Chapter 5

Quantum information diode based on

the magnonic crystal

5.1 Introduction

A diode is a device designated to support asymmetric transport. Nowadays, household
electric appliances or advanced experimental scientific equipment are all inconceivable
without extensive use of diodes. Diodes with a perfect rectification effect permit electrical
current to flow in one direction only. The progress in nanotechnology and material
science passes new demands to a new generation of diodes; futuristic nano-devices that
can rectify either acoustic (sound waves), thermal phononic, or magnonic spin current
transport. Nevertheless, we note that at the nano-scale, the rectification effect is never
perfect, i.e., backflow is permitted, but amplitudes of the front and backflows are different
[198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211]. In the present
work, we propose an entirely new type of diode designed to rectify the quantum information
current. We do believe that in the foreseeable future the quantum information diode (QID)

has a perspective to become a benchmark of quantum information technologies.
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The functionality of a QID relies on the use of magnonic crystals, i.e., artificial media
with a characteristic periodic lateral variation of magnetic properties. Similar to photonic
crystals, magnonic crystals possess a band gap in the magnonic excitation spectrum.
Therefore, spin waves with frequencies matching the band gap are not allowed to propagate
through the magnonic crystals [85, 89, 212, 213, 214, 215, 216].

The essence of a magnonic transistor is an YIG strip with a periodic modulation of its
thickness (magnonic crystal). The transistor is complemented by a source, a drain, and
gate antennas. A gate antenna injects magnonic crystal magnons with a frequency g
matching the magnonic crystal band gap. Therefore, the gate magnons cannot leave the
crystal and may reach a high density. Magnons emitted from a source with a wave vector
k; flowing towards the drain run into the magnonic crystal. The interaction between the
source magnons and the magnonic crystal magnons is a four-magnon scattering process.
The magnonic current emitted from the source attenuates in the magnonic crystal, and the
weak signal reaches the drain due to the scattering. The relaxation process is swift if the

following condition holds [89, 90]

ky = ——, (5.1)

where my is the integer, and ay is the crystal lattice constant. The magnons with wave vec-
tors satisfying the Bragg conditions Eq. (5.1) will be resonantly scattered back, resulting in
the generation of rejection bands in a spin-wave spectrum over which magnon propagation
is entirely prohibited. Experimental verification of this effect is given in Ref. [89].

This chapter is organized as follows. In subsection 5.2.1, we briefly describe the
proposed set-up for QID. In subsection 5.2.2, we will discuss a model of a 2D square
lattice spin system. OTOC is defined in subsection 5.2.3, and rectification is defined in

subsection 5.2.4. At last, we conclude the results in section 5.3
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5.2 Result

5.2.1 Proposed set-up for QID

A pictorial representation of a QID is shown in Fig. 5.1. A magnonic crystal can be
fabricated from an YIG film. Grooves can be deposited using a lithography procedure
in a few nanometer steps, and for our purpose, we consider parallel lines in width of
1um spaced with 10pm from each other. Therefore, the lattice constant, approximately
ap = 11um, i. e., is much larger than the unit cell size a = 10nm used in our coarse-
graining approach. Due to the capacity of our analytical calculations, we consider quantum
spin chains of length about N = 1000 spins and the maximal distance between the spins
rij = d (in the units of a), d = i — j = 40. In what follows, we take k(w)a < 1. The
mechanism of the QID is based on the effect of direction dependence of nonreciprocal
magnons [217, 218, 219]. In the chiral spin systems, the absence of inversion symmetry
causes a difference in dispersion relations of the left and right propagating magnons, i.
e., 0 1(k) # @, r(—k). Due to the Dzyaloshinskii-Moriya interaction (DMI), magnons
of the same frequency @ propagating in opposite directions have different wave vectors
[220]: a(kj —k; ) = D/J, where J is the exchange constant, and D is the DMI constant.
Therefore, if the condition Eq. (5.1) holds for the left propagating magnons, it is violated
for the right propagating magnons and vice versa. These magnons propagating in different
directions decay differently in the magnonic crystal. Without loss of generality, we
assume that the right propagating magnons with k" satisfy the condition Eq. (5.1), and
the current attenuates due to the scattering of source magnons by the gate magnons. The
left propagating magnons k; violate the condition Eq. (5.1), and the current flows without
scattering. Thus, reversing the source and drain antenna’s positions rectifies the current.
Following ref. [89], we introduce a suppression rate of the source to drain the magnonic

current & (D) = 1 —n}, /ny,, where nj, < nj, are densities of the drain magnons with and
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Fig. 5.1 Illustration of a quantum information diode: A plane of an YIG film with grooves
orthogonal to the direction of the propagation of quantum information. In the middle of
the QID, we pump extra magnons to excite the system. A quantum excitation propagates
toward the left, and the right ends asymmetrically. To describe the propagation process of
quantum information, we introduce the left and right OTOC Cy(¢) and Cg(#). Because the
left-right inversion is equivalent to D — —D meaning E, — —E), we can invert the left
and right OTOCs by switching the applied external electric field.

