# **1.1 Introduction**

The word "nano" is originated from a Greek word 'nanos' meaning extremely small which refers to a billionth of a meter (10<sup>-9</sup> meter) and deals with the size ranging from 1-100 nm. Nanotechnology is an art and science of manipulating and controlling the matter at nanoscale enabling for novel applications. It is an emerging area of science and technology which is being applied in the field of biotechnology, material science, and electronics. The concept of nanotechnology was first oozed out in the historical talk "There is a Plenty of Room at the Bottom" dated 29<sup>th</sup> Dec 1959, given by an American physicist Professor Richard Feynman where he introduced about the world in which atoms could be controlled and directed (Feynman 1960). On 5<sup>th</sup> Oct 1984, Richard Feynman repeated his lecture in a seminar entitled "Idiosyncratic Thinking" where he called his talk 'Tiny Machines'. The term 'Nanotechnology' was given by Professor Norio Taniguch (Taniguchi 1974, Handy *et al.* 2008). He stated that the stock removal of a little bit size, acrretion or flow of material is of 0.1 to 0.2 nm long. Therefore, he expected the size of fineness of the order of one nm.

The materials designed or manipulated by the nanotechnology are known as nanomaterials. At present the nanomaterials are receiving huge interest of the researchers engaged in the areas of environment, energy, catalysis, biomedical, electronics, health care, cosmetics, food and feed, drug-gene delivery, mechanics, optics, chemical industries, space industries, science, light emitters, single electron transistors, nonlinear optical devices and photo-electrochemical applications.

These nanomaterials have attracted the researchers due to their extremely small size and high surface area to volume ratio. These characteristics feature differentiated the nanomaterials with the bulk materials of the same composition concerning both physical and chemical properties like mechanical, thermal, biological, optical absorption, electrical conductivity and melting point. For instance, in nanomaterials, the optical properties such as refractive index and absorbance are directly related to the size and shape but the optical properties of the bulk material are fixed, regardless of its mass or volume. Therefore, the size and shape of the nanomaterials play a vital role in performing the novel application.

### **1.1.1 Types of nanomaterials**

Till date, the growing field of nanotechnology has found that there is a lack of internationally agreed definition of nanomaterials and nanoparticles (Handy *et al.* 2008). However, the materials with at least one dimension having a size range between 1 nm - 100 nm are being regarded as nanomaterials.

# 1.1.1.1 Based on dimension

Based on dimension, Siegel has classified the nanomaterials into four categories: 0D: nanoclusters, 1D: multi layers, 2D: nanograined layers and 3D: equiaxed bulk solids (Carrow and Gaharwar 2015).

# A. Zero-dimensional (0-D)

In these systems, all three dimensions lie in the nanometer range. The most common type of zero-dimensional system is nanoparticles which may be amorphous or crystalline, single crystalline or polycrystalline. The Zero-Dimensional material can be composed of single or multi-chemical elements. **Fig. 1.1** represents the different types of the zero dimensional nanostructure (Tiwari *et al.* 2012).

Example - Quantum dots, Nanoparticles, Nanospheres, etc.

# **B.** One-dimensional (1-D)

In 1-D nanomaterials, one of the dimensions is out of the nanoscale while other two dimensions are in nanoscale which leads to the formation of needle shaped nanostructures as shown in **Figure 1.1** 

Example - Nanotubes, Nanowires, and Nanorods



Figure 1.1 Schematic representations of structurally different dimensions of nanomaterials with suitable examples (Figure adopted from Carrow and Garhwar 2015)

# C. Two-dimensional (2-D)

In 2-D nonmaterial, only one dimension is in nanoscale while other two dimensions are out of nanoscale. These nanomaterials are used as single or multilayer structures. Such nanostructures may be amorphous or crystalline in nature and made up of the various chemical compositions (**Fig. 1.1**).

Example - Nanoplates, Graphene sheets, etc.

#### **D.** Three-dimensional (3-D)

3-D nanomaterials are not confined in nanoscale in any dimensions. These systems comprise bulk materials in which all the dimensions are in macroscale. A bulk material concerning the nanocrystalline structure is made up of several nanosized crystals. 3-D nanomaterials are composed of a multiple arrangement of nanosize crystals, most typically in different orientations. 3-D nanomaterials may contain dispersions of nanoparticles, bundles of nanowires, and nanotubes as well as multinanolayers (**Fig 1.1**).

Example - Bulk material, Nanoflowers, Nanocone, etc.

#### 1.1.1.2 Based on core source material

On the basis of the core source material, the nanomaterials can be broadly categorized into (A) Carbon-based nanomaterials, (B), Metal oxide nanomaterials, (C) Metallic nanomaterials.

### A. Carbon-based nanomaterials

The carbon-based nanomaterials like, Fullerene, Carbon Nanotubes (CNTs), Graphene, have revealed greater potential in various applications such as biosensing, electronics, optics, and biomedicine.

Fullerene was first discovered by Krato *et al.*, in 1985 by vaporizing the graphite using Nd:YAG laser (Kroto *et al.* 1985). Since the discovery of the fullerenes, it has drawn much attention of the scientists due to potential application in several fields such as biomedicine (Gharbi *et al.* 2005), drug delivery (Yang *et al.* 2017), and solar cells (Thompson and Fréchet 2008).

CNTs can be visualized as a sheet of graphite, which has been rolled up into a cylindrical tube (Tasis *et al.* 2006). The length of CNTs is in the size of micrometers with diameters up to 100 nm (Thostenson *et al.* 2001). Because of having some exceptional physicochemical properties such as mechanical, electrical, thermal, and optical properties, the CNTs are being widely used in catalyst, semiconductor, automotive and energy harvesting industries (Pokhrel *et al.* 2017).

Graphene is considered as an essential building block of all graphitic forms such as CNTs, fullerenes, and graphite (Wang *et al.* 2012). It is a sp<sup>2</sup> hybridized two-dimensional sheet of single-atom thick carbon which possesses extraordinary chemical, electrical, mechanical properties, rapid electron transfer kinetics and significant electrocatalytic characteristics (Novoselov *et al.* 2012). Due to these unique properties, it is being used in different applications like bioimaging, biosensing, energy storage, electronic devices, environmental treatment, therapeutic drug/gene delivery, stem cell, and tissue engineering, etc. (Cheng *et al.* 2017).

### **B.** Metal oxide nanoparticles

Recently, the metal oxide nanoparticles (MONPs) have attracted the researchers because of some unique properties such as increased surface area to volume ratio, high surface energy, energy, and strong surface absorption (Santos *et al.* 2016). Due to these properties, the MONPs are widely used in various fields such as chemistry, materials and engineering, as well as in the frontiers of medicine (Koch *et al.* 2007). These MONPs are iron oxide nanoparticles (IONPs), cerium oxide nanoparticles (CeONPs), titanium dioxide nanoparticles (TiONPs), zinc oxide nanoparticles (ZnONPs), etc. These can be synthesized through several methods such as chemical vapor deposition, laser ablation, photolithography, thermal decomposition, sol-gel process or hydrothermal reaction method and biological methods. IONPs have revealed its potential towards the biomedical applications such tissue repair, drug delivery, magnetic resonance imaging (MRI) and hyperthermia (Gupta and Gupta 2005, Laurent *et al.* 2008, Qiao *et al.* 2009, Cano *et al.* 2017). CeO<sub>2</sub> nanoparticles have shown mimetic properties of catalase oxidase, peroxidase, superoxide oxidase, and have emerged as a fascinating material in biological fields, such as in drug delivery bioanalysis, and biomedicine (Charbgoo *et al.* 2017, Naganuma 2017). TiO<sub>2</sub> is used in printing ink, water purification, UV sunscreens, cosmetics, medical implants, and sensors (Pakrashi *et al.* 2014, Chen and Mao 2007). In addition to these, TiO<sub>2</sub> is also used in several applications such as catalysis, photovoltaics, fuel cells, optoelectronics, batteries, smart windows, self-cleaning and antifogging surfaces. ZnONPs is widely used in various fields such as electronics, optoelectronics, photo-catalysis and laser technology (Lu *et al.* 2015, Yang and Park 2007). In addition to this, ZnONPs is also used in ceramics industry because of its hardness, rigidity and piezoelectric constant.

#### **C. Metallic nanoparticles**

Metal nanoparticles (MNPs) have been a favorite topic of the researchers engaged in nanoscience and technology at global scale due to their diverse applications in various fields of science and engineering. Among various MNPs, gold (Au), silver (Ag), palladium (Pd), and platinum (Pt) nanoparticles (NPs) are widely used in various applications. A brief description on these is given below.

Platinum is a precious noble metal and its salt, i.e. cis-diammine dichloro platinum is used as a cancer drug (Tahir *et al.* 2017). The PtNPs are used in fuel cells and hydrogen storage materials. PtNPs acts as a significant catalyst than bulk materials (Schmidt *et al.*  1999, Cheng *et al.* 2009). Several platinum-based complexes are being used against both gram-positive and gram-negative bacteria as a potent antibacterial agent (Sharma 2017).

Pd is a member of platinum group metals (PGMs) which is least dense and has lowest melting point out of all the PGMs. The PdNPs show excellent catalytic activity and have been used extensively as a catalyst in the field of catalysis (Li *et al.* 2017). In addition to this, PdNPs are also used in different applications such as carbon-carbon coupling reaction, oxidation, hydrogenation, electrochemical reactions in fuel cells, hydrogen storage, and gas sensing (Ismail *et al.* 2017).

AgNPs are one of noble metal nanoparticles of (NMNPs) and are of great interest and have attracted intensively because of their enormous applicability in antibacterial, antiviral and anticancer therapies (Saxena *et al.* 2012, Lu *et al.* 2008, Rahban *et al.* 2010). In addition, AgNPs are also used in biosensing, catalysis, water treatment, wound dressings, medicine and surgical instruments (Dahl *et al.* 2007, Dubas and Pimpan 2008, Filippo *et al.* 2010, Vivek *et al.* 2012). Recently, Francis *et al.* has prepared the AuNPs using *Mussaenda glabrata* leaf extract and examined in catalytic degradation of dye rhodamine B and methyl orange and reduction of 4-nitrophenol (Francis *et al.* 2017).

Since last decades, the gold nanoparticles (AuNPs) have played an important role in the various areas such as biosensing, catalysis, anticancer, medicine, electronics etc. (Varun *et al.* 2017, Shen *et al.* 2017, Ramachandran *et al.* 2017, Ribeiro *et al.* 2017, Daniel and Astruc 2004). It can be also synthesized through several routes like physical, chemical and biological where the physical and chemical routes suffered by the several environmental pollution issues, costly instrumentation and energy consumption while heating and stirring. The principles of green chemistry have played a major role in biological (green) synthesis of AuNPs by involving green route using algae (González-Ballesteros *et al.* 2017), fungi (Pei *et al.* 2017), bacteria (Ojo *et al.* 2016), and plants (Pourmortazavi *et al.* 2017).

### 1.2 Synthesis of nanoparticles

The different method of preparation of nanoparticles is usually classified into two broad categories: (1) top-down and (2) bottom-up which is based on the processes involved in the creation of the nanoscale structures (**Scheme 1.1**).

### 1.2.1 Top-down Method

The top-down method involves the reduction of the size of suitable starting bulk material up to nano-range using physical or chemical means (**Scheme. 1.2**). The imperfection of the surface structure is the major drawback of this method which significantly affects the physical properties as well as the surface chemistry of the nanoparticles due to the high aspect ratio (Thakkar *et al.* 2010). It is governed by several methods like mechanical milling, laser ablation, arc discharge, and chemical methods such as templated etching, selective dealloying, anisotropic dissolution, and thermal decomposition.

#### **1.2.2 Bottom-up method**

Bottom-up, approach refers to the construction of a structure atom-by-atom, molecule-by-molecule, or cluster-by-cluster (Thakkar *et al.* 2010). In this approach, initially, the nanostructured building blocks (i.e. nanoparticles) are formed and, subsequently, assembled into the final material using chemical or biological procedures for synthesis (Scheme. 1.2). A distinct advantage of the bottom-up approach is the enhanced possibility of

obtaining metallic nanoparticles with comparatively lesser defects and more homogeneous chemical compositions.

Nucleation and growth are two interesting phenomena of a bottom-up approach. The bottom-up approach is followed by several steps. The first step is the reduction of metal ions  $(M^+)$  to zero valent metal ion  $(M^0)$  via the electrons produced by the reductant.



Scheme 1.1 Graphical representation of different top-down and bottom-up synthesis approaches

The concentration of the  $M^0$  continued to increase with the continued reduction of  $M^+$ . When the increased concentration of  $M^0$  atoms exceeded the critical supersaturation, the  $M^0$  started to nucleate and formed the crystal nuclei (step II). The formation of these crystal nuclei led to the decrease in concentration of  $M^0$  atoms below to the critical supersaturation where the whole process is dominated by the growth of nuclei to form nanoclusters because

of no longer increase in a number of crystal nuclei (step III). The growth of the nanoclusters further decreased the concentration of  $M^0$  atoms below the saturation level which stopped the growth of nanoclusters and finally aggregated to form MNPs (step IV) which is shown in Scheme 1.3 (Tran and Nguyen 2011).



Scheme 1.2 Schematic representation showing (a) top-down and (b) bottom-up approach of nanoparticles synthesis

Botton-up techniques can be perforemed by several methods such as sol-gel, microemulsions, hydrothermal, solvothermal, physical vapor deposition (PVD), chemical vapor deposition (CVD), chemical vapor synthesis (CVS), photochemical, sonochemical, chemical and electrochemical reduction, biological.



Scheme 1.3 La Mer mechanism of the nucleation of atoms, their pattern of changing concentration with time and further growth to form nanoparticles

# 1.3 Overview of AgNPs and AuNPs

# 1.3.1 AgNPs

Silver is one of the eight noble metals or precious metals which are called as PGMs. It is soft, malleable, and most ductile metals which made it use into fashioned items such as different kind of jewelry and various decorative items. Ag belongs to 4d transition element having atomic number 47, atomic weight 107.87, and electron configuration [Kr]  $4d^{10}5s^1$  which is located in period 5 and group 11 in the periodic table. Silver exists in four oxidation states which are 0, +1, +2, and +3. The +1 is the common state of silver, 0 and +2 are uncommon whereas +3 persists only in the formation of the complex. Natural silver is a comprised of two stable isotopes  $Ag^{107}$  and  $Ag^{109}$  which shares 51.82% and 48.18% respectively. The face-centered cubic crystal structure is very common crystal structure of silver which has a melting point 961.8 °C and boiling point 2162 °C.

Silver is an inert element which does not react with atmospheric oxygen easily, but it is the most permeable of metals to atomic oxygen; molten silver dissolves almost ten times its volume of oxygen. However, it readily forms tarnish surface by reacting with sulfurous gases. Silver dissolves in the presence of oxygen in solutions of potassium or sodium cyanide and in oxidizing acids. Mostly, the compounds of silver are based on Ag (I), and most of them are insoluble and soluble in aqueous environments. Only a few compounds of Ag (II) are known, whereas no any simple compounds of Ag (III) exist. Ag (I) and (II) also form complexes with ammonia, cyanide, halide ions, thiosulfate and thiourea and with many organic aromatics and olefins. Silver nitrate (AgNO<sub>3</sub>), Silver bromide (AgBr), and Silver chloride (AgCl) are some silver compounds of principal commercial interest.

AgNO<sub>3</sub> is the most important commercial compound of Ag (I) and is the intermediate chemical from which all other silver compounds are made. It is prepared by the dissolution of silver metal in hot nitric acid. The purified crystalline nitrate is not photosensitive, but it is easily reduced to metal by formaldehyde, glucose, and several other reagents. AgBr is yellow to a green-yellow crystalline compound which is more photosensitive than the AgCl or AgI and hence, it is widely used for photographic emulsions. AgCl is a white crystalline photosensitive material that is widely used in photographic papers. AgI is less photosensitive than AgBr or AgCl but is responsive to a wider span of the visible spectrum. It is also used extensively in photographic materials and sea water-activated batteries. Silver oxide (Ag<sub>2</sub>O) is used in standard silver batteries. The Ag (II) tetroxide (Ag<sub>4</sub>O<sub>4</sub>) is an oxidizer used to kill bacteria in cooling system water and swimming pools (Etris 1997).

Silver is a positively charged cation  $(Ag^+)$  having ionic radius of ~0.1 nm which are not considered as a particle. Due to presence of a single charge  $(Ag^+)$  they are highly reactive. They can associate with other ions but cannot be destroyed because these ions are inherently persistent. The silver ions and AgNPs are fundamentally different because AgNPs can dissolve or disaggregate and can lose the properties of particles. The term colloid is also applied to AgNPs. Colloid indicated to the particles in a wide range between 1 nm and 1,000 nm ie. a colloid may or may not be a nanoparticles. AgNPs refer to a particle which contains several silver atoms. AgNPs are usually engineered to release silver ions, which are the source of potential antibacterial activity.

# 1.3.2 AuNPs

Gold is also one of the eight noble metals or precious metals generally called as PGMs. Gold is the most ductile and malleable element on our planet. It bears the characteristic property of sectility which could be stretched into a wire, cut into slices, and pounded into other shapes. It is an excellent metal for jewellery because it never tarnishes. Gold belongs to 5d transition element having atomic number 79, atomic weight 196.6, and electron configuration [Kr]  $5d^{10}6s^1$  which is located in period 6 and group 11 in the periodic table. Gold exist in six oxidation states which are 0, -1, +1, +2, +3, and +5 (Puddephatt and Vittal 1994). The free +1 is unstable in solution form and prefers to form two (K<sup>+</sup>AuCl<sub>2</sub><sup>-</sup>, K<sup>+</sup>Au(CN)<sub>2</sub>) or four (K<sup>+</sup>[A(dipy)(CN)<sub>2</sub>])<sup>-</sup> coordinate systems. The +3 is most common state of gold which is present in four coordinate square planner complexes such as K<sup>+</sup>AuCl<sub>4</sub><sup>-</sup>. It is also present in five and six coordinate Au (III) complexes such as [Au(diars)<sub>2</sub>I<sub>2</sub>]<sup>2+</sup>(C1O<sub>4</sub>)<sup>-</sup> and [Au(diars)<sub>2</sub>I<sub>2</sub>]<sup>2+</sup>(C1O<sub>4</sub>)<sup>-</sup> respectively. The compounds, Rb<sub>5</sub>Au<sub>3</sub>O and M<sub>7</sub>Au<sub>5</sub>O reflect -1 oxidation state of gold. The +2 oxidation state of gold is very and present in

 $[(C_2H_5)_4N]Au(II)(B_9C_2H_{11})_2$  whereas +5 state is present in Cs<sup>+</sup>AuF6<sup>-</sup> and O<sub>2</sub><sup>+</sup>AuF<sub>6</sub><sup>-</sup>. Gold shows 0 oxidation state in its pure elemental form ([Au<sub>9</sub>(PPh<sub>3</sub>)8](NO<sub>3</sub>)<sub>3</sub>. The melting and boiling point of gold is 1,064 °C and 2,700 °C respectively which has face-centered cubic (fcc) crystal structure (Pyykkö 2004, Puddephatt 1978). The chloroauric acid (HAuCl<sub>4</sub>.**x**H<sub>2</sub>O) is commercially available salt of gold which used widely for the preparation of AuNPs. Gold is a positively charged cation (Au<sup>3+</sup>) which is not considered as a particle. The gold ions and AuNPs are totally different because AuNPs can dissolve or disaggregate and can lose the properties of particles. AuNPs refer to a particle which contains several silver atoms of elemental gold which is obtained by the reduction of Au<sup>3+</sup> to Au<sup>0</sup>.

