car: carbon-tetrachloride, emk:
ethyl-methyl-ketone, xyl: xylene}; Ri, and Pi are the total
number of reference samples, and correctly predicted samples
for the respective gases/odors; N represents the number of test
samples. Here, N=16, diagonal sum (D)=2+3+6+5=16,
and

∑
(Ri × Pi) = 2 × 2 + 3 × 3 + 6 × 6 + 5 × 5 =

74. By substituting the respective values in the equation (1),
we get k = 1.

We have attained the perfect level of agreement in inter-
preting the kappa coefficient. Further, on inspection of the
actual detection performance data, the mean squared error
(MSE) for detection is also very low, i.e., 1.42 × 10−14 with
a maxi-mum/minimum squared error (Max SE/Min SE) of
1.42 × 10−14 for all the test samples. The detection perfor-
mance error for each sample is shown in Figure 12. The MSE
has been calculated using (2):

MSE = (1/N )
∑N

i=1
(Ti − Pi)2 (2)

where Ti stands for target value, Pi stands for the predicted
value, and N is the total number of samples.

B. ESTIMATION PERFORMANCE
The designed CNN has also been trained to estimate the con-
centration of the respective gas/odor samples. The estimation

FIGURE 8. 3D scatter plots for three initial principal components (PCs)
(a) raw sensor responses and (b) transformed sensor responses.

TABLE 3. Performance chart.

FIGURE 9. A schematic diagram of used lightweight CNN.

FIGURE 10. Convolved feature maps were obtained from (a) the first
convolutional layer and (b) the second convolutional layer.

performance of CNN has also been tested by using
16 unknown test samples, unused while training. The exact
concentration for each of these samples is also available
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FIGURE 11. Confusion matrix for detection.

FIGURE 12. A squared error plot for detection performance.

FIGURE 13. A squared error plot for estimation performance.

accurately, as recorded during the experiment. The estima-
tion performance while testing for 16 unknown test samples,
a very low MSE 2.43 × 10−3 has been achieved. At the
same time, Max and Min SE were found 9.08 × 10−3 and
6.50×10−5, respectively. The sample-wise squared error plot
is shown in Figure 13. A performance chart of both detection
and estimation performance has been given in Table 3.

IV. DISCUSSION AND CONCLUSION
The used spatial upscaling approach is a highly effective
approach to achieving a high degree of detection and esti-
mation performance using CNN. It is a breakthrough espe-
cially in the gas sensor intelligent system development that
uses the steady-state responses of the gas sensor array for
analysis. Such systems are vital in making smart cities sus-
tainable and their management more reliable. Especially, the
contribution of gas sensor systems is crucial to make the
smart cities clean and green (eco-friendly). In the context of
experimentation, as the results show, our proposed approach
using CNN achieves a very low MSE, i.e., 1.42 × 10−14 in
detection, and 2.43×10−3 in estimation for 16 unknown test
gas/odor samples. The proposed approach is generic that can
be utilized in each research field due to the inevitable usage
of sensors. According to the authors’ best knowledge, the
proposed application of CNN on steady-state gas sensor array
responses is the very first application of CNN on steady-state
responses of gas sensor systems. It can also be implemented
for use in real-time gas sensing applications after training the
sensor system in laboratory conditions.
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