without scattering. The parameter & (D) is experimentally accessible, and it depends on
a particular setup. Therefore, we take &(D) as a free theory parameter. Multiferroic
(MF) materials are considered as a good example of a system with broken inversion
symmetry (see Refs.[221, 222, 223, 224, 225, 226, 227, 228, 229]) and references therein.
MF properties of YIG are studied in ref. [230]. Moreover, in accordance with scanning
tunneling microscopy experiments, a change of the spin direction at one edge of a chiral

chain was experimentally probed by tens of nanometers away from the second edge [229].
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5.2.2 Model

We consider a 2D square-lattice spin system with nearest-neighbor J; and the next nearest-

neighbor J; coupling constants:

A=1,Y 6,6n+] Y, 6,6,—P-E, (5.2)
(n,m) ((n,m))

where (n,m), and ((n,m)) indicate all the pairs with nearest-neighbor and next nearest-

neighbor interactions, respectively. The last term in Eq. (5.2) describes a coupling of the

ferroelectric polarization P = gMEei i1 X (6i x 6;41) with an applied external electric field

and mimics an effective Dzyaloshinskii-Moriya interaction term D = Eyg, » breaking the

left-right symmetry, where g, is the magneto-electric coupling constant. This can be

written as

—P-E=D) (6, X 8py1):. (5.3)
n

Here we consider only the nearest neighbor DMI and only in one direction. As a con-
sequence, the left-right inversion is equivalent to D — —D, or E, — —E,. The broken
left-right inversion symmetry can be exploited in rectifying the information current by
an electric field. More importantly, the procedure is experimentally feasible. We can
diagonalize the Hamiltonian in Eq. (5.2) by using the Holstein-Primakoff transformation

[231, 232, 233, 234] [See Appendix D-I for detailed derivation] as:

A=) o(£D k)i
[
o =2J1(1=7%1k) +202(1 = 1ak), Vix = 1/2(cosky +cosky),

kak ©(+D,k) = (0(k) + wpu(k)), @pm(k) = Dsin(ka),

Yok = 1/2(cos(ky +ky) +cos(ky —ky)). (5.4)

Here +D corresponds to the magnons propagating in opposite directions, and the sign

change is equivalent to the electric field direction change. We note that a 1D character of
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the DM term is ensured by the magnetoelectric effect [221] and to the electric field applied
along the y axis.

The speed limit of information propagation is usually given in terms of Lieb-Robinson
(LR) bound, defined for the Hamiltonians that are locally bounded and short-range interact-
ing [235, 236, 237]. Since the Hamiltonian in Egq. (5.2) satisfies both conditions, the LR
bound can be defined for the spin model. However, when we transform the Hamiltonian
using Holstein-Primakoff bosons, we have to take extra care as the bosons are not locally
bounded. To define LR bound, we take only a few noninteracting magnons and exclude
the magnon-magnon interaction to truncate terms beyond quadratic operators. In a realistic
experimental setting, low density of propagating magnons in YIG can easily be achieved
by properly controlling the microwave antenna. In the case of low magnon density, the
role of the magnon-magnon interaction between propagating magnons in YIG is negligible.
Therefore, for YIG, we have a quadratic Hamiltonian, which is a precise approach in a low
magnon density limit. Our discussion is valid for the experimental physical system [89],
where magnons of YIG do not interact with each other, implying that there is no term in the
Hamiltonian beyond quadratic. We can estimate LR bounds [238] defining the maximum
group velocities of the left-right propagating magnons vz,t (%) = W. Taking into
account the explicit form of the dispersion relations, we see that the maximal asymmetry is
approximately equal to the DM constant, i. e., v{ (0) — v, (0) = 2D. We note that the effect
of nonreciprocal magnons is already observed experimentally [239, 240, 241, 242, 243]
but up to date, never discussed in the context of the quantum information theory.