# 1.3.3 History of AgNPs and AuNPs

The preparation and utilization of the AgNPs and AuNPs have a very long history since millennia. The AgNPs and AuNPs have been used by our ancient civilization because their extraordinary properties like optical and curing properties were known to them. The preparation of the gold solution was first mentioned by Egyptians and Chines by 5<sup>th</sup> century BC. The solutions of the silver and gold have been used by Romans to color the glass of intense shades of red, yellow and mauve using their different concentrations. The Romans used to add gold salt during the preparation of the glass which when annealed, get reduced to colloidal gold solution having intense ruby color. The intense ruby color of the gold solution appear due to the nucleation and further growth of AuNPs having a optimum size range 5-60 nm (Wagner *et al.* 2000). The excellent example of the utilization of AgNPs and AuNPs is the Lycurgus cup of 4<sup>th</sup> century which is presently in British Musium (**Fig. 1.2**). This Lycurgus cup have extraordinary optical effect displayed by the glass which appears as deep wine red in transmittance light whereas opaque pea-green in reflected light.



Figure 1.2 Lycurgus cup (British Museum; AD 4<sup>th</sup> century). The colloidal gold causes the glass to appear opaque pea green in reflected light and wine red (ruby red) in transmitted light



Figure 1.3 Gothic stained glass rose window of Notre Dame de Paris. The red colors were due to the colloids of AuNPs

The chemical analyses of the dichoric color of the glass attributed to the surface plasmon resonance (SPR) of the nanocrystals of gold and silver alloy dispersed throughout the matrix of the glass. The stained window glass in Europian cathedrals is similar example using colloidal metal nanoparticles. In the middle Ages, the artisian started to use colloidal gold for the production of stained glass window having red and purple color. For example the rose window of the Cathedral of Notre Dame with red and purple hues is due to the presence of gold colloid (Fig. 1.3). The porcelain prepared in 15<sup>th</sup> century was also an example of using colloid of silver and copper. The technique of preparing porcelain was developed in Islamic world during 9<sup>th</sup> century where the nanoparticles were formed by the reduction of the metal salts previously deposited on the ceramic piece from a vinegar solution. The coloring of the glass process was further refined by the contriving of "Purple of Cassius" which is a precipitate of colloidal gold and stannic hydroxide (Ferrari 2005). Michael Faraday has reported the first scientific study of the synthesis of MNPs in 1850 by the reduction of the AuCl<sub>4</sub> by phosphorus in the presence of carbon disulphide with the already reported method by Paracelsus in 16<sup>th</sup> century for "Aurum Potabile". Faraday was the first who found out that the minute size of the gold particles was responsible for the red color of the solution. In 1906, Zsigmondy has prepared the monodispersed gold sol by the reduction of chloroauric acid using formaldehyde (Zsigmondy 1906). In 1917, he also investigated the rapid synthesis of monodispersed AuNPs using Faraday gold sol as a seed crystal (Zsigmondy 1906).

In 1951, Turkevitch improved the method of Zsigmondy through the synthesis of hydrophilic AuNPs by the reduction of chloroauric acid using sodium citrate in a boiling aqueous solution. The citrates adsorbed on the surface of the AuNPs and thus act as a capping agent. The TEM used for the analysis of the AuNPs thus produced revealed that the average diameter of the particles was from  $20\pm1.5$  nm (Turkevich *et al.* 1951). This work was further refined by Frens who examined the effect of concentration of citrate on the size of the AuNPs and obtained the particles in the range of 16-147 nm. After that, the Turkevitch method was also used for the synthesis of silver nanoparticles. In early 1990, Brust *et al.* have represented a two-phase liquid-liquid system to prepare colloidal gold in an organic solvent which was not miscible in water (Brust *et al.* 1994). In recent years several modified and additional procedures have been developed for the synthesis of AgNPs and AuNPs with controlled shape and size.

# 1.4 Green synthesis of AgNPs and AuNPs

Since last decades, the development of green synthesis has become an essential branch of nanotechnology and has received a considerable attention of the researchers engaged in the synthesis of MNPs especially; AgNPs and AuNPs. Green synthesis is an environment-friendly and cost-effective method which can be scaled-up for large scale synthesis. It avoids the need of high temperature, pressure, energy, sophisticated instrumentations, technical expertize as well as the hazardous reducing agent such as hydrazine hydrate (N<sub>2</sub>H<sub>4</sub>,H<sub>2</sub>O), sodium borohydrate (NaBH<sub>4</sub>), N, N-dimethyl formamide (DMF) and sodium citrate (Na<sub>3</sub>C<sub>6</sub>H<sub>5</sub>O). The green synthesis involves the principles of the green chemistry which aim at its utilization through reducing or eliminating the use or production of chemical hazardous to the environment. The main aim of the green chemistry regarding the synthesis. The green synthesis of silver and gold is performed through microbial route using bacteria, fungi, algae, yeast and phyto-mediated route using different parts of the plants.

# **1.4.1 Microbial route**

The microbes like bacteria, fungi, algae, and yeast can synthesize AgNPs and AuNPs either intracellularly or extracellularly. The intracellular synthesis occurs inside the cells, in cytoplasm or cytosol. In intracellular synthesis, the metal ions are accumulated inside the cells by the organisms which are then reduced to particular metallic nanoparticles in the presence of optimum parametric conditions. This process of synthesis MNPs is known as biomineralization (**Scheme 1.4**). The major limitation of the intracellular synthesis of nanoparticles is a requirement of additional steps such as ultrasound treatment or reactions with suitable detergents to release the synthesized nanoparticles (Kalimuthu *et al.* 2008).

The enzyme nitrate reductase plays a very critical role in nitrogen cycle which converts nitrate to nitrite which is an NADPH-dependent enzyme and has been found to be responsible for the intracellular synthesis of MNPs (Durán *et al.* 2005). During the catalysis reaction, the nitrate reductase converts nitrate into nitrite, with the ejection of an electron which reduces the  $M^+$  to  $M^0$ . The intracellular synthesis of AuNPs by *Verticillium sp* reported by Mukherjee *et al.* occurred due to enzyme activity occurring at the cell membrane (Mukherjee *et al.* 2001). The intracellular synthesis of AgNPs has been shown in the organism *Bacillus licheniformis* which is known to secrete the cofactor NADH and nitrate reductase; NADH-dependent enzymes, which is involved in the reduction of Ag<sup>+</sup> to Ag<sup>0</sup> and subsequently formed AgNPs after further growth (Kalimuthu *et al.* 2008). The involvement of nitrate reductase for the synthesis of AgNPs was first reported by Kumar *et al.* who used the purified nitrate reductase obtained from *Fusarium oxysporum* for the synthesis of AgNPs

(Kumar *et al.* 2007). The reaction mixture used by Kumar *et al.* contained only the enzyme nitrate reductase, silver nitrate solution, and NADPH which turned brown.



Scheme 1.4 Mechanism of intracellular synthesis of AgNPs by *B. licheniformis* showing the reduction of  $Ag^+$  to  $Ag^0$  via the electron shuttle enzymatic reduction process through NADH-dependent reductase as a carrier of electrons from NADH

The extracellular synthesis occurs outside the cells. It is cheap, and it requires simpler downstream processing than intracellular synthesis and favors large-scale production to explore the potential applications of MNPs. In extracellular biosynthesis, two different preparation methods are used: rapid synthesis and slow synthesis. The former occurs in few minutes whereas the latter occurs in several hours or even days. For example; the synthesis of AgNPs using culture supernatant of *Klebsiella pneumoniae* occurred in 5 minutes which is a rapid synthesis (Mokhtari *et al.* 2009). The synthesis of AgNPs driven by the mycelial mat of *Phaenerochaete chrysosporiom* in 24 hours is regarded as a slow synthesis.

### 1.4.1.1 Bacteria

Among several microorganisms, bacteria are considered as the potential biofactory for the green synthesis of AgNPs and AuNPs. Some microorganisms are resistant to high metal ion concentration therefore they can survive at high concentration due to mechanisms like efflux systems, alteration of solubility, toxicity via reduction or oxidation, biosorption, bioaccumulation, extracellular complexation or precipitation of metals and lack of specific metal transport systems. Hence survive at higher concentration and able to reduce the metal ion into their metallic form. Klaus et al. and Joerger et al. have reported the synthesis of AgNPs (3-200 nm) using bacterium Pseudomonas stutzeri AG 259 isolated from silver mines (Klaus et al. 1999, Joerger et al. 2000). Nair and Pradeep have synthesized nanoparticles of silver, gold and their alloys using the *Lactobacillus sp* (Nair and Pradeep 2002). Zhang *et al.* also reported the adsorption and reduction of diamine silver complex using the Corynebacterium strain SH09 (Zhang et al. 2005). Shahverdi et al. reported the rapid formation of AgNPs using the culture supernatants of different Enterobacteria strains (Shahverdi *et al.* 2007). This strain showed strong biosorption towards  $[Ag(NH_3)_2]^+$  at 60 °C and reduction of  $Ag^+$  to  $Ag^0$  to form the nanoparticles of size 10-15 nm. Their study showed that the ionized carboxyl of amino acid residues and the amide of the peptide chains were responsible for adsorption of  $[Ag(NH_3)_2]^+$  onto the cell wall of *Corynebacterium* strain's SH09. Whereas the reduction of  $[Ag(NH_3)_2]^+$  to  $Ag^0$  was due to the aldehyde or ketone which

| Bacteria                                                                      | Precur                          | Intracellular/                  | Size   | Morpholo    | Applica | Reference                        |
|-------------------------------------------------------------------------------|---------------------------------|---------------------------------|--------|-------------|---------|----------------------------------|
|                                                                               | sor                             | Extracellular                   | (nm)   | gy          | tion    |                                  |
| Pseudomonas<br>stutzeri AG259                                                 | AgNO <sub>3</sub>               | Intracellular                   | 200    | Anisotropic | -       | Klaus <i>et al</i> . 1999        |
| Pseudomonas<br>stutzeri AG259                                                 | AgNO <sub>3</sub>               | Intracellular                   | 5-100  | Anisotropic | -       | Joerger et al. 2000              |
| Lactobacillus Strains                                                         | AgNO <sub>3</sub><br>,<br>HAuCl | Intracellular/<br>Extracellular | 20-50  | Anisotropic | -       | Nair and Pradeep<br>2002         |
| Corynebacterium<br>strain SH09                                                | AgNO <sub>3</sub>               | Intracellular                   | 10-15  | Spherical   | -       | Zhang et al. 2005                |
| Klebsiella<br>pneumonia, Escheric<br>hia coli,<br>and Enterobacter<br>cloacae |                                 | Extracellular                   | 52.5   | Spherical   | -       | Shahverdi <i>et al.</i><br>2007  |
| Morganella sp                                                                 | AgNO <sub>3</sub>               | Extracellular                   | 20±5   | Spherical   | -       | Parikh et al. 2008               |
| Bacillus<br>licheniformis                                                     | AgNO <sub>3</sub>               | Intracellular                   | 50     | Spherical   | -       | Kalimuthu <i>et al.</i><br>2008  |
| Klebsiella<br>pneumoniae                                                      | AgCl                            | Extracellular                   | 3      | Spherical   | -       | Mokhtari <i>et al.</i><br>2009   |
| Proteus mirabilis<br>PTCC 1710                                                | AgNO <sub>3</sub>               | Intracellular/<br>Extracelluar  | 10-20  | Spherical   | -       | Samadi <i>et al.</i><br>2009     |
| Bacillus<br>licheniformis                                                     | AgNO <sub>3</sub>               | Intracellular                   | 50     | Spherical   | -       | Gurunathan <i>et al.</i> 2009    |
| Shewanella<br>oneidensis                                                      | AgNO <sub>3</sub>               | Extracellular                   | 4±1.5  | Spherical   | -       | Suresh et al. 2010               |
| Lactobacillus casei                                                           | AgNO <sub>3</sub>               | Extracellular                   | 25–50  | Spherical   | -       | Korbekandi <i>et al.</i><br>2012 |
| Klebsiella<br>pneumoniae                                                      | AgNO <sub>3</sub>               | Extracellular                   | 15-37  | Spherical   | -       | Kalpana and Lee 2013             |
| <i>Escherichia coli</i><br>DH5α                                               | AgNO <sub>3</sub>               | Extracellular                   | 10-100 | Spherical   | -       | Ghorbani, 2013                   |
| Serratia<br>nematodiphila                                                     | AgNO <sub>3</sub>               | Extracellular                   | 10–31  | Spherical   | -       | Malarkodi <i>et al.</i><br>2013  |
| Bacillus strain CS 11                                                         | AgNO <sub>3</sub>               | Extracellular                   | 42-92  | Spherical   | -       | Vindhya Lakshmi et al. 2014      |
| Penicillium glabrum<br>(MTCC<br>1985)                                         | AgNO <sub>3</sub>               | Extracellular                   | 26–32  | Spherical   | -       | Nanda and<br>Majeed 2014         |
| Endosymbiotic<br>bacterium                                                    | AgNO <sub>3</sub>               | Extracellular                   | 10–60  | Spherical   | -       | Yashwantha Rao<br>et al. 2016    |
| Pseudomonas<br>aeruginosa DM1                                                 | AgNO <sub>3</sub>               | Extracellular                   | 45-100 | Anisotropic | -       | Kumari <i>et al.</i><br>2017     |

| Table 1.1 List of bacterial strains | used in the | biosynthesis | of AgNPs |
|-------------------------------------|-------------|--------------|----------|
|-------------------------------------|-------------|--------------|----------|

further grew into AgNPs after the nucleation and cluster formation. Parikh et al. reported the synthesis of AgNPs using a bacterium isolated from an insect gut Morganella sp. (Parikh et al. 2008). The biosynthesis of AgNPs was investigated by Kalimuthu et al. using the bacterium Bacillus licheniformis. They performed in-situ synthesis of AgNPs by adding the biomass of Bacillus licheniformis into the 100 mL solution of AgNO<sub>3</sub> at 37 °C for 24 hrs which showed dark brown color. They obtained the synthesized AgNPs by ultrasonic disruption of the cells (Kalimuthu et al. 2008). The authors have demonstrated that piperitone had partially inhibited the reduction of Ag<sup>+</sup> by supernatants of *Klebsiella pneumoniae* and other different strains of Enterobacteriaceae. Mokhtari et al. have used Klebsiella pneumoniae and synthesized spherical AgNPs having average size 3 nm (Mokhtari et al. 2009). Samadi et al. studied the synthesis of AgNPs using bacteria Proteus mirabilis PTCC 1710 and found significant results (Samadi et al. 2009). It is well established fact that the electronic and optical properties of metal MNPs depend on their size and shape. Gurunathan *et al.* reported the effect of AgNO<sub>3</sub> concentration, reaction temperature and pH on the size of AgNPs (Gurunathan et al. 2009). Kalpana and Lee have synthesized AgNPs using cultural filtrate of simulated microgravity grown Klebsiella pneumonia for bactericidal acitivity (Kalpana and Lee 2013). Kumari *et al.* have shown the utilization of secondary metabolite pyoverdine from *Pseudomonas aeruginosa* DM1 for the eco-friendly synthesis of AgNPs (Kumari et al. 2017). Similarly, several other bacteria used for the synthesis of AgNPs are shown in Table 1.1 (Suresh et al. 2010, Malarkodi et al. 2013, Yashavantha Rao et al. 2016, Ghorbani 2013)

The potential applications of AuNPs in several fields have attracted the researchers to much extent for its synthesis. Over thirty-seven years ago, Beveridge and Murray reported

the synthesis of AuNPs in the range of 5-25 nm using *Bacillus subtilis* 168 (Beveridge and Murray, 1980). Since then, a number of bacteria have been used for the preparation of AuNPs from aqueous chloroauric acid solution (HAuCl<sub>4</sub>) either intra or extracellularly. For example, the extracellular biosynthesis of AuNPs was reported by Ahmad et al. from the novel extremophilic actinomycete, Thermomnospora sp (Ahmad et al. 2003a). Gericke and Pinches have investigated the intra and extracellular green synthesis of AuNPs using Verticillium luteoalbum. They observed that the synthesized AuNPs were anisotropic with average size 100 nm (Gericke and Pinches 2006a). Husseiny et al. reported the extracellular synthesis of AuNPs using various strains of *Pseudomonas aeruginosa* (Husseiny et al. 2007). Deplanche and Macaskie have also reported the microbial precipitation of gold using E. coli and Desulfovibrio desulfuricans (Deplanche and Macaskie 2008). Wen et al. and He et al. have showed the extracellular synthesis of AuNPs using Bacillus megatherium D01 and Rhodopseudomonas capsulate respectively (Wen et al. 2009, He et al. 2008). The intracellular synthesis of spherical AuNPs was also performed by Du *et al.* using *Escherichia coli* DH5 $\alpha$  and obtaine the spherical AuNPs with average size 25±8 nm (Du *et al.* 2007). The preparation of anisotropic AuNPs was performed by Nangia et al. 2009 using Stenotrophomonas maltophilia (Nangia et al. 2009). Suresh et al. have reported the green and economical synthesis of AuNPs in the range of 15±5 nm using culture supernatant of Shewanella oneidensis (Suresh et al. 2011). The cell-free extract of thermophilic bacterium Geobacillus stearothermophilus revealed excellent potential towards the reduction of both  $Ag^+$  and  $Au^{3+}$  ion into  $Ag^0$  and  $Au^0$  respectively to form AgNPs and AuNPs (Fayaz *et al.* 2011a). Malhotra et al. have isolated novel marine bacteria Stenotrophomonas for the synthesis of both AgNPs and AuNPs (Malhotra et al. 2013). Wadhwani et al. have

synthesized AuNPs using *Gordonia amicalis* HS-11 sps in size range of 19-39 nm (Wadhwani *et al.* 2014).

| Bacteria                                               | Precurs<br>or                                | Intracellular/<br>Extracellular | Size<br>(nm)    | Morpholog<br>v | Applica<br>tion | Reference                          |
|--------------------------------------------------------|----------------------------------------------|---------------------------------|-----------------|----------------|-----------------|------------------------------------|
| Bacillus subtilis<br>168                               | HAuCl <sub>4</sub>                           | Intracellular                   | -               | Anisotropic    | -               | Beveridge and<br>Murray,1980       |
| <i>Thermomonospor a</i> sp.                            | HAuCl <sub>4</sub>                           | Extracellular                   | 8-40            | Spherical      | -               | Ahmad <i>et al</i> . 2003          |
| Verticillium<br>luteoalbum                             | HAuCl <sub>4</sub>                           | Intracellular<br>/Extracellular | 100             | Anisotropic    | -               | Gericke and<br>Pinches, 2006       |
| Pseudomonas<br>aeruginosa                              | HAuCl <sub>4</sub>                           | Intracellular                   | 15-40           | Spherical      |                 | Husseiny <i>et al.</i><br>2007     |
| Escherichia coli<br>and Desulfovibrio<br>desulfuricans | HAuCl <sub>4</sub>                           | Intracellular                   | 20-50           | Spherical      | -               | Deplanche and<br>Macaskie, 2008    |
| Bacillus<br>megatherium D01                            | HAuCl <sub>4</sub>                           | Extracellular                   | 2.5             | Spherical      | -               | Wen <i>et al</i> . 2008            |
| Rhodopseudomon<br>as<br>capsulata                      | HAuCl <sub>4</sub>                           | Extracellular                   | 10-20           | Spherical      | -               | He et al. 2008                     |
| <i>Escherichia coli</i><br>DH5α                        | HAuCl <sub>4</sub>                           | Intracellular                   | 25±8            | Spherical      | -               | Du et al. 2008                     |
| Stenotrophomona<br>s maltophilia                       | HAuCl <sub>4</sub>                           | Extracellular                   | 40              | Anisotropic    | -               | Nangia <i>et al</i> . 2009         |
| Shewanella<br>oneidensis                               | HAuCl <sub>4</sub>                           | Extracellular                   | 15±5            | Spherical      | -               | Suresh et al. 2011                 |
| Pseudomonas<br>denitrificans                           | HAuCl <sub>4</sub>                           | Extracellular                   | 25-30           | Spherical      | -               | Mewada <i>et al.</i><br>2012       |
| Stenotrophomona<br>s                                   | HAuCl <sub>4</sub><br>,<br>AgNO <sub>3</sub> | Extracellular                   | 10-50,<br>40-60 | Spherical      | -               | Malhotra <i>et al.</i><br>2013     |
| Acinetobacter sp.<br>SW30                              | HAuCl <sub>4</sub>                           |                                 | 20±10           | Anisotropic    | -               | Wadhwani <i>et al.</i><br>2014     |
| Streptomyces sp.                                       | HAuCl <sub>4</sub>                           | Extracellular                   | 8.4, 10         | Anisotropic    | -               | Składanowski <i>et al.</i><br>2017 |

 Table 1.2 List of bacterial strains used in the biosynthesis of AuNPs

Recently, Składanowski *et al.* have reported the synthesis of AuNPs using the biomass and supernatant of *Streptomyces sp.* isolated from acid forest soil (Składanowski *et al.* 2017) which is given in **Table 1.2** 

# 1.4.1.2 Fungi

The bioaccumulation capacity, tolerance, high binding capacity, and intracellular uptake have made the Fungi as a potent agent for the synthesis of MNPs (Sastry *et al.* 2003).

| Fungi                                     | Precursor         | Intracellular      | Size           | Morpholo  | Application       | Reference                                |
|-------------------------------------------|-------------------|--------------------|----------------|-----------|-------------------|------------------------------------------|
| 0                                         |                   | /Extracellula<br>r | (nm)           | gy        |                   |                                          |
| Verticillium                              | AgNO <sub>3</sub> | Intracellular      | 25±12          | Spherical | Antifungal        | Mukhergee et al. 2001                    |
| Phoma sp3.2883                            | AgNO <sub>3</sub> | Intracellular      | 71.06±<br>3.46 | Spherical | -                 | Chen <i>et al</i> . 2003                 |
| Aspergillus<br>fumigatus                  | AgNO <sub>3</sub> | Extracellular      | 5-25           | Irregular | -                 | Bhainsa and<br>D'Souza, 2006             |
| Fusarium<br>oxysporum                     | AgNO <sub>3</sub> | Extracellular      | -              | Spherical | Antibacterial     | Duran <i>et al</i> .<br>2007             |
| Fusarium<br>semitectum                    | AgNO <sub>3</sub> | Extracelluar       | 10-60          | Spherical | Medical           | Basavaraja <i>et</i><br><i>al</i> . 2008 |
| Fusarium<br>acuminatum                    | AgNO <sub>3</sub> | Extracellular      | 13             | Spherical | -                 | Avanish <i>et al.</i><br>2008            |
| Penicillium<br>brevicompactum W<br>A 2315 | AgNO <sub>3</sub> | Extracellular      | 23-105         | Irregular | -                 | Avanish <i>et al.</i><br>2008            |
| Penicillium<br>fellutanum                 | AgNO <sub>3</sub> | Extracellular      | -              | Spherical | -                 | Kathiresan et al. 2009                   |
| Alternaria<br>alternata                   | AgNO <sub>3</sub> | Extracellular      | 10-20          | Spherical | Antifungal        | Gajbhiye <i>et al.</i><br>2009           |
| Hormoconis<br>resinae                     | AgNO <sub>3</sub> | Extracellular      | 20-80          | Irregular | -                 | Varshney <i>et al.</i> 2009              |
| Amylomyces<br>rouxii strain KSU-<br>09    | AgNO <sub>3</sub> | Extracellular      | 5-27           | Spherical | Antimicrobi<br>al | Mussarat <i>et al.</i><br>2010           |
| Penicillium<br>purpurogenum NP<br>MF      | AgNO <sub>3</sub> | Extracellular      | 8–10           | Spherical | Antimicrobi<br>al | Nayak <i>et al.</i><br>2011              |
| Humicola sp                               | AgNO <sub>3</sub> | Extracellular      | 5–25           | Spherical | -                 | Syed et al. 2013                         |
| Penicillium<br>nalgiovense AJ12           | AgNO <sub>3</sub> | Extracellular      | 25.8±2<br>.8   | Spherical | -                 | Maliszewska<br>et al. 2014               |
| Rhizopus stolonifer                       | AgNO <sub>3</sub> | Extracellular      | 54.67±<br>4.1  | Irregular | -                 | AbdelRahim et al. 2017                   |
| Pleurotus ostreatus                       | AgNO <sub>3</sub> | Extracellular      | <40            | Spherical | Antibacterial     | Al-Bahrani <i>et al.</i> 2017            |
| Penicillium spp                           | AgNO <sub>3</sub> | Extracellular      | 149-<br>397    | Spherical | -                 | Verma <i>et al.</i><br>2017              |

 Table 1.3 List of fungal stains used in the biosynthesis of AgNPs

Fungi are exceptionally proficient secretors of extracellular enzymes which can be used for obtaining large-scale production of enzymes. Further advantages of using a fungal-mediated green approach for the synthesis of MNPs include economic viability and ease in handling biomass. Both intracellular and extracellular synthesis of MNPs can be carried out using fungi since they secrete enormous enzymes which can be used for the reduction of metal ion (Mandal *et al.* 2006).

Mukhergee *et al.* showed that the fungal biomass of *Verticillium sp.* resulted in the accumulation of AgNPs below the fungal cell surface when exposed to aqueous silver nitrate solution (Mukherjee et al. 2001). Chen et al. have shown that Phoma sp.3.2883 was, in fact, a biosorbent which was suited for preparing AgNPs (Chen et al. 2003). Vigneshwaran et al. also showed the accumulation of AgNPs with the average size 8.92 nm when incubated with silver nitrate solution for 72 hrs (Vigneshwaran et al. 2007). Ahmad et al. observed that when the aqueous  $Ag^+$  are exposed to the *Fusarium oxysporum*, the  $Ag^+$  get reduced by the enzymes and formed AgNPs in the range of 5-15 nm with high stability due to the protein secreted by a fungus (Ahmad et al. 2003b). Bhainsa and D'Souza reported the rapid extracellular synthesis of mono-dispersed AgNPs using Aspergillus fumigatus (Bhainsa and D'souza 2006). Duran et al. have reported the extracellular synthesis of AgNPs using Fusarium oxysporum (Durán et al. 2005). Fusarium semitectum, Fusarium acuminatum, and Penicillium brevicompactum WA 2315 were also showed the potential towards the successful reduction of silver nitrate for the extracellular synthesis of AgNPs (Basavaraja et al. 2008, Ingle et al. 2008, Shaligram et al. 2009). Kathiresan et al. performed the in vitro synthesis of AgNPs where  $AgNO_3$  was taken as a substrate and *Penicillium fellutanum* isolated from coastal mangrove sediment was taken as a source of enzyme (Kathiresan et al. 2009).

Gajbhiye et al. and Varshney et al. also reported the extracellular synthesis of AgNPs using Alternaria alternate and Hormoconis resinae respectively (Gajbhiye et al. 2009, Varshney et al. 2009). The eco-friendly optimized synthesis of AgNPs was carried out by Nayak et al. using *Penicillium purpurogenum* NPMF and observed the increased synthesis of AgNPs on increasing the concentration of silver nitrate. The effect of pH on the synthesis was also observed which affected the shape and size of the AgNPs (Nayak et al. 2011). A newly fungal strain Amylomyces rouxii strain KSU-09 isolated from the roots of date palm showed the synthesis of monodispersed spherical AgNPs (Mussarat et al. 2010). Syed et al. have shown the anticancerous activity of AgNPs prepared from *Humicola sp.* (Syed *et al.* 2013). Intracellular and extracellular synthesis of AgNPs using *Schizophyllum commune* were also investigated by Arun et al. which produced spherical AgNPs with average size 100 nm. Thus obtained AgNPs were further used in the biomedical application (Arun et al. 2014). Maliszewska et al. have used the cell free filtrate of Penicillium nalgiovense AJ12 for the extracellular synthesis of AgNPs (Maliszewska et al. 2014). Devi and Joshi have prepared spherical AgNPs with size ranging from  $3.5 \pm 3$  nm using Aspergillus niger PFR6, Penicillium ochrochloron PFR8, Potentilla fulgens L (Devi and Joshi 2015). Recently, Singh et al., AbdelRahim et al., Al-Bahrani et al., and Verma et al. have reported the synthesis of AgNPs using *Rhizopus stolonifer*, *Pleurotus ostreatus*, and *Penicillium spp* respectively (AbdelRahim et al. 2017, Al-Bahrani et al. 2017, Verma et al. 2017) (Table 1.3).

Mukherjee *et al.* have demonstrated the use of eukaryotic microorganisms for the synthesis of AuNPs using *Verticillium sp.* (Mukherjee *et al.* 2001). Mukhergee *et al.* have investigated the green synthesis of AuNPs in 72 hrs using *Fusarium oxysporum* as a source

of reductases and obtained spherical AuNPs having size range 20-40 nm (Mukherjee et al.

2002).

| Fungi                         | Precurs            | Intracellular/  | Size   | Morpholo    | Applicat  | Reference                         |
|-------------------------------|--------------------|-----------------|--------|-------------|-----------|-----------------------------------|
|                               | or                 | Extracellular   | (nm)   | gy          | ion       |                                   |
| Verticillium                  | HAuCl <sub>4</sub> | Intracellular   | 10-15  | Spherical   | Antifung  | Mukherjee et al.                  |
|                               |                    |                 |        |             | al        | 2001                              |
| Fusarium                      | HAuCl <sub>4</sub> | Extracellular   | 20-40  | Spherical   | -         | Mukherjee et al.                  |
| oxysporum                     |                    |                 |        |             |           | 2002                              |
| Rhodococcus sp                | HAuCl <sub>4</sub> | Intracellular   | 5-15   | Spherical   | -         | Ahamad et al. 2003                |
| Thermomonospora               | HAuCl <sub>4</sub> | Extracellular   | 8      | Spherical   | -         | Ahamad <i>et al</i> . 2003        |
| sp                            |                    |                 |        |             |           |                                   |
| Trichothecium sp              | HAuCl <sub>4</sub> | Intracellular/E | -      | Anisotropic | -         | Ahmad <i>et al</i> . 2005         |
|                               |                    | xtracellular    |        |             |           |                                   |
| Volvariella                   | $HAuCl_4$          | Extracellular   | 20-150 | Triangular, | -         | Philip 2009                       |
| volvacea                      |                    |                 |        | Hexagonal   |           |                                   |
| Hormoconis<br>resinae         | HAuCl <sub>4</sub> | Extracellular   | 3-20   | Spherical   | -         | Mishra <i>et al.</i> 2010         |
| Aspergillus oryzae            | HAuCl <sub>4</sub> | Extracellular   | 10-60  | Spherical   | -         | Binupriya <i>et al.</i><br>2010   |
| Cylindrocladium<br>floridanum | HAuCl <sub>4</sub> | Extracellular   | 25     | Spherical   | -         | Narayanan and<br>Shakthivel, 2011 |
| Epicoccum nigrum              | HAuCl <sub>4</sub> | Extracellular   | 5-50   | Spherical   | -         | Sheikhloo <i>et al.</i><br>2011   |
| <u>Neurospora crassa</u>      | HAuCl <sub>4</sub> | Extracellular   | 32     | Spherical   | -         | Castro- Longoria,<br>et al. 2011  |
| Penicillium                   | HAuCl <sub>4</sub> | Extracellular   | 5-50   | Spherical   | Cytotoxi  | Mishra et al. 2011                |
| brevicompactum                |                    |                 |        |             | с         |                                   |
| Verticillium<br>luteoalbum    | HAuCl <sub>4</sub> | Intracellular   | -      | irregular   | -         | Gericke et al. 2011               |
| Penicillium sp.               | HAuCl <sub>4</sub> | Extra/Intracell | 30-50, | Spherical   | -         | Du et al. 2011                    |
| 1                             |                    | ular            | 50     | 1           |           |                                   |
| Rhizopus oryzae               | HAuCl <sub>4</sub> |                 | 5-65   | irregular   | Catalytic | Das et al. 2012                   |
| Trichoderma sp                | HAuCl <sub>4</sub> | Extracellular   | 8      | Spherical   | Biocataly | Mishra et al. 2014                |
|                               |                    |                 |        |             | tic and   |                                   |
|                               |                    |                 |        |             | Antimicr  |                                   |
|                               |                    |                 |        |             | obial     |                                   |
| Fusarium solani               | HAuCl <sub>4</sub> | Extracellular   | 20-50  | Spherical   | -         | Gopinath and<br>Arumugam, 2014    |
| Aspergillus sydowii           | HAuCl <sub>4</sub> | Extracellular   | 10     | Spherical   |           | Vala 2014                         |
| Penicillium                   | HAuCl <sub>4</sub> | Extracellular   | 60     | Spherical   | Scolicida | Barabadi et al.                   |
| aculeatum                     |                    |                 |        | _           | 1         | 2017                              |
| Aspergillus sp. WL-           | HAuCl <sub>4</sub> | Extracellular   | 4-29   | Spherical   | Catalytic | Shen et al. 2017                  |
| Au                            |                    |                 |        |             |           |                                   |

 Table 1.4 List of fungal stains used in the biosynthesis of AuNPs

Ahmad *et al.* have observed the formation of monodispersed spherical shaped AuNPs with an average size ranging from 5-15 nm on the cell wall and cytoplasmic membrane of Rhodococcus sp. (Ahmad et al. 2003c). Thermomonospora sp. was also investigated by Ahmad et al. for the extracellular synthesis of spherical AuNPs with average size 8 nm (Ahmad et al. 2003a). Ahmad et al. have also investigated the intra and extracellular synthesis of AuNPs using Trichothecium sp (Ahmad et al. 2005). Gericke and Pinches have successfully demonstrated an intracellular as well as the extracellular synthesis of AuNPs in the presence of *Verticillium luteoalbum* extract (Gericke and Pinches 2006b). Du *et al.* have reported the both extracellular (30-50 nm) and intracellular (50 nm) synthesis of spherical AuNPs from *Penicillium sp.* (Du *et al.* 2011). A simple one-pot green method was used by Das *et al.* for the synthesis of AuNPs with the size ranged from 5-65 nm using protein extract of *Rhizopus oryzae* (Das *et al.* 2012). Mishra *et al.* have also reported the green synthesis of anisotropic AuNPs of size ranging from 3-20 nm using Hormoconis resinae (Mishra et al. 2010). The supernatant, live cell filtrate and biomass of the fungus Penicillium brevicompactum were applied for the synthesis of AuNPs by Mishra et al. group for the cytotoxic study against mouse mayo blast cancer  $C_2C_{12}$  cells (Mishra *et al.* 2011). Mishra *et* al. have also investigated the synthesis of AuNPs from the Trichoderma sp. for the biocatalytic and antimicrobial activity (Mishra et al. 2014). Gopinath and Arumugam have used culture extract of Fusarium solani for the synthesis of AuNPs (Gopinath and Arumugam 2014). Vala has synthesized AuNPs using a marine-derived fungus Aspergillus sydowii (Vala 2015). Cylindrocladium floridanum also showed its potential towards the successful extracellular synthesis of spherical AuNPs with average size 25 nm (Narayanan and Sakthivel 2011). Aspergillus oryzae was also investigated for its potential towards the

extracellular synthesis of AuNPs which showed that the synthesized AuNPs were spherical in shape with size ranging from 10-60 nm (Binupriya *et al.* 2010). Sheikhloo *et al.* have reported the green synthesis of AuNPs using *Epicoccum nigrum* (Sheikhloo *et al.* 2011). Castro- Longoria, *et al.* have shown the synthesis of AuNPs with 32 nm of size from using filamentous fungi *Neurospora crassa* (Castro-Longoria *et al.* 2011). Recently, Barabadi *et al.* have showed the preparation of AuNPs with an average size 60 nm using *Penicillium aculeatum* to investigate the scolicidal activity (Barabadi *et al.* 2017). Shen *et al.* have also investigated the extracellular synthesis of AuNPs using Aspergillus sp. WL-Au for the catalytic reduction of 4-nitrophenol (Shen *et al.* 2017) (**Table 1.4**).

### 1.4.1.3 Algae

The phyco-mediated green synthesis of AgNPs and AuNPs has also become one of the prominent areas of research in nanoscience and nanotechnology. Algae are also being extensively used as a factory for the green synthesis of AgNPs and AuNPs. Several important phytochemicals required for the reduction of metal ions are present in the algae which play very important role in the reduction as well as stabilization process. These phyto-chemicals include hydroxyl, carboxyl and amino functional groups which can serve both as effective metal-reducing agents as well as capping agents. Due to the presence of these chemicals, algae can synthesize the nanoparticles by intra and extracellular manner.