We formulate the central interest question as follows: At ¢ = 0, we act upon the spin
6, to see how swiftly changes in the spin direction can be probed tens of sites away
d =n—m > 1 and whether the forward and backward processes (, i.e., probing for 6,,

the outcome of the measurement done on 6,,) are asymmetric or not. Due to the left-

right asymmetry, the chiral spin channel may sustain a diode rectification effect when
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transferring the quantum information from left to right and in the opposite direction.
We note that our discussion about the left-right asymmetry of the quantum information
flow is valid until the current reaches boundaries. Thus the upper limit of the time reads

tmax = Na/ vgi (75), where N is the size of the system.

5.2.3 Out-of-time-order correlator

Larkin and Ovchinnikov [19] introduced the concept of the out-of-time-ordered correlator
(OTOC), and since then, OTOC has been seen as a diagnostic tool of quantum chaos.
The concern of delocalizations in the quantum information theory (i.e., the scrambling
of quantum entanglement) was renewed only recently, see Refs. [14, 94, 97, 99, 133,
134, 244, 245, 246, 247] and references therein. We utilize the OTOC to characterize the
left-right asymmetry of the quantum information flow and thus infer the rectification effect
of a diode.

Let us consider two unitary operators V and W describing local perturbations to
the chiral spin system Eq. (5.2), and the unitary time evolution of one of the operators
W (¢) = exp(iHt)W (0) exp(—iHt). Then the OTOC is defined as

Clt)= <[W(z),f/(0)f [W(t), 9 (0)] > (5.5)

N =

where parentheses (---) denotes a quantum mechanical average over the propagated
quantum state. Following the definition, the OTOC at the initial moment of time is
zero C(0) = 0, provided that [W(0),V(0)] = 0. In particular, for the local unitary and
Hermitian operators of our choice W, (1) = 6%(t) = A (t) = exp(iHt)f),,exp(—iHt), and
V= 62 = f,, where A}, = 2a}d, — 1. The bosonic operators are related to the spin

operators via 6, = 2al, o, =2a,, 0%=2a}a,— 1. In terms of the occupation number
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operators, the OTOC is given as

C(1)= %{(nnnm(t)nm (1) + N (MMM (1)) = M () MM () 00) = (MM (1) 0 (2) }
(5.6)
Indeed, the OTOC can be interpreted as the overlap of two wave functions, which are time
evolved in two different ways for the same initial state |y(0)). The first wave function is
obtained by perturbing the initial state at f = 0 with a local unitary operator V, then evolved
further under the unitary evolution operator U = exp(—iHt) until time ¢. It is then perturbed
at time 7 with a local unitary operator W, and evolved backwards from ¢ to r = 0 under
U*. Hence, the time evolved wave function is |y(t)) = UTWOV |w(0)) = W (£)V |y(0)).
To get the second wave function, the order of the applied perturbations is permuted, i.
e., first W at r and then V at t = 0. Therefore, the second wave-function is |¢(¢)) =
VL}TWUW(O)) = VW (#)|w(0)) and their overlap is equivalent to F(t) = (¢(¢)|w(z)).
The OTOC is calculated from this overlap using C(z) = 1 — R[F(r)]. What breaks the
time inversion symmetry for the OTOC is the permuted sequence of operators W and V.
However, in spin-lattice models with a preserved spatial inversion symmetry PH=A,
the spatial inversion 2d(W,V) = —d(W,V) = d(V,W) can restore the permuted order
between V and W, where d(W,V) denotes the distance between observables W and V.
Permuting just a single wave-function one finds C(1) = 1 — R((¢ (t)| 2 T |y (r))) = C(0).
Thus, a scrambled quantum entanglement formally can be unscrambled by a spatial
inversion. However, in chiral systems PH £ H and the unscrambling procedure fails.
Taking into account Eq. (5.4), we analyze quantum information scrambling along the x
axis, i. e., @(£D,k) = @(+D, k,,0) and along the y axis, ®(0,k) = ©(0,0,k,). It is easy
to see that the quantum information flow along the y axis is symmetric, while along the x
axis, it is asymmetric and depends on the sign of the DM constant, , i.e., the flow along
the x is different from —x. Let us assume that Eq. (5.1) holds for right-moving magnons

and is violated for left-moving magnons. Excited magnons with the same frequency and
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Fig. 5.2 (a) Left-OTOC and (b) Right-OTOC with time ¢ (in the units of 1/J) for dif-
ferent distances 1 » = 10a, 20a and 30a. (¢) Right-OTOC with time for r| » = 10a and
suppression rates of the magnon current { = 0.8, 0.6 and 0.4. Parameters are N = 1000,
D =J, =2J, = 1. Periodic boundary conditions are considered. The values of the param-
eters: mo=1toN,a=10"3 and ag = 1.