Barwal *et al.* have exploited the unicellular algae *Chlamydomonas reinhardtii* as a model system to elucidate the role of cellular proteins in intra and extracellular synthesis of AgNPs. They observed that the cytoplasm was filled with the AgNPs (Barwal *et al.* 2011). The intra and extracellular synthesis of AgNPs were also performed by Jena *et al.* by using *Chlorococcum humicola* and obtained spherical AgNPs with a size range of 4-16 nm (Jena *et* 

*al.* 2013). Kanan *et al.* have demonstrated the intracellular synthesis of AgNPs with average size 30 nm using the extract of *Chaetomorpha linum* by the reduction of the aqueous silver metal ions (Kannan *et al.* 2013).

| Algae                        | Precurs           | Intracellular                   | Size   | Morpholo                     | Application                   | Reference                         |
|------------------------------|-------------------|---------------------------------|--------|------------------------------|-------------------------------|-----------------------------------|
|                              | or                | /Extracellula                   | (nm)   | gy                           |                               |                                   |
| Chlamydomonas                | AgNO <sub>2</sub> | r<br>Intracellular/             | 5-15 & | Spherical                    |                               | Barwal et al                      |
| reinhardtii                  | ngi to3           | Extracellular                   | 5-35   | Spheriear                    |                               | 2001                              |
| Chlorococcum                 | AgNO <sub>3</sub> | Intracellular/                  | 4-16   | Spherical                    | Antibacterial                 | Jena et al. 2012                  |
| humicola                     |                   | Extracellular                   |        |                              |                               |                                   |
| Chaetomorpha<br>linum        | AgNO <sub>3</sub> | Intracellular                   | 3-44   | Clustres                     | -                             | Kanan <i>et al.</i><br>2013       |
| Leptolyngbya<br>valderianum  | AgNO <sub>3</sub> | Intracellular                   | 2-20   | Spherical                    | -                             | Roychoudhury<br>and Pal 2014      |
| Caulerpa racemosa            | AgNO <sub>3</sub> | Intracellular/<br>Extracellular | 05–25  | Spherical<br>&<br>Triangular | Antibacterial                 | Kathiraven <i>et al.</i> 2015     |
| Turbinaria<br>conoides       | AgNO <sub>3</sub> | Extracellular                   | 5-50   | Spherical                    | Fabric<br>strengthenin<br>g   | Sheeba and<br>Thambidurai<br>2009 |
| Sargassum<br>Wightii Grevill | AgNO <sub>3</sub> | Extracellular                   | 8-27   | Spherical                    | -                             | Govindaraju <i>et al.</i> 2009    |
| Ulva lactuca                 | AgNO <sub>3</sub> | Extracellular                   | 48.59  | Spherical                    | Catalytic                     | Kumar <i>et al.</i> 2011          |
| Sargassum<br>tenerrimum      | AgNO <sub>3</sub> | Extracellular                   | 20     | Spherical                    | Antibacterial                 | Kumar <i>et al.</i><br>2012       |
| Turbinaria<br>conoides       | AgNO <sub>3</sub> | Extracellular                   | 96     | Spherical                    | Antibacterial                 | Rajeshkumar <i>et al.</i> 2012    |
| Cystophora<br>moniliformis   | AgNO <sub>3</sub> | Extracellular                   | 5-100  | Spherical                    | -                             | Prasad <i>et al.</i><br>2013      |
| Sargassum<br>longifolium     | AgNO <sub>3</sub> | Extracellular                   | 5-50   | Spherical,<br>Ellipsoidal    | Antifungal                    | Rajeshkumar <i>et al.</i> 2014    |
| Pithophora<br>oedogonia      | AgNO <sub>3</sub> | Extracellular                   | 34.03  | Irregular                    | -                             | Sinha et al. 2014                 |
| Sargassum<br>plagiophyllum   | AgNO <sub>3</sub> | Extracellular                   | 18-42  | Spherical                    | Antibacterial                 | Dhas et al 2014                   |
| Ulva flexousa                | AgNO <sub>3</sub> | Extracellular                   | 2-32   | irregular                    | -                             | Rahimi <i>et al.</i><br>2014      |
| Hypnea<br>musciformis        | AgNO <sub>3</sub> | Extracellular                   | 40-65  | Spherical                    | Mosquitocid<br>al, Pesticidal | Roni et al. 2015                  |
| Centroceras<br>clavulatum    | AgNO <sub>3</sub> | Extracellular                   | 35-65  | Spherical                    | Mosquitocid<br>al activity    | Murugan <i>et al.</i> 2016        |
| Spirogyra varians            | AgNO <sub>3</sub> | Extracellular                   | 17.6   | Anisotropic                  | Antibacterial                 | Salari <i>et al.</i><br>2016      |
| Caulerpa serrulata           | AgNO <sub>3</sub> | Extracellular                   | 10±2   | Spherical                    | Catalytic,<br>Antibacterial   | Aboelfetoh <i>et al.</i> 2017     |

 Table 1.5 List of algal strains used in the biosynthesis of AgNPs

The intracellular synthesis of AgNPs was also carried out by Roychoudhury and Pal by exposing the healthy biomass of Leptolyngbya valderianum to the 100 mL of 9 mM aqueous silver metal ion solution for 72 hrs (Roychoudhury and Pal 2014). Recently, Kathiraven et al. have presented green synthesis and antibacterial activity of AgNPs using Caulerpa racemosa, a marine alga, collected from the Gulf of Mannar (Kathiraven et al. 2015). Sheeba and Thambidurai, have shown the extracellular synthesis of AgNPs with the size range from 5-50 nm using Turbinaria conoides (Sheeba and Thambidurai 2009). Similarly, Sargassum wightii was exploited for the synthesis of AgNPs by Govindaraju et al. (Govindaraju et al. 2009). Kumar et al. have used Ulva lactuca and synthesized spherical AgNPs with average size 48.59 nm for the catalytic degradation of methyl orange (Kumar et al. 2013). Kumar et al. have also corroborated the eco-friendly extracellular synthesis of AgNPs using the extract of Sargassum tenerrimum for the antibacterial activity (Kumar et al. 2012a). Turbinaria conoides (Rajeshkumar et al. 2012) Cystophora moniliformis (Prasad et al. 2013), Sargassum longifolium (Rajeshkumar et al. 2014), Pithophora oedogonia (Sinha et al. 2015), Colpomenia sinuosa (Vishnu Kiran and Murugesan 2014), Sargassum plagiophyllum (Dhas et al. 2014, Rahimi et al. 2014a), and Ulva flexousa (Rahimi et al. 2014b) were also used for the extracellular synthesis of AgNPs for various applications. The extracellular synthesis of AgNPs was also demonstrated by Roni et al. using the extract of Hypnea musciformis and utilized the prepared AgNPs in mosquitocidal and pesticidal activity (Roni et al. 2015). Madhiyazhagan *et al.* have shown the green synthesis of AgNPs having size 43-79 nm using Sargassum muticum and investigated the antibacterial and larvicidal activity (Madhiyazhagan et al. 2015). Recently, Murugan et al. have used the extract of Centroceras clavulatum for the extracellular synthesis of AgNPs and applied it for the mosquitocidal activity (Murugan et al. 2016). Similarly, Salari et al. have also synthesized AgNPs having the size 17.6 nm using Spirogyra varians for the antibacterial activity (Salari et al. 2016). Recently, Aboelfetoh et al. have reported the green and eco-friendly synthesis of AgNPs using Caulerpa serrulata, a green alga. They observed that the synthesized AgNPs were spherical shaped with the average size  $10\pm 2$  nm which were further investigated against the catalytic degradation of azo dye and antibacterial activity against both Gram-negative bacteria (Escherichia coli, Staphylococcus aureus, Shigella sp., and Salmonella typhi) and Grampositive bacteria (Pseudomonas aeruginosa) (Aboelfetoh et al. 2017) (Table 1.5).

The synthesis of the nanoparticles is affected by many parameters such as temperature, pH, metal ion concentration, stirring and static conditions etc. It is believed the metal ions are reduced by the enzymes secreted by an algal cell which is followed by nucleation and growth. The intracellular synthesis mainly depends on physico-chemical parameters like temperature, pH, and concentration of the metal ions. The surface-bound proteins and their residual amino acids viz cysteine, tyrosine, and tryptophan play a vital role though amine (NH<sub>2</sub>) groups in capping and stabilization of nanoparticles at basic pH.

Hosea *et al.* have investigated the effect of parameters influencing the accumulation of Au(0) on the alga *Chlorella vulgaris*. They have also examined the rate and extent of reduction of algal-bound Au (I) and found that the amount of algal-bound atomic gold produced from ionic gold increased with time (Hosea *et al.* 1986). Konishi *et al.* reported the intracellular synthesis of AuNPs in size range of 15-200 nm using *Shewanella sps*. (Konishi *et al.* 2006). Senapati *et al.* also demonstrated the intracellular synthesis of spherical AuNPs having a size range from 5-35 nm utilizing *Tetraselmis kochinensis* (Senapati *et al.* 2012).

| Algae              | Precurs            | Intracellular/ | Size    | Morpholo    | Applicatio  | Reference             |
|--------------------|--------------------|----------------|---------|-------------|-------------|-----------------------|
|                    | or                 | Extracellular  | (nm)    | gy          | n           |                       |
| Chlorella          | HAuCl <sub>4</sub> | Intracellular  | -       | Spherical   | Irregular   | Hosea et al. 1986     |
| vulgaris           |                    |                |         |             |             |                       |
| Shewanella sps.    | HAuCl <sub>4</sub> | Intracellular  | 15-200  | Spherical   | -           | Konishi et al.        |
|                    |                    |                |         |             |             | 2007                  |
| Tetraselmis        | HAuCl <sub>4</sub> | Intracellular  | 5-35    | Spherical   | -           | Senapati et al.       |
| kochinensis        |                    |                |         |             |             | 2012                  |
| Chlorella          | HAuCl <sub>4</sub> | Extracellular  | -       | Triangular, | -           | Xie et al. 2007       |
| vulgaris           |                    |                |         | Hexagon     |             |                       |
| Fucus              | HAuCl <sub>4</sub> | Extracellular  | -       | Anisoptrop  | -           | Mata et al. 2009      |
| vesiculosus        |                    |                |         | ic          |             |                       |
| Laminaria          | HAuCl <sub>4</sub> | Extracellular  | 15-20   | Spherical   | -           | Ghodake and Lee,      |
| japonica           |                    |                |         |             |             | 2011                  |
| Stoechospermum     | HAuCl <sub>4</sub> | Extracellular  | 18.7-   | Irregular   | Antibacteri | Rajathi et al.        |
| marginatum         |                    |                | 93.7    | _           | al          | 2012                  |
| Klebsormidium      | HAuCl <sub>4</sub> | Extracellular  | 8.6±4.2 | Spherical   | -           | Dahaumane et al.      |
| flaccidum          |                    |                |         | -           |             | 2012                  |
| Chlorella          | HAuCl <sub>4</sub> | Extracellular  | 25-30   | Irregular   | -           | Oza et al. 2012       |
| pyrenoidusa        |                    |                |         | -           |             |                       |
| Spirulina          | HAuCl <sub>4</sub> | Extracellular  | 12      | Irregular   | -           | Mahdieh et al.        |
| platensis          |                    |                |         | -           |             | 2012                  |
| Padina             | HAuCl <sub>4</sub> | Extracellular  | 53-67   | Irregular   |             | Singh et al. 2013     |
| gymnospora         |                    |                |         |             |             |                       |
| Turbinaria         | HAuCl <sub>4</sub> | Extracellular  | 60      | Irregular   | Antibacteri | Rajeshkumar et        |
| conoides           |                    |                |         | _           | al          | al. 2013              |
| Ecklonia cava      | HAuCl <sub>4</sub> | Extracellular  | 20-50   | Spherical   | Antibacteri | Venkatesan et al.     |
|                    |                    |                |         |             | al          | 2014                  |
| Spirogyra          | HAuCl <sub>4</sub> | Extracellular  | 2-50    | Spherical,  | -           | Roychoudhury          |
| submaxima          |                    |                |         | Hexagonal   |             | and Pal, 2014         |
| <u>Lemanea</u>     | HAuCl <sub>4</sub> | Extracellular  | 5-15    | Spherical   | Antioxidan  | Sharma <i>et al</i> . |
| <u>fluviatilis</u> |                    |                |         |             | t           | 2014                  |
| Turbinaria         | HAuCl <sub>4</sub> | Extracellular  | 17.6±0. | Spherical   | -           | <u>Vijayan</u> et al. |
| conoides           |                    |                | 42      |             |             | 2014                  |
| Chlorella          | HAuCl <sub>4</sub> | Extracellular  | 2-10    | Spherical   | Antipathog  | Annamalai and         |
| vulgaris           |                    |                |         |             | enic        | Nallamuthu, 2015      |
| Padina pavonica    | HAuCl <sub>4</sub> | Extracellular  | 30-70   | Irregular   | Antibacteri | Isaac et al. 2015     |
|                    |                    |                |         |             | al          |                       |
| Rhizoclonium       | HAuCl <sub>4</sub> | Extracellular  | 16      | Spherical   | -           | Parial                |
| fontinale          |                    |                |         |             |             | <i>et al.</i> 2015    |
| Cystoseira         | HAuCl <sub>4</sub> | Extracellular  | 8.4±2.2 | Spherical   | Anticancer  | Gonzalez-             |
| baccata            |                    |                | 2       |             | ous         | Ballestero et al.     |
|                    |                    |                |         |             |             | 2017                  |

Table 1.6 List of algal strains used in the biosynthesis of AuNPs

Recently, Dahoumane *et al.* have studied that the process of biomineralization occurs within the thylakoidal membranes where the available enzymes reduce the gold metal ions for the formation of AuNPs (Dahoumane *et al.* 2012). Xie *et al.* have reported the extracellular synthesis of triangular and hexagonal AuNPs using Chlorella vulgaris (Xie et al. 2007) Similarly, Mata et al. 2009 investigated the synthesis of anisotropic AuNPs using Fucus vesiculosus (Mata et al. 2009). Ghodake and Lee have exploited Laminaria japonica to synthesize AuNPs having size 15-20 nm (Ghodake and Lee 2011). Stoechospermum marginatum (Rajathi et al. 2012), Klebsormidium flaccidum, (Dahoumane et al. 2012) Chlorella pyrenoidusa (Oza et al. 2012) (Oza et al. 2012) and Spirulina platensis (Mahdieh et al. 2012) have been used for the extracellular synthesis of AuNPs. Padina gymnospora and *Turbinaria conoides* have been utilized for the extracellular synthesis of AuNPs by Singh *et* al. and Rajeshkumar et al. respectively (Singh et al. 2013, Rajeshkumar et al. 2013). Venkatesan et al. have performed the antibacterial activity using AuNPs synthesized from Ecklonia cava (Venkatesan et al. 2014). Roychoudhury and Pal have synthesized AuNPs using extracellular pathway from a unicellular alga Spirogyra submaxima (Roychoudhury and Pal 2014). Lemanea fluviatilis and Turbinaria conoides have also been exploited to obtain AuNPs extracellularly (Sharma et al. 2014, Vijayan et al. 2014). Annamalai and Nallamuthu have used Chlorella vulgaris to obtain spherical AuNPs within 2-10 nm for antibacterial activity (Annamalai and Nallamuthu 2015). Isaac et al. 2015 have also investigated the antibacterial activity of irregular AuNPs (30-70 nm) synthesized from Padina pavonica (Isaac and Renitta 2015). Recently, Gonzalez-Ballestero et al. 2017 have investigated the anticancerous activity of AuNPs on colon cancer cell lines HT-29 and Caco-2, as well as on normal primary neonatal dermal fibroblast cell line PCS-201-010 which was synthesized from Cystoseira baccata (González-Ballesteros et al. 2017) which is given in Table 1.6.

# 1.4.1.4 Actinomycetes and Yeast

Actinomycetes are commonly known as ray fungi and regarded as the primary source for the synthesizing secondary metabolites like antibiotics in general. They are the rich source of the potent enzymes and hence can be utilized for the synthesis of nanoparticles. In this connection, Ahamad *et al.* have reported the intracellular synthesis of AuNPs with a dimension of 5–15 nm using an alkalotolerant actinomycete, *Rhodococcus sp.* and observed that the AuNPs were accumulated on the cell wall and cytoplasmic membrane with good dispersity. The enzyme reductase present in cell wall and the cytoplasmic membrane were chief reducing agent for the reduction of  $Au^{3+}$  to  $Au^{0}$  (Ahmad *et al.* 2003a) Ahamad *et al.* 2003 have also reported the extracellular synthesis of AuNPs using a novel extremophilic actinomycete, *Thermomonospora sp.* which was potent enough to synthesize extracellular monodispersed spherical AuNPs with an average size of 8 nm (Ahmad et al. 2003a). Alani et al. have investigated the extracellular synthesis of AgNPs having size 15-45 nm using a Streptomyces sp (Alani et al. 2012). Streptomyces albidoflavus, an actinomycete was utilized against the extracellular formation of spherical AgNPs using its extract (Prakasham et al. 2012). Similarly, Manivasagan et al. have also reported the AuNPs formation from Nocardiopsis sp. MBRC-1 (Manivasagan et al. 2013). Similarly, Otari et al., Chauhan et al., Thenmozhi et al., Manikprabhu et al., and Subashini and Kannabiran have also reported the synthesis of AgNPs using Rhodococcus sp., Streptomyces sp JAR1, Streptomyces sp. VITSTK7, Streptomyces sp. and Streptomyces sp. VITBT7 respectively (Otari et al. 2012, Chauhan et al. 2013, Thenmozhi et al. 2013, Manikprabhu and Lingappa 2013, Subashini and Kannabiran 2013).
| Actinomycetes                       | Precurs            | Intracellular/ | Size         | Morpholog              | Application                           | Reference                                |
|-------------------------------------|--------------------|----------------|--------------|------------------------|---------------------------------------|------------------------------------------|
|                                     | or                 | Extracellular  | (nm)         | У                      |                                       |                                          |
| Rhodococcus<br>sp.                  | HAuCl <sub>4</sub> | Intracellular  | 5-15         | Irregular              | -                                     | Ahamad <i>et al</i> .<br>2003            |
| Thermomonosp<br>ora sp              | HAuCl <sub>4</sub> | Extracellular  | 8-40         | Spherical              | -                                     | Ahamad <i>et al</i> .<br>2003            |
| Streptomyces<br>sp. NK52            | HAuCl <sub>4</sub> | Extracellular  | 10-100       | Anisotropic            | Antilipid<br>peroxidation<br>activity | Prakash <i>et al.</i><br>2013            |
| Streptomyces<br>sp                  | AgNO <sub>3</sub>  | Extracellular  | 15-25        | Spherical              |                                       | Alani <i>et al</i> . 2012                |
| Streptomyces<br>albidoflavus        | AgNO <sub>3</sub>  | Extracellular  | 10-40        | Irregular              | Antibacterial                         | Prakasham <i>et al.</i><br>2012          |
| Actinomycetes<br>sp                 | AgNO <sub>3</sub>  | Extracellular  | 40-63        | Spherical              | Antibacterial                         | Sunitha <i>et al.</i><br>2013            |
| Nocardiopsis<br>sp                  | AgNO <sub>3</sub>  | Extracellular  | 30-90        | Irregular              | Antimicrobial<br>and cytotoxic        | Manivasagan <i>et</i><br><i>al.</i> 2013 |
| Rhodococcus<br>sp.                  | AgNO <sub>3</sub>  | Extracellular  | 10           | Spherical              | -                                     | Otari <i>et al</i> . 2012                |
| Streptomyces<br>sp JAR1             | AgNO <sub>3</sub>  | Extracellular  | 68.13        | Irregular              | Antibacterial                         | Chauhan <i>et al.</i><br>2013            |
| Streptomyces<br>sp. VITSTK7         | AgNO <sub>3</sub>  | Extracellular  | 20-60        | Irregular              | Antifungal                            | Thenmozhi <i>et al.</i><br>2013          |
| Streptomyces s<br>p                 | AgNO <sub>3</sub>  | Extracellular  | 28-50        | Irregular              | Antibacterial                         | Manikprabhu <i>et al</i> . 2013          |
| Streptomyces<br>sp. VITBT7          | AgNO <sub>3</sub>  | Extracellular  | 20–70        | Irregular              | Antibacterial<br>and<br>Antifungal    | Subashini and<br>Kannabiran,2013         |
| Streptacidiphilu<br>s durhamensis   | AgNO <sub>3</sub>  | Extracellular  | 8-48         | Irregular              | Antibacterial                         | Buszewski <i>et al.</i><br>2016          |
| Gordonia<br>amicalis HS-11          | AgNO <sub>3</sub>  | Extracellular  | 5-25         | Spherical              | Antioxidant                           | Sowani <i>et al.</i><br>2016             |
| Yeast                               |                    |                |              |                        |                                       |                                          |
| Saccharomyces<br>cerevisiae         | HAuCl <sub>4</sub> | Extracellular  | -            | Irregular              | -                                     | Lin et al. 2005                          |
| Pichia jadinii                      | HAuCl <sub>4</sub> | Intracellular  | 100          | Anisotropic            | -                                     | Gericke <i>et al.</i><br>2006            |
| Yarrowia<br>lipolytica<br>NCIM 3589 | HAuCl <sub>4</sub> | Intracellular  | 15           | Trigonal,<br>Hexagonal | -                                     | Agnihotri <i>et al.</i><br>2009          |
| Yeast MKY3                          | HAuCl <sub>4</sub> | Extracellular  | 2-5          | Spherical              | -                                     | Kowshik <i>et al.</i><br>2002            |
| Yeast extract                       | HAuCl <sub>4</sub> | Extracellular  | 1300<br>±200 | Hexagonal              | -                                     | Yang <i>et al.</i> 2017                  |

Table 1.7 List of actinomycetes and yeasts used in the biosynthesis of AgNPs and AuNPs

Recently, Sowani *et al.* have shown the extracellular green synthesis of both AgNPs and AuNPs with a size range of 5-25 nm (Sowani *et al.* 2016). Buszewski *et al.* have also reported the synthesis of AgNPs using in size range from 8-48 nm and investigated antibacterial activity (Buszewski *et al.* 2016).

Among the eukaryotic microorganism, yeast has been exploited mainly for the synthesis of semiconductors but, few of them were also reported for the synthesis of AgNPs and AuNPs. *S. cerevisiae* was reported to biosorb and reduces Au<sup>+3</sup> to elemental gold on the peptidoglycan layer of the cell wall by the aldehyde group present in reducing sugars (Lin *et al.* 2005). Similarly, Gericke and Pinches have shown the intracellular synthesis of spherical, triangular and hexagonal AuNPs using *Pichia jadinii* (Gericke and Pinches 2006a). Agnihotri *et al.* have studied the pH-dependent synthesis of AuNPs using *Yarrowia lipolytica* NCIM 3589. They observed that the reduction of gold ions occurred in pH dependent manner. When cells were incubated at pH 2.0, hexagonal and triangular AuNPs were formed due to the nucleation on the cell surfaces which produced golden color in the visible region at 540 nm. Whereas, at pH 7.0 and pH 9.0, it produced pink and purple colors respectively having an average size 15 nm (Agnihotri *et al.* 2009). The yeast MKY3 is a silver tolerant strain and reported for the extracellular synthesis of hexagonal AgNPs (Kowshik *et al.* 2002) (**Table 1.7**).

### 1.4.2 Plants

Since last decades, the plant extracts have been used as a great source of reducing and stabilizing agent for the eco-friendly, economically viable and rapid synthesis of stable AgNPs and AuNPs. The plants contain several phytochemicals such as tannins, flavonoids, proteins, amino acids, enzymes, polysaccharides, alkaloids, terpenoids, triterpenoids, phenolics, saponins, etc. which act as a potential reducing and stabilizing agent. Therefore, plants have been found a most suitable resource for the synthesis of AgNPs and AuNPs. The AgNPs and AuNPs synthesized by plant extract have been proved to be more advantageous regarding biocompatibility, scalability, and the medical applicability than chemically synthesized nanoparticles. Therefore, the plants are most preferred for the synthesis of AgNPs and AuNPs.

The first report on the plant-mediated synthesis of metal nanoparticles was presented by Gardea-Torresdey et al. using Alfalfa sprouts (Gardea-Torresdey et al. 2002). Thereafter, several reports on the synthesis of AgNPs and AuNPs and their potential applications have been published by plant leaf extracts which are given in **Table 1.8** (Chandran *et al.* 2006, Sathishkumar et al. 2009, Raut et al. 2010, Bar et al. 2009, Parashar et al. 2009, Jha et al. 2009, Kesharwani et al. 2009, Ahmad et al. 2010a, Elumalai et al. 2010, Ravindra et al. 2010, Roy and Barik 2010, Bankar et al. 2010, Saxena et al. 2010, Dwivedi and Gopal 2010, Philip 2010a, b, Prasad and Elumalai 2011, Philip et al. 2011, Veerasamy et al. 2011, Prathna et al. 2011, Vidhu et al. 2011, Santhoshkumar et al. 2011, Mondal et al. 2011, Sivakumar et al. 2012, Von White et al. 2012, Vijayaraghavan et al. 2012, Gopinath et al. 2012, Umadevi et al. 2013, Mude et al. 2009, Arunkumar et al. 2013, Rodríguez-León et al. 2013, Ahmad et al. 2010b, Kudle et al. 2012, Parvathy et al. 2014, Awad et al. 2014, Praba et al. 2014, Kudle et al. 2014, Mohamed et al. 2014, Nakkala et al. 2014, Arokiyaraj et al. 2014, Shetty et al. 2014, Paulkumar et al. 2014, Baharara et al. 2014, Kathiravan et al. 2014, Narayanan and Park 2014, Subbaiya et al. 2014, Shams et al. 2014, Rahimi-Nasrabadi et al. 2014, Korbekandi et al. 2015, Rajagopal et al. 2015, Paul et al. 2015a, Raja et al. 2015, Sadeghi and Gholamhoseinpoor 2015, Yang et al. 2015, Ali et al. 2015, Ashour et al. 2015, Suresh et al. 2015, Shalaby et al. 2015, Padalia et al. 2015, Heydari and Rashidipour 2015, Billacura and Mimbesa 2015). Ahmad et al. have investigated the antibacterial and photoluminescence activity of AgNPs synthesized by Azadirachta indica (Ahmed et al. 2016a). The bark extract of Terminalia arjuna was also investigated by Ahmad et al towards the green synthesis of AgNPs and obtained spherical AgNPs in the range of 2-100 nm (Ahmed et al. 2016b). Al-Shmgani et al., Saravanakumar et al. and Bhuvaneswari et al. have utilized the leaf extracts of Catharanthus roseus, Prunus japonica, and Excoecaria agallocha respectively for the synthesis of AgNPs. The AgNPs synthesized by *Catharanthus roseus* were spherical in shape with the average size 20 nm whereas the AgNPs obtained by *Prunus japonica* were different shape like hexagona, trigonal, and spherical with the average size 26 nm. The AgNPs obtained from Excoecaria agallocha were also of different shape like hexagonal and spherical which showed potent antibacterial and antioxidant activity (Al-Shmgani *et al.* 2016, Saravanakumar et al. 2016, Bhuvaneswari et al. 2017). Ravichandran et al. 2016 have synthesized spherical AgNPs using Artocarpus altilis with the average size 38 nm and performed the antimicrobial and antioxidant activity (Ravichandran et al. 2016). The AgNPs synthesized by *Terminalia cuneata* showed excellent catalytic activity (Edison et al. 2016). Nayak et al. 2016 have performed the synthesis of spherical AgNPs using Ficus benghalensis and investigated the antibacterial and Antiproliferative activity (Nayak et al. 2016). The leaf extract of *Phoenix Dactylifera* was to synthesize the AgNPs. The results indicated the synthesis of irregular shaped AgNPs with size range 20-60 nm which showed the catalytic activity (Aitenneite et al. 2016). The fruit and leaf extracts of Capuli cherry and Mussaenda glabrata were also utilized for the green synthesis of AgNPs. The results revealed the presence of spherical AgNPs in the size range of 20-80 nm and 51.32 nm respectively (Francis *et al.* 2017, Kumar *et al.* 2016a). Similary, several authors have reported the green synthesis of AgNPs using different parts of the plants and utilized in various applications (Mohammadi *et al.* 2016, Ali *et al.* 2016a, Ali *et al.* 2016b, Ramachandran *et al.* 2016, Mosae Selvakumar *et al.* 2016, Sánchez *et al.* 2016, Lakshman Kumar *et al.* 2016, Verma *et al.* 2016, Ajitha *et al.* 2016, Kumar *et al.* 2016b, Anandalakshmi *et al.* 2016, Karunakaran *et al.* 2016, Velayutham *et al.* 2016, Bharathi *et al.* 2016, Begum *et al.* 2016, Kumar *et al.* 2017a, Chaudhuri *et al.* 2016, Dong *et al.* 2016)

Recently, Devanesan et al. have synthesized the AgNPs using the seed extracts of Pimpinella anisum. The synthesized AgNPs (80-85 nm) were further investigated for their cytotoxic effect on colorectal cancer (CRC) cell lines. Thus obtained AgNPs showed the potent cytotoxic effect on colorectal adenocarcinoma CRC cells. The results indicated that the cancerous cells were killed selectively through the arrest of cell cycle at the G2/M phase, suppression of proliferation, and apoptosis induction (Devanesan et al. 2017). Silva-De Hoyos *et al.* have prepared the spherical AgNPs with average size 7 nm using the aqueous leaf extract of *Camella sinesis*. The synthesized AgNPs were further used for the sensing of Cu<sup>2+</sup> and Pb<sup>2+</sup> (Silva-De Hoyos (Silva-De Hoyos et al. 2017). Kasithevar et al. also used the leaf extract of Alysicarpus monilifer. They observed that the AgNPs synthesized were spherical with average  $15 \pm 2$  nm and showed potent antibacterial activity (Kasithevar *et al.*) 2017). The fruit extract of tamarind was employed for the synthesis of AgNPs and found that the synthesized AgNPs were spherical with average size 10 nm which showed excellent results towards the antibacterial activity (Jayaprakash et al. 2017). The irregular shaped AgNPs with average size 37.86 nm was synthesized by Francis *et al.* using the leaf extract of *Elephantopus scaber* and also investigated its antibacterial activity (Francis *et al.* 2017).

Other parts of the different plants were also used widely for the synthesis of AgNPs because of their great potential to act as reducing and stabilizing agent. For example, the rhizome of turmeric was utilized by Nayak *et al.* for the synthesis of AgNPs in size range of 120-160 nm which was also used for the investigation of antibacterial activity (Nayak *et al.* 2017).

| Plants                     | Precurso           | Parts   | Size      | Morpholo                  | Application   | Reference                           |
|----------------------------|--------------------|---------|-----------|---------------------------|---------------|-------------------------------------|
|                            | r                  | of the  | (nm)      | gy                        |               |                                     |
|                            |                    | plant   |           |                           |               |                                     |
| Alfalfa                    | AgNO <sub>3</sub>  | Sprout  | 2-4       | Spherical                 | -             | Gardea-Torresdey <i>et al.</i> 2003 |
| Aloe vera                  | AgNO <sub>3</sub>  | Leaf    | 15.2      | Spherical                 | -             | Chandran et al. 2006                |
|                            |                    |         | nm ±      |                           |               |                                     |
|                            |                    |         | 4.2 nm    |                           |               |                                     |
| Cinnamon                   | AgNO <sub>3</sub>  | Bark    | 31-40     | Cubic,                    | -             | Sathishkumar <i>et al.</i> 2009     |
| zeylanicum                 |                    | extract |           | Hexagonal                 |               |                                     |
| Gliricidia                 | AgNO <sub>3</sub>  | Leaf    | 10-50     | Spherical                 | Antibacterial | Raut <i>et al</i> . 2010            |
| sepium                     |                    |         |           |                           |               |                                     |
| Jatropha curcas            | AgNO <sub>3</sub>  | Latex   | 10-20     | Spherical                 | -             | Bar <i>et al.</i> 2009              |
| Mentha piperita            | AgNO <sub>3</sub>  | Leaf    | 5-30      | Spherical                 | -             | Prasar et al. 2009                  |
| Parthenium                 | AgNO <sub>3</sub>  | Leaf    | 50        | Irregular                 | -             | Parashar et al. 2009                |
| hysterophorus              |                    |         |           |                           |               |                                     |
| Cyperus sp.                | AgNO <sub>3</sub>  | Leaf    | 2-5       | Spherical                 | -             | Jha <i>et al</i> . 2009             |
| Datura metel               | AgNO <sub>3</sub>  | Leaf    | 16-40     | Spherical,<br>Ellipsoidal | -             | Kesharwani et al. 2009              |
| Desmodium                  | AgNO <sub>3</sub>  | Leaf    | 5-20      | Spherical                 | -             | Ahmad et al. 2010                   |
| triflorum                  | _                  |         |           | _                         |               |                                     |
| Euphorbia hirta            | AgNO <sub>3</sub>  | Leaf    | 40-50     | Irregular                 | Antibacterial | Elumalai et al. 2010                |
| Ficus                      | AgNO <sub>3</sub>  | Leaf    | 20        | Spherical                 | Antibacterial | Ravindra et al. 2010                |
| bengalensis                |                    |         |           |                           |               |                                     |
| Ludwigia                   | AgNO <sub>3</sub>  | Leaf    | 100-      | Spherical                 | Antibacterial | Roy et al. 2010                     |
| adscendens                 |                    |         | 400       |                           |               |                                     |
| Musa                       | AgNO <sub>3</sub>  | Peel    | 20        | Spherical                 | Antibacterial | Bankar et al. 2010                  |
| paradisiacal               |                    |         |           |                           | and           |                                     |
|                            |                    |         |           |                           | Antifungal    |                                     |
| Allium cepa                | AgNO <sub>3</sub>  | Peel    | 33.6      | Spherical                 | Antibacterial | Saxena et al. 2010                  |
| Pongam pinnata<br>L Piarra | AgNO <sub>3</sub>  | Leaf    | 38        | Spherical                 | Antibacterial | Raut et al. 2010                    |
| Deimum sanctum             | AgNO.              | Root    | 10+2      | Spherical                 |               | Ahmad at al. 2010                   |
| Chanonodium                | $AgNO_3$           | Loof    | $10\pm 2$ | Ouasi                     | -             | Durivedi and Conal 2010             |
| album                      | AginO <sub>3</sub> | Leai    | 10-30     | quasi                     | -             | Dwivedi and Gopai 2010              |
| Hibisousrosa               | AgNO               | Loof    | 14        | Prism or                  |               | Philip at al 2010                   |
| sinansis                   | AginO <sub>3</sub> | Leai    | 14        | Sphorical                 | -             | F milp et al. 2010                  |
| Moringa olaifara           | A gNO.             | Loof    | 57        | Spherical                 | Antimicrobi   | Presed at al 2011                   |
| Moringa oleijera           | AginO <sub>3</sub> | Leai    | 57        | Spherical                 | al            | riasau <i>ei ui.</i> 2011           |
| Murraya                    | AgNO <sub>3</sub>  | Leaf    | 10        | Spherical                 | -             | Philip et al. 2011                  |
| koenigii                   |                    |         |           |                           |               |                                     |
| Garcinia                   | AgNO <sub>3</sub>  | Leaf    | 35        | Spherical                 | Antibacterial | Veerasamy et al. 2011               |

Table 1.8 List of different plants and their parts used in the biosynthesis of AgNPs.

| mangostana       |                    |        |                                         |                |                     |                                |
|------------------|--------------------|--------|-----------------------------------------|----------------|---------------------|--------------------------------|
| Citrus limon     | AgNO <sub>3</sub>  | Juice  | ≤50                                     | Spherical      | -                   | Prathna et al. 2011            |
| Macrotyloma      | AgNO <sub>3</sub>  | Leaf   | 12                                      | Anisotropic    |                     | Vidhu et al. 2011              |
| uniflorum        |                    |        |                                         |                |                     |                                |
| Nelumbo          | AgNO <sub>3</sub>  | Leaf   | 25-80                                   | Hexagonal      | Larvicidal          | Santhoshkumar <i>et al</i> .   |
| nucifera         |                    |        |                                         |                |                     | 2011                           |
| Swietenia        | AgNO <sub>3</sub>  | Leaf   | 50                                      | -              | -                   | Mondal <i>et al.</i> 2011      |
| mahogany         |                    |        |                                         |                |                     |                                |
| Lantana camara   | AgNO <sub>3</sub>  | Fruit  | 12.55-                                  | Spherical      | Antibacterial       | Sivakumar <i>et al</i> . 2012  |
| <i>a</i> .       |                    | C 1    | 12.99                                   | 0.1 . 1        |                     | V 11 / 1 0010                  |
| Cuminum          | AgNO <sub>3</sub>  | Seed   | 12                                      | Spherical      | -                   | Kudle <i>et al.</i> 2012       |
| Cyminum          | A gNO.             | Dool   | 1.6                                     |                | Cutotovia           | Von White at al. 2012          |
| Trachysparmum    | $AgNO_3$           | Seed   | 4-0<br>87                               | -<br>Irrogular | Cytotoxic           | Vijavaraghavan <i>et al</i>    |
| ammi             | AgivO <sub>3</sub> | Secu   | 07                                      | megulai        | -                   | 2012                           |
| Papaver          | AgNO <sub>2</sub>  | Seed   | 99.8                                    | Irregular      | _                   | Vijavaraghavan <i>et al</i>    |
| somniferum       | 1.81(0)            | Seed   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | in og unur     |                     | 2012                           |
| Tribulus         | AgNO <sub>3</sub>  | Fruit  | 16-28                                   | Spherical      | Antibacterial       | Gopinath et al. 2012           |
| terrestris       | 0 5                |        |                                         | 1              |                     | 1                              |
| Solanum          | AgNO <sub>3</sub>  | Fruit  | 10                                      | Spherical      | -                   | Umadevi et al. 2013            |
| lycopersicum     |                    |        |                                         | _              |                     |                                |
| Carica papaya    | AgNO <sub>3</sub>  | callus | 60-80                                   | Spherical      | -                   | Mude Namrata et al.            |
|                  |                    |        |                                         |                |                     | 2013                           |
| Tecoma stans     | AgNO <sub>3</sub>  | Leaf   | 15                                      | Spherical      | -                   | Arunkumar et al. 2013          |
| Rumex            | AgNO <sub>3</sub>  | Root   | 2-40                                    | Hexagonal      | -                   | Rodriguez-Leon et al.          |
| hymenosepalus    |                    |        |                                         | ~              |                     | 2013                           |
| Solanum nigrum   | AgNO <sub>3</sub>  | Leaf   | 50-100                                  | Spherical      | Larvaecidal,        | Rawani, <i>et al.</i> 2013     |
|                  |                    |        |                                         |                | Antimicrobi         |                                |
| Albizia labback  | A gNO.             | Loaf   |                                         | Roughly        | al<br>Antibacterial | Paryathy at al. 2014           |
| AIDILIU IEDDECK  | AgivO <sub>3</sub> | Leai   | -                                       | Spherical      | Antibacteriai       | Fai vatily et ul. 2014         |
| Orange           | ΑσΝΟ2              | Peel   | 91                                      | Spherical      | Antibacterial       | Awad et al 2014                |
| Piper betle      | AgNO <sub>3</sub>  | Leaf   | -                                       | -              | Antibacterial       | Prabha <i>et al.</i> 2014      |
| Justica adhatoda | AgNO <sub>3</sub>  | Leaf   | 11-20                                   | Spherical      | Cytotoxic,          | Kudle <i>et al.</i> 2014       |
|                  | 0 - 5              |        | _                                       |                | Antibacteria        |                                |
| Calotropis       | AgNO <sub>3</sub>  | Latex  | 12.33                                   | Spherical      | Antimicrobi         | Mohamed et al. 2014            |
| procera          |                    | serum  |                                         | -              | al                  |                                |
| Alternanthera    | AgNO <sub>3</sub>  | Leaf   | 50-                                     | Spherical      | -                   | Nakkala et al. 2014            |
| dentate          |                    |        | 100                                     |                |                     |                                |
| Chrysanthemum    | AgNO <sub>3</sub>  | Flower | 37.71-                                  | Spherical      | Antibacterial       | Arokiyaraj <i>et al</i> . 2014 |
| indicum L        |                    |        | 71.99                                   |                |                     |                                |
| Alstonia         | AgNO <sub>3</sub>  | Bark   | 50                                      | Spherical      | Antimicrobi         | Shetty <i>et al</i> . 2014     |
| scholaris        |                    | I.C.   | 7.50                                    | 0.1 . 1        | al                  | D 11 / 1 2014                  |
| Piper nigrum     | $AgNO_3$           | Leaf   | /-50                                    | Spherical      | -                   | Paulkumar <i>et al</i> . 2014  |
|                  |                    |        | and 9–                                  |                |                     |                                |
| Achillea         | A gNO.             | Leaf   | $12 \pm 2$                              | Hevagonal      | Anti                | Baharara at al 2014            |
| hieherstennii    | AgivO <sub>3</sub> | Ltai   | 12 ± 2                                  | Pentagonal     | Angiogenic          |                                |
| ereber stermin   |                    |        |                                         | and            | 1 inglogenie        |                                |
|                  |                    |        |                                         | Spherical      |                     |                                |
| Melia dubia      | AgNO <sub>3</sub>  | Leaf   | 35                                      | Spherical      | Cytotoxic           | Kathiravan et al. 2014         |
| Brassica rapa    | AgNO <sub>3</sub>  | Leaf   | 16.4                                    | Spherical      | Antifungal          | Narayanan et al. 2014          |
| Nerium oleander  | AgNO <sub>3</sub>  | Leaf   | 380-                                    | -              | Antibacterial       | Subbaiya et al. 2014           |
|                  |                    |        | 420                                     |                | , Antoxidant        | -                              |
| Melia azedarach  | AgNO <sub>3</sub>  | Seed   | -                                       | -              | -                   | Shams et al. 2014              |