propagating into different directions have different wave vectors @ (D, k") = @, (—D,k; )

where:
) _ + + e
o (£D,k;) = 2J1(1 —1/2cosk; a)+2J>(1 — cosk;a) + Dsink; a, (5.7

ki .= ma—‘gr, mo = N and k,, . we find from the condition @, (D, k") = w, (—D,k; ) leading

mox nox

t0 ki = Koo + %tan*1 ( 7 +DZJz ) Here we use shortened notations ®,,, = @5 (D,k;") =

s (—D, k) and set dimensionless units J; = 2J, =J = 1. We excite in the diode magnons
of different frequencies my = [1, N|. Considering Eq. (5.6), Eq. (5.7) and following
Ref. [233] we obtain expressions for the left and right OTOCs Cy(7) and Cg(t). Those
expressions and details of involved derivations are presented in Appendix D-II. In Fig. 5.2,
Cp(t) and Cg(z) is shown for |n* —m| and |n~ — m| distant spins, respectively. Cg(t) is
independent of the separation between the spins; however, the decay amplitude varies
due to the suppression coefficient . In the case of the dominant attenuation by the gate
magnons, the OTOC decreases significantly. The difference in C;, and Cg originated due to
the asymmetry arising from the DMI term.

A high density of magnons can invalidate the assumption of a pure state or spin-wave

approximation that works only for a low density of magnons. However, the key point
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in our case is that one has to distinguish between two sorts of magnons, gate magnons
and propagating nonreciprocal magnons. The density of the propagating magnons can be
regulated in the experiment through a microwave antenna, and one can always ensure that
their density is low enough. It is easy to regulate the density of the gate magnons, and an
experimentally accessible method is discussed in Ref. [89].

We proposed a novel theoretical concept that can be directly realized with the experi-
mentally feasible setup and particular material. There are several experimentally feasible
protocols for measuring OTOC in the spin systems [101, 248]. According to these proto-
cols, one needs to initialize the system into the fully polarized state, then apply quench
and measure the expectation value of the first spin. All these steps are directly applicable
to our setup from YIG. The fully polarized initial state can be obtained by switching on
and off a strong magnetic field at a time moment ¢ = 0. Quench, in our case, is performed
by a microwave antenna which is an experimentally accessible device. Polarization of the
initial spin can be measured through the STM tip. Overall our setup is the experimentally

feasible setup studied in Ref. [89].

5.2.4 Rectification

Let us calculate the total amount of correlations transferred in opposite directions followed

TCR(t)dt
by the rectification coefficient, a function of the external electric field as R = %

JCL(t)dt ‘

We interpolate the suppression rate as a function of the DMI coefficient in tt;)e form
(D) =~ ¢ D/5. The coefficient £ (D) mimics a scattering process of the drain magnons
on the gate magnons [89]. In Fig. 5.3, we see the variation of the rectification coefficient
as a function of D. The electric field has a direct and important role in rectification. In
particular, DMI constant D depends on the electric field Ey as D = Eygyr, where gy is
the magneto-electric coupling constant. In the case of zero electric fields, D will be zero,

implying the absence of rectification effect R = 1. As the electric field increases, D also
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Fig. 5.3 Rectification coefficient R is plotted against DMI coefficient (D) for suppression
rate {(D) ~ e P/5, The parameters are J; = 2J, = 1, N = 1000, r1, = 10a, ap = 1 and
mo=1toN.

increases linearly, and rectification decreases exponentially. A detailed study of the role of

the electric field in DM has been done in Ref. [230].

5.3 Conclusions

We studied a quantum information flow in a spin quantum system. In particular, we
proposed a quantum magnon diode based on YIG and magnonic crystal properties. The
flow of magnons with wavelengths satisfying the Bragg conditions k = mo7/a, is reflected
from the grooves. Due to the absence of inversion symmetry in the system, left and
right-propagating magnons have different dispersion relations and wave vectors. While
for the right propagating magnons, the Bragg conditions hold, left magnons violate them,
leading to an asymmetric flow of the quantum information.

We found that the strength of quantum correlations depends on the distance between
spins and time. The OTOC for the spins separated by longer distance shows an inevitable
delay in time, meaning that the quantum information flow has a finite "butterfly velocity."

On the other hand, the OTOC amplitude becomes smaller at longer distances between
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spins. The reason is that the initial amount of quantum information spreads among more
spins. After the quantum information spreads over the whole system, which is pretty large
(N = 1000 sites), the OTOC again becomes zero.

In the next chapter, we will summarise our complete results and discuss future plans

that could be done on the basis of our previous work.