|                              |                   | T =                        |                                               |                                            |                                               |                                          |
|------------------------------|-------------------|----------------------------|-----------------------------------------------|--------------------------------------------|-----------------------------------------------|------------------------------------------|
| Eucalyptus<br>leucoxylon     | AgNO <sub>3</sub> | Leaf                       | 50                                            | Spherical                                  | Antioxidant                                   | Rahimi-Nasrabadi <i>et al.</i><br>2014   |
| Quercus brantii              | AgNO <sub>3</sub> | Leaf                       | 6                                             | Polydispers<br>ed and<br>Spherical         | -                                             | Korbekandi et al. 2015                   |
| Catharanthus<br>roseus       | AgNO <sub>3</sub> | Leaf                       | 35–55                                         | Spherical                                  | Larvicidal                                    | Rajagopal et al. 2015                    |
| Premna<br>serratifolia L.    | AgNO <sub>3</sub> | Leaf                       | 22.97                                         | Spherical                                  | Cytotoxic                                     | Paul <i>et al</i> . 2015                 |
| Calliandra<br>haematocephala | AgNO <sub>3</sub> | Leaf                       | 70                                            | Spherical                                  | Antibacterial , $H_2O_2$ Detection            | Raja <i>et al.</i> 2015                  |
| Ziziphora<br>tenuior         | AgNO <sub>3</sub> | Leaf                       | 8–40                                          | Spherical                                  | -                                             | Sadeghi and<br>Gholamhoseinpoor, 2015    |
| Peach gum                    | AgNO <sub>3</sub> | Peach<br>gum<br>Powde<br>r | 23.56<br>± 7.87                               | Spherical                                  | H <sub>2</sub> O <sub>2</sub><br>Detection    | Yang <i>et al.</i> 2015                  |
| Eucalyptus<br>globulus       | AgNO <sub>3</sub> | Leaf                       | 1.9–<br>4.3                                   | Spherical                                  | Antibacterial<br>,<br>Antibiofilm             | Ali et al. 2015                          |
| Cranberry                    | AgNO <sub>3</sub> | Fruit                      | $2.8 \pm 2.1, \\ 1.4 \pm 0.8, \\ 8.6 \pm 2.5$ | Spherical                                  | Antimicrobi<br>al                             | Ashour <i>et al</i> . 2015               |
| Phyllanthus<br>niruri        | AgNO <sub>3</sub> | Leaf                       | 30–60                                         | Spherical                                  | Mosquitocid<br>al                             | Suresh et al. 2015                       |
| Zingiber<br>officinale       | AgNO <sub>3</sub> | Broth<br>extract           | 3.1                                           | Spherical                                  | Antibacterial                                 | Shalaby et al. 2015                      |
| Tagetes erecta               | AgNO <sub>3</sub> | Flower                     | 10–90                                         | Irregular,<br>exagonal<br>and<br>Spherical | Antimicrobi<br>al                             | Padalia <i>et al.</i> 2015               |
| Oak                          | AgNO <sub>3</sub> | Fruit                      | 40                                            | Cubic and<br>Spherical                     | Cytotoxic                                     | Heydari and<br>Rashidipour, 2015         |
| Trilobata                    | AgNO <sub>3</sub> | Leaf                       | -                                             | -                                          | -                                             | Billacura and Mimbesa <i>et al.</i> 2015 |
| Azadirachta<br>indica        | AgNO <sub>3</sub> | Leaf                       | 34                                            | Spherical                                  | Antibacterial<br>and<br>Photolumine<br>scence | Ahmed <i>et al</i> . 2016                |
| Coffea arabica               | AgNO <sub>3</sub> | Seed                       | 20-30                                         | Spherical                                  | Antibacterial                                 | Dhand et al. 2016                        |
| Terminalia<br>arjuna         | AgNO <sub>3</sub> | Bark                       | 2-100                                         | Spherical                                  | Antimicrobi<br>al                             | Ahmed et al. 2016                        |
| Catharanthus<br>roseus       | AgNO <sub>3</sub> | Leaf                       | 20                                            | Spherical                                  | -                                             | Al-Shmgani et al. 2016                   |
| Prunus japonica              | AgNO <sub>3</sub> | Leaf                       | 26                                            | Hexagona,<br>Trigonal,<br>Spherical        | _                                             | Saravanakumar <i>et al.</i><br>2016      |
| Excoecaria<br>agallocha      | AgNO <sub>3</sub> | Leaf                       | -                                             | Hexagonal,<br>Spherical                    | Antibacterial                                 | Bhuvaneswari <i>et al.</i><br>2016       |

|                  |                     |         |        |             | Antioxidant       |                                |
|------------------|---------------------|---------|--------|-------------|-------------------|--------------------------------|
|                  |                     |         |        |             | and               |                                |
|                  |                     |         |        |             | Cytotoxic         |                                |
| Artocarnus       | AgNO <sub>2</sub>   | Leaf    | 38     | Spherical   | Antimicrobi       | Ravichandran et al 2016        |
| altilis          | ingrio,             | Loui    | 20     | Spherieur   | al                |                                |
| annis            |                     |         |        |             | Antioxidant       |                                |
| Terminalia       | A gNO <sub>2</sub>  | Leaf    | 25_50  | Irregular   | Catalytic         | Edison <i>et al.</i> 2016      |
| reminulu         | AgitO <sub>3</sub>  | LLai    | 25-50  | megulai     | Catalytic         |                                |
| cuneulu          |                     |         |        |             |                   |                                |
| Figus            | A gNO.              | Bark    | 60     | Spherical   | Antibactorial     | Navak at al. 2016              |
| hanghalansis     | AgitO <sub>3</sub>  | Dark    | 00     | Spliciteal  | Antibacteria      | Nayak et ul. 2010              |
| Denghuiensis     |                     |         |        |             | ,<br>Antiprolifor |                                |
|                  |                     |         |        |             | Antipionici       |                                |
| Dhamin           | A aNO               | Loof    | 20 60  | Imagulan    | Catalytia         | Aitenneite et al 2016          |
| Phoenix          | AgnO <sub>3</sub>   | Lear    | 20-00  | megular     | Catalytic         | Altennette <i>et al.</i> 2016  |
| Dactylijera      |                     | Emili   | 20.00  | C 1         | A                 | Kanaga ( 1.2016                |
| Capuli cherry    | $AgNO_3$            | Fruit   | 20-80  | Spherical   | Antioxidant       | Kumar <i>et al.</i> 2016       |
| Mussaenda        | AgNO <sub>3</sub>   | Leaf    | 51.32  | Spherical   | Antimicrobi       | Francis <i>et al.</i> 2016     |
| glabrata         |                     |         |        |             | al,               |                                |
|                  |                     |         |        |             | Antioxidant,      |                                |
|                  |                     |         |        |             | Catalytic         |                                |
| Cowpea seeds     | AgNO <sub>3</sub>   | Seed    | 70     | Spherical   | -                 | Mohammadi <i>et al.</i> 2016   |
| Apple            | AgNO <sub>3</sub>   | Fruit   | 30.25  | Spherical   | Antibacterial     | Ali <i>et al</i> . 2016        |
|                  |                     |         | ±      |             |                   |                                |
|                  |                     |         | 5.26 n |             |                   |                                |
|                  |                     |         | m      |             |                   |                                |
| Artemisia        | AgNO <sub>3</sub>   | Leaf    | 5 to   | Polydispers | -                 | Ali et al. 2016                |
| absinthium       |                     |         | 20 nm  | ed          |                   |                                |
| Artemisia        | AgNO <sub>3</sub>   | Leaf    | 5-20   | Spherical   | -                 | Ramachandran et al.            |
| absinthium       |                     |         |        |             |                   | 2016                           |
|                  |                     |         |        |             |                   |                                |
| Citrus lemon     | AgNO <sub>3</sub>   | Fruit   | 2-10   | Spherical   | -                 | Mosae <i>et al</i> . 2016      |
| Peumus boldus    | AgNO <sub>3</sub>   | Leaf    | 18     | Spherical   | -                 | Sánchez et al. 2016            |
| Echinochloa      | AgNO <sub>3</sub>   | Leaf    | 50-70  | Spherical   | -                 | Lakshman et al. 2016           |
| colona           |                     |         |        |             |                   |                                |
| Salvinia molesta | AgNO <sub>3</sub>   | Seed    | 12.46  | Spherical   | Antibacterial     | Verma et al. 2016              |
| Sesbania         | AgNO <sub>3</sub>   | Leaf    | 16     | Spherical   | Antimicrobi       | Ajitha et al. 2016             |
| grandiflora      |                     |         |        | -           | al                |                                |
| Polyalthia       | AgNO <sub>3</sub>   | Leaf    | 13.9   | Anisotropic | Antioxidant       | Kumar et al. 2016              |
| longifolia       | 0 5                 |         |        | 1           |                   |                                |
| Pedalium murex   | AgNO <sub>3</sub>   | Leaf    | 50     | Spherical   | Antibacterial     | Anandalakshmi et al.           |
|                  | 0 5                 |         |        | 1           |                   | 2016                           |
| Allamanda        | AgNO <sub>3</sub>   | Flower  | -      | Spherical   | Antioxidant.      | Karunakaran <i>et al.</i> 2016 |
| cathartica       | 0 5                 |         |        | 1           | Antibacterial     |                                |
|                  |                     |         |        |             |                   |                                |
| Manihot          | ΑσΝΟ2               | Leaf    | _      | Spherical   | Larvicidal        | Velavutham <i>et al.</i> 2016  |
| esculenta        | rigito <sub>3</sub> | Loui    |        | Spherieur   | Luivieldui        | Voluyuthani Cr ur. 2010        |
| Rougainvillea    | A gNO <sub>2</sub>  | Flower  | 16-83  | Spherical   | Antibacterial     | Bharathi <i>et al</i> 2016     |
| spactabilis      | Agit03              | 110 wei | 10-05  | Spherical   | Antibacteria      |                                |
| Clausona anisata | AgNO                | Loof    | 60.67  | Spharical   | Antiovident       | Pagum at al 2016               |
| Ciausena anisata | AginO <sub>3</sub>  | Leal    | 00.07  | spherical   | Antioxidant       | Deguiii ei ai. 2010            |
| Aegiceras        | AgNO <sub>3</sub>   | Leaf    | 23-72  | Irregular   | Cytotoxic         | Kumar et al. 2016              |
| corniculatum     |                     |         |        |             |                   |                                |
| Tecomella        | AgNO <sub>3</sub>   | Leaf    | 3-18   | Spherical   | -                 | Chaudhuri et al. 2016          |
| undulata         |                     |         |        |             |                   |                                |
| Osmanthus        | AgNO <sub>3</sub>   | Flower  | 2-30   | Spherical   | -                 | Dong <i>et al.</i> 2016        |
|                  | 0                   |         |        |             | 1                 | 0                              |

| C                 |                              |       |             |                                 |                   |                                   |
|-------------------|------------------------------|-------|-------------|---------------------------------|-------------------|-----------------------------------|
| fragrans          |                              |       |             |                                 |                   | -                                 |
| Pimpinella        | AgNO <sub>3</sub>            | Seed  | 80-85       | Spherical                       | Cytotoxic         | Devanesan et al. 2017             |
| anisum            |                              |       |             |                                 |                   |                                   |
| Camella sinesis   | AgNO <sub>3</sub>            | Leaf  | 7           | Spherical                       | Sensing           | Silva-De Hoyos <i>et al.</i> 2017 |
| Alysicarpus       | AgNO <sub>3</sub>            | Leaf  | $15 \pm 2$  | Spherical                       | Antibacterial     | Kasithevar et al. 2017            |
| monilifer         | 0 5                          |       |             | 1                               |                   |                                   |
| Tamarind          | AgNO <sub>3</sub>            | Fruit | 10          | Spherical                       | Antibacterial     | Jayaprakash <i>et al.</i> 2017    |
| Elephantopus      | AgNO <sub>3</sub>            | Leaf  | 37.86       | Irregular                       | Antibacterial     | Francis <i>et al.</i> 2017        |
| scaber            | 8                            |       |             | . 8                             |                   |                                   |
| Turmeric          | AgNO <sub>2</sub>            | Rhizo | 120-        | -                               | Antibacterial     | Navak et al. 2017                 |
|                   | 83                           | me    | 160         |                                 |                   |                                   |
| Carissa           | $A\sigma NO_2$               | Fruit | 23 + 2      | _                               | Catalytic         | Anunama <i>et al</i> 2017         |
| carandas          | i igi (oʻj                   | Truit | 23 2 2      |                                 | Culurytie         |                                   |
| Lycium            | ΑσΝΟ2                        | Fruit | 3-15        | Spherical                       | _                 | Dong et al 2017                   |
| barbarum          | ngr(03                       | Truit | 5 15        | Spherieur                       |                   | 2015 67 48. 2017                  |
| Gmelina arborea   | AgNO <sub>3</sub>            | Fruit | 8-32        | Spherical                       | Catalytic         | Saha, et al. 2017                 |
| Viburnum opulus   | AgNO <sub>3</sub>            | Fruit | 25          | Spherical                       | Anti-             | Moldovan et al. 2017              |
| 1                 | 0 5                          |       |             | 1                               | inflammator       |                                   |
|                   |                              |       |             |                                 | v                 |                                   |
| Citrullus lanatus | AgNO <sub>3</sub>            | Fruit | 17.96       | Spherical                       | -                 | Ndikau et al. 2017                |
|                   | 8                            |       | ± 0.16      |                                 |                   |                                   |
| Momordica         | AgNO <sub>3</sub>            | Fruit | 10-50       | Spherical                       | Antmicrobia       | Supraja <i>et al.</i> 2017        |
| charantia         | 8                            |       |             |                                 | 1                 |                                   |
| Rubus             | AgNO <sub>3</sub>            | Fruit | 13          | Anisotropic                     | Catalytic         | Rokade et al. 2017                |
| crataegifolius    | 83                           |       |             | · · · · · · · · · · · · · · · · |                   |                                   |
| Excoecaria        | AgNO <sub>2</sub>            | Fruit | -           | Spherical                       | Antibacterial     | Nagababu <i>et al.</i> 2017       |
| agallocha         | ingrio,                      | Truit |             | Spherieur                       | 1 millioueteriu   | 1 agususa er ar. 2017             |
| Rheum             | AgNO <sub>2</sub>            | Root  | $121 \pm 2$ | Hexagonal                       | _                 | Arokivarai et al. 2017            |
| nalmatum          | ingrio,                      | 1000  | 121 - 2     | Spherical                       |                   |                                   |
| paimaiam          |                              |       |             | Spherieur                       |                   |                                   |
| Diospyros         | ΑσΝΟ2                        | Root  | 8           | Irregular                       | Antibacterial     | Pethakamsetty <i>et al</i>        |
| sylvatic          | ingrio,                      | 1000  | 0           | mogului                         | 1 millioueteriu   | 2017                              |
| Bauhinia          | $A\sigma NO_2$               | Leaf  | _           | _                               | Larvicidal        | Govindaraian <i>et al</i> 2017    |
| variegata         | rigit(0)                     | Loui  |             |                                 | Luivieldui        |                                   |
| , and gand        |                              |       |             |                                 |                   |                                   |
| Pongamia          | AgNO <sub>2</sub>            | Seed  | 16.4        | Spherical                       | _                 | Beg et al 2017                    |
| pinnata           | 1.81,03                      | Seca  | 1011        | Spiritua                        |                   | 200 01 001 201 /                  |
| Mangifera indica  | AgNO <sub>2</sub>            | Leaf  | _           | _                               | Antibacterial     | Sarsar et al 2017                 |
|                   | I Igrico y                   | Loui  |             |                                 | 1 millioueteriu   |                                   |
| Arbutus unedo     | AgNO <sub>2</sub>            | Leaf  | 58 40       | Spherical                       | Antibacterial     | Skandalis <i>et al.</i> 2017      |
| Thomas uncuo      | rigit03                      | Loui  | 50, 10      | Spherieur                       | Tintibuctoriu     | Skuldulis et ut. 2017             |
| Tribulus          | $\Delta \sigma N \Omega_{a}$ | Leaf  | 15          | Irregular                       | Antiovidant       | Diahaniani et al. 2017            |
| longinatalus      | Agit03                       | Lear  | 15          | megulai                         | and               |                                   |
| iongipeiaius      |                              |       |             |                                 | Antibactorial     |                                   |
| Datura            | AgNO                         | Loof  | 15 20       | Spharical                       | Antimicrohi       | Comethi et al 2017                |
| stramonium        | AginO3                       | Leai  | 13-20       | spherical                       |                   | Gomann, <i>ei ül.</i> 2017        |
| Maliaga           | A aNO                        | Loof  | 12          | Spherical                       | di<br>Antimianahi | de Jasús Duíz Deltezer et         |
| officinglia       | AginO <sub>3</sub>           | Leal  | 12          | spherical                       |                   | al 2017                           |
| Chamana diama     | A aNO                        | Ctore | 2.26        |                                 | al<br>Cotol-+:-   | <i>ul.</i> 2017                   |
| Chenopoaium       | $AgnO_3$                     | Siem  | 3-30        | quasi-                          | Catalytic,        | 1 uan <i>et al</i> . 2017         |
| aristatum         | A NO                         | G . 1 | 16.4        | spnerical                       | Anubacterial      | Dec. ( 1.0017                     |
| Pongamia          | $AgNO_3$                     | Seed  | 16.4        | -                               | Antibacterial     | Beg et al. 2017                   |
| pinnata           | A NO                         | T.C   | 25          | Culu 1                          | , iviedicinal     | Ded. 1 ( 1 0017                   |
| Artemisia         | $AgNO_3$                     | Leaf  | 25          | Spherical                       | Biomedical        | Kasheed, et al. 2017              |

Department of Chemistry IIT (BHU)

| vulgaris         |                   |        |            |             |                                         |                           |
|------------------|-------------------|--------|------------|-------------|-----------------------------------------|---------------------------|
| Crocus sativus L | AgNO <sub>3</sub> | Petals | 15         | Spherical   | Antibacterial                           | Bagherzade, et al. 2017   |
| Cassia           | AgNO <sub>3</sub> | Flower | 10-35      | Spherical,  | Catalytic                               | Muthu, et al. 2017        |
| auriculata       |                   |        |            | Triangular  |                                         |                           |
| Eriobotrya       | $AgNO_3$          | Leaf   | 20         | Spherical   | Antibacterial                           | Rao et al. 2017           |
| japonica         |                   |        |            |             |                                         |                           |
| Syzygium jambos  | AgNO <sub>3</sub> | Leaf   | 8.51 ±     | Spherical   | Antibacterial                           | Dutta <i>et al</i> . 2017 |
|                  |                   | and    | 1.63,      | and         | , Cytotoxic                             |                           |
|                  |                   | Bark   | $5.58 \pm$ | Ellipsoidal |                                         |                           |
|                  |                   |        | 1.84       |             |                                         |                           |
| Physalis         | AgNO <sub>3</sub> | Leaf   | 11-96      | Irregular   | Antibacterial                           | Kumar <i>et al</i> . 2017 |
| angulata         |                   |        |            |             | , , , , , , , , , , , , , , , , , , , , |                           |
|                  |                   |        |            |             | Antioxidant                             |                           |
| Morus nigra      | AgNO <sub>3</sub> | Leaf   | 4-8        | Spherical   | Antifungal                              | Hafez et al. 2017         |
| Waste Tea        | AgNO <sub>3</sub> | -      | 45         | Spherical   | Catalytic,                              | Qing <i>et al</i> . 2017  |
|                  |                   |        |            |             | Antibacterial                           |                           |
| Syzygium         | AgNO <sub>3</sub> | -      | 5-20       | Spherical   | Cytotoxic                               | Venugopal et al. 2017     |
| aromaticum       |                   |        |            |             |                                         |                           |
| Achillea         | $AgNO_3$          | kernel | 20         | -           | Catalytic                               | Khodadadi et al. 2017     |
| millefolium L    |                   | shell  |            |             |                                         |                           |
| Excoecaria       | AgNO <sub>3</sub> | Leaf   | 23-42      | Spherical,  | Antibacterial                           | Bhuvaneswari et al.       |
| agallocha L      |                   |        |            | Hexagonal   | ,                                       | 2017                      |
|                  |                   |        |            |             | Antioxidant,                            |                           |
|                  |                   |        |            |             | Cytotoxic                               |                           |
| Tecomella        | AgNO <sub>3</sub> | Leaf   | 3-18       | Spherical   | -                                       | Chaudhuri et al. 2016     |
| undulata         |                   |        |            |             |                                         |                           |

Likewise, the fruit of *Carissa carandas* and *Lycium barbarum* were utilized by Anupama and Madhumitha and Dong *et al.* for the synthesis of AgNPs. The study revealed that the obtained AgNPs were  $23 \pm 2$  and 3-15 nm in size respectively. The AgNPs synthesized from *Carissa carandas* exhibited excellent catalytic activity (Anupama and Madhumitha 2017, Dong *et al.* 2017). The fruits of *Gmelina arborea*, *Viburnum opulus*, *Citrullus lanatus*, and *Momordica charantia* also showed the excellent synthesis potential for spherical AgNPs. The results indicated that the size of the obtained AgNPs were 8-32, 25, 17.96  $\pm$  0.16, and 10-50 nm respectively (Saha *et al.* 2017, Moldovan *et al.* 2017, Ndikau *et al.* 2017, Supraja *et al.* 2017). Rokade *et al.* have reported the synthesis of anisotropic AgNPs with average size 13 nm using the fruit extract of *Rubus crataegifolius* which showed the catalytic activity (Rokade *et al.* 2017). Nagababu and Rao also used fruit extract of *Excoecaria agallocha* and reported the synthesis of spherical shaped AgNPs for antibacterial activity (Nagababu and Rao 2017). The root of *Rheum palmatum* was investigated against the synthesis potential of AgNPs. The results obtained after the characterization indicated that the AgNPs were hexagonal and spherical shaped with average size  $121\pm2$  nm (Arokiyaraj *et al.* 2017). The root of *Diospyros sylvatic* was also used by Pethakamsetty *et al.* which showed the synthesis of irregular shaped AgNPs with average size 8 nm (Pethakamsetty *et al.* 2017). AgNPs synthesized from the leaf extract of *Bauhinia variegate* corroborated larvicidal activity (Govindarajan *et al.* 2016). Beg *et al.* have used the seed of *Pongamia pinnata* and synthesized the spherical AgNPs having average size 16.4 nm (Beg *et al.* 2017). Similarly, several other plants have also been used in recent years by several authors for the synthesis of AgNPs which are given in **Table 1.8**.

The first report on the formation of AuNPs by plant was reported by Gardea-Torresdey *et al.* 2002 inside the living alfalfa plant. Thus obtained AuNPs were anisotropic in the range of 2-20 nm. By synthesizing the AuNPs, they have opened the new and exciting way to obtain the AuNPs. They have also provided an excellent link between material science and biotechnology in the growing field of bionanotechnology (Gardea-Torresdey *et al.* 2002). Thereafter, the synthesis of AuNPs was reported by Shankar *et al.* and Armendariz *et al.* using leaf extracts of *Azadirachta indica* and *Avena sativa* in the size range of 5-30 nm and 5-85 nm respectively (Shankar *et al.* 2004, Armendariz *et al.* 2004). Shankar *et al.* have also reported the preparation of anisotropic AuNPs using lemon grass (Shankar *et al.* 2005). The green synthesis of AuNPs was carried out using *Tamarind* and *Emblica officinalis* by using leaves and fruits respectively (Ankamwar *et al.* 2005a, Ankamwar *et al.* 2005b). Chandran *et al.*, Ghule *et al.*, and Singh *et al.* have shown the green synthesis of AuNPs

using Aloe vera, Cicer arietinum, and Cymbopogon flexuosus (Chandran et al. 2006, Ghule et al. 2006, Singh et al. 2006). Sharma et al. 2007 and Huang et al. 2007 have used root and leaves extracts of the Sesbania drummondii and Cinnamomum camphora and synthesized AuNPs in the size range of 6-20 nm and 15-25 nm respectively (Sharma et al. 2007, Huang et al. 2007). The leaf extracts of Camelia sinensis and Coriandrum sativum showed their great potential towards the formation of AuNPs with the size of 40 nm and 6.7-57.9 nm respectively (Vilchis-Nestor et al. 2008, Narayanan and Sakthivel 2008). Ramezani et al. 2008 have used the leaf extracts of *Eucalyptus camaldulensis*, and *Pelargonium roseum* and synthesized spherical AuNPs in the range of 1.2-17.5 nm and 2.5-27.5 nm respectively (Ramezani et al. 2008). Similarly, Begum et al., Raghunandan et al., Wang et al., Kasthuri et al., and Smitha et al., have utilized the leaf extract of Black tea, Psidium guajava, Scutellaria barbata, Henna, and Cinnamomum zeylanicum respectively (Begum et al. 2009, Raghunandan et al. 2009, Wang et al. 2008, Kasthuri et al. 2009, Smitha et al. 2009). Philip investigated the reducing capability of *Hibiscus rosa sinensis* for the synthesis of AuNPs. The results showed the synthesis of different shaped AuNPs like triangular, hexagonal, dodecahedral and spherical with the average size of 14 nm (Philip 2010b). Dwivedi and Gopal have reported the synthesis of AuNPs using the leaf extracts of *Chenopodium album* and (Dwivedi and Gopal 2010). Ankamwar 2010 have showed the green synthesis of AuNPs using *Terminalia catappa* (Ankamwar 2010).

Das *et al.* have reported the green synthesis of different shaped AuNPs using *Centella asiatica* in the size range of 2-22 nm (Das *et al.* 2010). Dubey *et al.* 2010 have carried out the green synthesis of AuNPs using the leaf extracts of *Rosa rugosa*, *Sorbus aucuparia*, and fruit extracts of *Tanacetum vulgare* (Dubey *et al.* 2010a, Dubey *et al.* 2010b, Dubey *et al.* 2010c).

| Plants                                                  | Precurso           | Parts           | Size                          | Morphology                                               | Applicati            | Reference                                  |
|---------------------------------------------------------|--------------------|-----------------|-------------------------------|----------------------------------------------------------|----------------------|--------------------------------------------|
|                                                         | r                  | of the<br>plant | (nm)                          |                                                          | on                   |                                            |
| Medicago sativa                                         | HAuCl <sub>4</sub> | Seed            | 2-20                          | Anisotropic                                              | -                    | Gardea-<br>Torresdey <i>et al.</i><br>2002 |
| Pelargonium<br>graveolens                               | HAuCl <sub>4</sub> | Leaf            | 20-40                         | Decahedral,<br>Icosahedral                               |                      | Shankar <i>et al.</i><br>2003              |
| Azadirachta<br>indica                                   | HAuCl <sub>4</sub> | Leaf            | 5-30                          | Spherical,Triangular,<br>Hexagonal                       | -                    | Shankar <i>et al.</i><br>2004              |
| Avena sativa                                            | HAuCl <sub>4</sub> | Stem            | 5-85                          | Triangular, Spherical                                    | -                    | Armendariz <i>et al</i> . 2004             |
| Lemongrass                                              | HAuCl <sub>4</sub> | Leaf            | 200-<br>500                   | Spherical, Triangular,<br>Hexagonal                      | -                    | Shankar <i>et al.</i><br>2005              |
| Tamarind                                                | HAuCl <sub>4</sub> | Leaf            | 20-40                         | Triangular,<br>Hexagonal and<br>Spherical                | Vapor<br>Sensing     | Ankamwar <i>et al.</i> 2005                |
| Emblica<br>officinalis                                  | HAuCl <sub>4</sub> | Fruits          | 15-25                         | Spherical, Triangular,<br>Twinned decahedral             | -                    | Ankamwar et al. 2005                       |
| Aloe vera                                               | HAuCl <sub>4</sub> | Leaf            | 50-350                        | Spherical, Triangular,<br>Hexagonal                      | -                    | Chandran <i>et al.</i><br>2006             |
| Cicer arietinum                                         | HAuCl <sub>4</sub> | Seeds           | 25                            | Spherical, triangular                                    | -                    | Ghule <i>et al</i> .<br>2006               |
| Cymbopogon<br>flexuosus                                 | HAuCl <sub>4</sub> | Leaf            | 15-200                        | Hexagonal,<br>Triangular, Spherical                      | Vapor<br>Sensing     | Singh <i>et al.</i><br>2006                |
| Sesbania<br>drummondii                                  | HAuCl <sub>4</sub> | Root            | 6-20                          | Spherical                                                | Catalytic            | Sharma <i>et al.</i><br>2007               |
| Cinnamomum<br>camphora                                  | HAuCl <sub>4</sub> | Leaf            | 15-25                         | Spherical, Plate like                                    |                      | Huang <i>et al</i> . 2007                  |
| Camelia sinensis                                        | HAuCl <sub>4</sub> | Leaf            | 40                            | Spherical, Triangular                                    | -                    | Vilchis-Nestor<br>et al. 2008              |
| Eucalyptus<br>camaldulensis ,<br>Pelargonium rose<br>um | HAuCl <sub>4</sub> | Leaf            | 1.2-<br>17.5,<br>2.5-<br>27.5 | Spherical                                                | -                    | Ramezani <i>et al.</i><br>2008             |
| Coriandrum<br>sativum                                   | HAuCl <sub>4</sub> | Leaf            | 6.7–<br>57.9                  | Spherical, Triangular, Decahedral                        | -                    | Narayanan <i>et al.</i> 2008               |
| Black tea                                               | HAuCl <sub>4</sub> | Leaf            | 20                            | Nano-prisms, Nano-<br>rods and Nano-<br>trapezoids       | -                    | Begum <i>et al.</i><br>2009                |
| Psidium guajava                                         | HAuCl <sub>4</sub> | Leaf            | 25-30                         | Spherical                                                | -                    | Raghunandan <i>et al.</i> 2009             |
| Scutellaria<br>barbata                                  | HAuCl <sub>4</sub> | -               | 5-30                          | Spherical and<br>Triangular                              | Electroche<br>mistry | Wang <i>et al.</i> 2009                    |
| Magnolia kobus<br>and Diopyros<br>kaki                  | HAuCl <sub>4</sub> | Leaf            | 5-300                         | Triangular,<br>Pentagonals<br>Hexagonal and<br>Spherical | -                    | Song <i>et al</i> . 2009                   |
| Henna                                                   | HAuCl <sub>4</sub> | Leaf            | 9-70                          | Spherical, Triangular                                    | -                    | Kasthuri <i>et al.</i> 2009                |
| Phyllanthus<br>amarus                                   | HAuCl <sub>4</sub> | Leaf            | 10-110                        | Spherical,<br>Hexagonal,                                 | -                    | Kasthuri <i>et al.</i> 2009                |

Department of Chemistry IIT (BHU)

|                   |                    |            |         | Triangular, Rod        |            |                                                      |
|-------------------|--------------------|------------|---------|------------------------|------------|------------------------------------------------------|
| Cinnamomum        | HAuCl <sub>4</sub> | Leaf       | 25      | Spherical, Triangular  | -          | Smitha et al.                                        |
| zevlanicum        | -                  |            |         |                        |            | 2009                                                 |
| ze yianic uni     |                    |            |         |                        |            |                                                      |
| Hibigous poss     | IIACl              | Loof       | 14      | Trion gulor            |            | Dhilin at al                                         |
| Hidiscus rosa     | HAUC1 <sub>4</sub> | Leal       | 14      | Triangular,            | -          | Philip $e_i$ $a_i$ .                                 |
| sinensis          |                    |            |         | Dedesehedrel and       |            | 2010                                                 |
|                   |                    |            |         | Spherical              |            |                                                      |
| Chanopodium       | HAnCl              | Loof       | 10.30   | Spherical Triangular   |            | Duvivodi <i>at al</i>                                |
| alhum             | IIAuC14            | LLai       | 10-50   | Spliciteal, Illangulai | -          | 2010                                                 |
| Svzvojum          | HAuCL              | buds       | 5-100   | Crystalline Irregular  |            | Raghunandan <i>et</i>                                |
| aromaticum        | 11/10/214          | ouus       | 5 100   | Spherical Elliptical   |            | al 2010                                              |
| Tomninalia        | HAuCL              | Leaf       | 10-35   | Spherical              | _          | Ankamwar et                                          |
| Terminalia        | 11110014           | Leui       | 10 55   | Spherical              |            | al 2010                                              |
| catappa           |                    |            |         |                        |            | un. 2010                                             |
| Centella asiatica | HAuCl <sub>4</sub> | Leaf       | 2-22    | Triangular,            | -          | Das <i>et al</i> . 2010                              |
|                   |                    |            |         | Hexagonal Spherical    |            |                                                      |
| D                 | HAuCl              | Leaf       | 50.250  | Spherical              |            | Dubey at al                                          |
| kosa rugosa       | IIAuC14            | LCai       | 50-250  | Spherical              | -          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| Sorbus quamaria   | HAuCl              | Leaf       | 50-150  | Hexagonal              |            | Dubey et al                                          |
| sorbus aucuparta  | 11110014           | Leui       | 50 150  | Triangular Spherical   |            | 2010                                                 |
| Tanacatum         | HAuCl              | Fruit      | 11      | Spherical Triangular   | _          | Dubey <i>et al</i>                                   |
| 1 Innaceium       | 11110014           | Trun       | 11      | Spherical, mangular    |            | 2010                                                 |
| vulgare           |                    |            |         |                        |            | 2010                                                 |
| Magnifera         | HAuCl <sub>4</sub> | Leaf       | 20-70   | Spherical              | -          | Phillip <i>et al</i> .                               |
| Indica            |                    |            | • • • • |                        |            | 2010                                                 |
| Pear              | $HAuCl_4$          | Fruit      | 200-    | Triangular,            | -          | Ghodake <i>et al</i> .                               |
| D:                | <b>TL C1</b>       | <b>T</b> 1 | 500     | Hexagonal              |            | 2010                                                 |
| Dioscorea         | HAuCl <sub>4</sub> | Tubers     | 11-30   | Spherical              | -          | Ghosh <i>et al</i> .                                 |
| bulbifera         | IIA CI             | D1.'       | 5 15    | <b>C</b> = 1 = = 1     | D11        | 2011<br>Kanan ( 1                                    |
| Zingiber          | HAuCl <sub>4</sub> | Rhizo      | 5-15    | Spherical              | Blood      | Kumar $et$ $al$ .                                    |
| officinale        |                    | me         |         |                        | compatibil | 2011                                                 |
| Angogradium       | UA <sub>n</sub> Cl | Loof       | 65 17   | Spharical              | пу         | Shopy at al                                          |
| Anacaratan        | HAUC1 <sub>4</sub> | Leal       | 0.5, 17 | Spherical              | -          | Shelly $e_i$ $a_i$ .                                 |
| Murrava koaniaji  | HAuCL              | Leaf       | 20      | Spherical Triangular   |            | Philip at al                                         |
| Murraya Koenigii  | IIAuC14            | LLai       | 20      | Spliciteal, Illangulai | -          | 2011 $u$                                             |
| O aimum san atum  | HAuCl              | Leaf       | 30      | Hexagonal              |            | Philip <i>et al</i>                                  |
| Ocimum sancium    | 11110014           | Lear       | 50      | Triangular and         |            | 2011                                                 |
|                   |                    |            |         | Spherical              |            | 2011                                                 |
| Mentha piperita   | HAuCl <sub>4</sub> | Leaf       | 150     | Spherical              | Antibacter | MubarakAli et                                        |
| menina piperna    |                    |            |         | . F                    | ial        | al. 2011                                             |
| Nyctanthes        | HAuCl <sub>4</sub> | Flower     | 19.8±5  | Spherical              | -          | Das et al. 2011                                      |
| arbortristis      |                    |            |         | 1                      |            |                                                      |
| Maduca            | HAuCl <sub>4</sub> | Leaf       | 7       | Hexagonal,             | Infrared   | Fayaz et al.                                         |
| longifolia        |                    |            |         | Triangular, Spherical  | absorption | 2011                                                 |
| Cacumen           | HAuCl <sub>4</sub> | Leaf       | 7.4±0.  | Spherical              | _          | Zhan <i>et al</i> . 2011                             |
| Platycladi        |                    |            | 8       |                        |            |                                                      |
| Memecylon         | HAuCl <sub>4</sub> | Leaf       | 20-50   | Spherical,             | -          | Elavazhagan et                                       |
| edule             |                    |            |         | Cylindrical, rod       |            | al. 2011                                             |
| Swietenia         | HAuCl <sub>4</sub> | Leaf       | 100     | Spherical, Triangular  | -          | Mondal <i>et al</i> .                                |
| mahogini JACQ     |                    |            | nm      |                        |            | 2011                                                 |
| Mucuna pruriens   | HAuCl <sub>4</sub> | -          | 6-17.7  | Spherical              | -          | Arulkumar et                                         |
|                   |                    |            |         | <u> </u>               |            | al. 2011                                             |

| Rosa hybrida                                                                                        | HAuCl <sub>4</sub> | Petal                                        | 10                        | Triangular,<br>Hexagonal and        | -                                                 | Noruzi <i>et al.</i><br>2011            |
|-----------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------|---------------------------|-------------------------------------|---------------------------------------------------|-----------------------------------------|
|                                                                                                     |                    | _                                            |                           | Spherical                           |                                                   |                                         |
| Macrotyloma<br>uniflorum                                                                            | HAuCl <sub>4</sub> | Leaf                                         | 14-17                     | Spherical                           | -                                                 | Aromal <i>et al.</i><br>2012            |
| Sapindus<br>mukorossi                                                                               | HAuCl <sub>4</sub> | Shells                                       | 9-19                      | Spherical                           | Catalytic                                         | Reddy <i>et al.</i> 2012                |
| Terminalia<br>chebula                                                                               | HAuCl <sub>4</sub> | Seed                                         | 6-60                      | Spherical                           | -                                                 | Kumar <i>et al.</i><br>2012             |
| Cypress                                                                                             | HAuCl <sub>4</sub> | Leaf                                         | 5-80                      | Spherical                           | -                                                 | Noruzi <i>et</i><br><i>al</i> .2012     |
| Trigonella<br>foenum-graecum                                                                        | HAuCl <sub>4</sub> | Seed                                         | 15-20                     | Spherical                           | Catalytic                                         | Aromal <i>et al.</i> 2012               |
| Abelmoschus<br>esculentus                                                                           | HAuCl <sub>4</sub> | Seed                                         | 45-75                     | Spherical                           | Antifunga<br>l                                    | Jayaseelan <i>et al.</i><br>2013        |
| Terminalia<br>arjuna                                                                                | HAuCl <sub>4</sub> | Leaf                                         | 20                        | Spherical                           | cell<br>division<br>and pollen<br>germinati<br>on | Gopinath <i>et al.</i><br>2013          |
| Memecylon<br>umbellatum                                                                             | HAuCl <sub>4</sub> | Leaf                                         | 15-25                     | Hexagonal,<br>Triangular, Spherical | Anti<br>microbial                                 | Arunachalam <i>et al</i> . 2013         |
| Citrus<br>limon, Citrus<br>reticulata and Ci<br>trus sinensis                                       | HAuCl <sub>4</sub> | Fruits                                       | 15±20,<br>17±50,<br>18±60 | Spherical, Triangular               | -                                                 | Sujitha <i>et al</i> .<br>2013          |
| Hovenia dulcis                                                                                      | HAuCl <sub>4</sub> | Fruit                                        | 15-20                     | Hexagonal, Spherical                | -                                                 | Basavegowda et al. 2014                 |
| Acalypha indica                                                                                     | HAuCl <sub>4</sub> | Leaf                                         | 20-30                     | Spherical                           | -                                                 | Krishnaraj <i>et al.</i><br>2014        |
| Blackberry,<br>blueberry,<br>pomegranate                                                            | HAuCl <sub>4</sub> | Fruit                                        | 20-500                    | Spherical, Triangular               | -                                                 | Nadagouda <i>et</i><br><i>al</i> . 2014 |
| Angelica,<br>Hypericum and<br>Hamamelis                                                             | HAuCl <sub>4</sub> | Roots,<br>bloom<br>y<br>herba<br>and<br>bark | 3-4                       | Spherical, Oval<br>Polyhedral       | -                                                 | Pasca <i>et al</i> .<br>2014            |
| Garcinia<br>Combogia                                                                                | HAuCl <sub>4</sub> | Fruit                                        | 12                        | Spherical, Triangular,<br>Rod       | Catalytic                                         | Rajan <i>et al</i> .<br>2014            |
| Phoenix<br>dactylifera L.<br>(Palmae)                                                               | HAuCl <sub>4</sub> | Leaf                                         | 32-45                     | Spherical                           | Catalytic                                         | Zayed <i>et al.</i><br>2014             |
| Lippia<br>citriodora, Salvi<br>a<br>officinalis, Pelar<br>gonium<br>graveolens, Puni<br>ca granatum | HAuCl <sub>4</sub> | Leaf                                         | 1-8,<br>30-70             | Spherical, Triangular               |                                                   | Elia <i>et al</i> . 2014                |

| perturbationIntersectionIntersectionIntersectionIntersectionIntersectionAcacia niloticaHAuClaBark30Quasi-spherical, AnisotropicDetectionIntersectionPlumbagoHAuClaRoot20-30Spherical, TriangularBiofilmSalunke et al.zeylanicaHAuClaLeaf15-53Spherical, TriangularAnticanceAnanal et al.MolengaHAuClaFlower3-5Spherical, Hexagonal, TriangularAnticanceAnanal et al.CymbopogonHAuClaLeaf20-50Spherical, Hexagonal, Triangular, RodMosquitocMurgan et al.CymbopogonHAuClaLeaf10-50Triangular, SphericalPhotoscatalPaul et al. 2015PogestemonHAuClaRoot10-35SphericalAntifungaSwain et al.zizanioides andHAuClaRoot10-35SphericalAntifungaSwain et al.zizanioides andHAuClaRoot10-40SphericalAntibacterSingh et al. <i>Babaariffa</i> HAuClaRoot10-40SphericalAntibacterSingh et al. <i>Petrocarpum</i> HAuClaFlower5-50Spherical-elalamurgan, et al. <i>Subariffa</i> HAuClaBark9-14Spherical, Triangular-elalamurgan, et al. <i>Petrocarpum</i> HAuClaLeaf10-20Spherical, Triangular-elalamurgan, et al. <i>Carlica papya</i> , Carlica papya, Carlica papya, SphericalHauClaSpherical<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Curcuma<br>pseudomontana     | HAuCl <sub>4</sub> | Rhizo  | 20              | Spherical                | cytotoxicit         | Muniyappan <i>et</i>          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------|--------|-----------------|--------------------------|---------------------|-------------------------------|
| Hundrich minichtHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHunchHun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Acacia nilotica              | HAuCL              | Bark   | 30              | Quasi-spherical          | y<br>Detection      | Emmanuel <i>at</i>            |
| Image: Plumbago<br>zeylanicaHAuCl4Root20-30Spherical, Triangular<br>controlBiofilm<br>controlSalunke et al.<br>2014MulberryHAuCl4Leaf15-53Spherical, Anticance<br>Hexagonal,<br>TriangularAntibacter<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Medera mionea                | TIAUC14            | Dark   | 50              | Anisotropic              | of                  | <i>al</i> . 2014              |
| Plumbago<br>seylanicaHAuCl4<br>HAuCl4Root<br>Leaf20-30<br>20-30Spherical, Triangular<br>spherical, Triangular $e$<br>controlSalunke et al.<br>2014Mulberry<br>MulberryHAuCl4Leaf15-53Spherical<br>HAuCl4Antibacter<br>I al<br>and<br>catalyticAntibacter<br>al al<br>2014Antibacter<br>al al<br>2015Antibacter<br>al al<br>2015Antibacter<br>al al<br>2015Anticance<br>al al al<br>catalyticAnticance<br>al al al<br>al 2015Anticance<br>al al al<br>al 2015Anticance<br>al al al al<br>al 2015Anticance<br>al al al al<br>al 2015Anticance<br>al 2015Anticance<br>al 2015Anticance<br>al 2015Antial<br>al 2015Cymbopogon<br>citratusHAuCl4Leaf<br>and<br>leaf10-50Triangular, Rod<br>Triangular, Rod<br>1Photocatal<br>al 2016Paul et al. 2015Vetiveria<br>zizonioides and<br>Cannabis sativaHAuCl4Root<br>and<br>leaf10-35Spherical<br>SphericalAntifumga<br>tyric<br>alger<br>algerSwain et al.<br>2016Panax ginseng<br>PetrocarpumHAuCl4Flower5-50Spherical<br>al<br>cather and<br>2-20,<br>6-18Antibacter<br>al<br>al<br>alibacter<br>al<br>alibacter<br>al<br>alibacter<br>al<br>alibacter<br>al<br>alibacter<br>al<br>alibacter<br>al<br>alibacter<br>alibacter<br>alNaticance<br>al.<br>alibal<br>alibacter<br>al.Spherical, Triangular<br>alibacter<br>al.Sight et al.<br>2016Pathophorum<br>petrocarpumHAuCl4Leaf<br>al.3.5-9,<br>al.<br>alibacterSpherical, Triangular<br>al.Antiukumar et al.<br>2016Pathophorum<br>petrocarpum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                    |        |                 | -                        | nitrobezen          |                               |
| Plantago<br>zeylanicaHAUCl4<br>rRAO<br>r20-30<br>rSpherical, Inangular<br>roottoolBiofilm<br>controlSolume et al.<br>2014MulberryHAUCl4<br>oleferaLeaf15-53<br>rSpherical,<br>rangularAntibacter<br>ialAntibacter<br>rand<br>catalyticAnand et al.<br>2015Cymbopogon<br>citratusHAUCl4<br>reseanal,<br>citratusLeaf20-50<br>reseanal,<br>riangular, RodMosquare<br>reseanal,<br>riangular, RodMosquare<br>reseanal,<br>riangular, RodMurugan et<br>al.2015Pogestemon<br>benghalensisHAUCl4<br>reseanal<br>and<br>leafLeaf10-50<br>and<br>reseanal<br>and<br>leafTriangular, Spherical<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal<br>photocatal <b< td=""><td></td><td>IIA Cl</td><td>Dest</td><td>20.20</td><td>Calculated Tairmenter</td><td>e<br/>Dis Class</td><td>Calandar ( 1</td></b<>                                                                                                                                                                                                                                        |                              | IIA Cl             | Dest   | 20.20           | Calculated Tairmenter    | e<br>Dis Class      | Calandar ( 1                  |
| MulberryHAuCl,<br>MulberryLeaf15-53Spherical<br>Hexagonal,<br>Triangular,<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Plumbago<br>zevlanica        | HAuCl <sub>4</sub> | Root   | 20-30           | Spherical, Irlangular    | control             | Salunke <i>et al.</i><br>2014 |
| Material<br>Molenga<br>olefferaHaucla<br>HAuclaFlower<br>Plower3-5<br>3-5<br>Spherical,<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mulberry                     | HAuCl              | Leaf   | 15-53           | Spherical                | Antibacter          | Adavallan <i>et al.</i>       |
| Molenga<br>oleiferaHAuCla<br>icitizatusFlower<br>Flower3-5<br>and et al.<br>Spherical, Hexagonal,<br>Triangular, Rod<br>Triangular, RodAnticance<br>r and<br>catalyticAnand et al.<br>2015Cymbopogon<br>citratusHAuCla<br>Pogestemon<br>benghalensisHAuCla<br>HAuClaLeaf<br>and<br>Leaf20-50Spherical, Hexagonal<br>Triangular, Rod<br>misular, RodMoregane et<br>al.2015Pogestemon<br>benghalensisHAuCla<br>aLeaf<br>and<br>leaf10-50Triangular, Spherical<br>Triangular, SphericalMoregane et<br>al.2015Vetiveria<br>zizanioides and<br>abdariffaHAuCla<br>aRoot<br>and<br>leaf10-35<br>and<br>leafSpherical<br>sphericalAntifunga<br>tithe<br>to et<br>phericalSwain et al.<br>2016Panax ginseng<br>terocarpum<br>catharanthus<br>roseus and mixedHAuCla<br>aFlower<br>bene5-50Spherical<br>catharanthus<br>pherical<br>catharanthus<br>antibacterAntifuturar<br>tero<br>antibacter<br>allamurugan.Muthukumar et<br>al. 2016Peltophorum<br>terocarpum<br>catharanthus<br>roseus and mixedHAuCla<br>aLeaf<br>bene3.5-9,<br>2-20,<br>allanSpherical<br>catharanthus<br>antibacter<br>allanMuthukumar et<br>al. 2016Dendropanax<br>communis and<br>onorbiferaHAuCla<br>aBark<br>allance9-14Spherical, Triangular<br>allanAnticance<br>muthus<br>allanceAntiance<br>allance<br>allanceCordia myxa<br>oleosaHAuCla<br>aLeaf<br>allance20-50Spherical, Triangular<br>allance-Geraldes et al.<br>2016Cordia myxa<br>oleosaHAuCla<br>aLeaf<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | in two entry                 | 11110014           | Loui   | 10 00           | Sprioritem               | ial                 | 2014                          |
| oleferaImage: Constraint of the second of the s          | Molenga                      | HAuCl <sub>4</sub> | Flower | 3-5             | Spherical,               | Anticance           | Anand <i>et al</i> .          |
| Cymbopogon<br>citratusHAuCl4Leaf20-50Spherical, Hexagonal<br>Triangular, RodMosquitoc<br>idalMurugan et<br>al.2015Pogestemon<br>benghalensisHAuCl4Leaf10-50Triangular, Spherical<br>result of the second<br>price of the second<br>second<br>addition of dyePhotocall<br>ytic<br>degradation<br>n of dyePaul et al. 2015Vetiveria<br>zizanioides and<br>Cannabis sativaHAuCl4<br>leafLeaf10-55SphericalAntifunga<br>price of the second<br>second<br>price of the second<br>price of the seco                                                                                                                                                                                                                                                                          | oleifera                     |                    |        |                 | Hexagonal,<br>Triangular | r and<br>catalytic  | 2015                          |
| citratusImage: citratusImage: citratusTriangular, Rodidalal.2015Pogestemon<br>benghalensisHAuCl4Leaf10-50Triangular, Spherical<br>caranabis sativaPoul et al. 2015Paul et al. 2015Vetiveria<br>zizanioides and<br>Cannabis sativaHAuCl4Root<br>leaf10-35Spherical<br>caranabis sativaAntiinga<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cymbopogon                   | HAuCl <sub>4</sub> | Leaf   | 20-50           | Spherical, Hexagonal     | Mosquitoc           | Murugan <i>et</i>             |
| Pogestemon<br>benghalensisHAuCl4<br>classicLeaf10-50<br>classicTriangular, Spherical<br>classicPhotocatal<br>ytic<br>classicPaul et al. 2015<br>classicVetiveria<br>zizanioides and<br>cannabis sativaHAuCl4<br>leafRoot<br>and<br>leaf10-35<br>lossicSphericalAntifunga<br>l<br>lossicSwain et al.<br>2016Hibiscus<br>sabdariffaHAuCl4<br>leafleaf10-60<br>lossicSphericalCytotxici<br>lossicMishra et al.<br>2016Paus ginseng<br>percoarpumHAuCl4<br>leafRoot10-40<br>lossicSpherical<br>sphericalAntifunga<br>lossicSingh et al.<br>2016Peltophorum<br>percoarpumHAuCl4<br>leafFlower<br>leaf5-50<br>leafSpherical<br>leaf-<br>leaf<br>leafBalamurugan.<br>et al. 2016Peltophorum<br>percoarpumHAuCl4<br>leafLeaf<br>leaf3.5-9,<br>leaf<br>leafSpherical, Triangular<br>leaf<br>leaf<br>leafAntitumar<br>leaf<br>leaf<br>leafMuthukumar et<br>al. 2016Mimusops elengi<br>sinensis, J.<br>communis and<br>Green coconutHAuCl4<br>leafLeaf10-20<br>leaf<br>leaf<br>leafSpherical, Triangular<br>leaf<br>leaf<br>leaf<br>leafAnticance<br>leaf<br>leaf<br>leaf<br>leafMagumdar et al.<br>2016Cordia myxa<br>cleasaHAuCl4<br>leafLeaf<br>leaf20-50<br>leaf<br>leafSpherical, Triangular<br>leaf<br>leaf<br>leaf<br>leaf-<br>leaf<br>leaf<br>leafCordia myxa<br>cleasaHAuCl4<br>leafLeaf<br>leaf20-50<br>leaf<br>leafSpherical, Triangular,<br>leaf<br>leaf<br>leaf-<br>leaf<br>leaf <br< td=""><td>citratus</td><td></td><td></td><td></td><td>Triangular, Rod</td><td>idal</td><td>al.2015</td></br<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | citratus                     |                    |        |                 | Triangular, Rod          | idal                | al.2015                       |
| benghalensisImage: Second           | Pogestemon                   | HAuCl <sub>4</sub> | Leaf   | 10-50           | Triangular, Spherical    | Photocatal          | Paul <i>et al.</i> 2015       |
| Vetiveria<br>izanioides and<br>Cannabis sativaHAuCl4<br>leafRoot<br>and<br>leaf10-35<br>and<br>leafSpherical<br>nAntifunga<br>l<br>and<br>leafSwain et al.<br>2016Hibiscus<br>babdariffaHAuCl4<br>HAuCl4leaf10-60Spherical<br>sphericalCytotoxici<br>ty<br>2016Mishra et al.<br>2016Panax ginseng<br>pterocarpumHAuCl4<br>HAuCl4Root<br>Flower10-40Spherical<br>sphericalAntibacter<br>ialSingh et al.<br>2016Panax ginseng<br>pterocarpumHAuCl4<br>HAuCl4Flower5-50Spherical<br>spherical-Balamurugan.<br>et al. 2016Carica papaya,<br>roseus and mixedHAuCl4<br>HAuCl4Leaf<br>Leaf3.5-9,<br>2-20,<br>6-18Spherical, Triangular<br>sphericalAntitumar<br>antibacteri<br>alMimusops elengi<br>communis and<br>Green coconutHAuCl4<br>HAuCl4Bark<br>Leaf9-14Spherical<br>sphericalCatalytic<br>2016Majumdar et al.<br>2016Dendropanax<br>morbiferaHAuCl4<br>HAuCl4Leaf10-20<br>20-30,<br>30-70Polygon, Hexagon,<br>Spherical, Triangular<br>Hexagonal, RodAnticance<br>rWang et al.<br>2016Cordia myxa<br>oleosaHAuCl4<br>HAuCl4Leaf20-50<br>20-50Spherical<br>spherical-Geraldes et al.<br>2016Eucalyptus<br>oleosaHAuCl4<br>HAuCl4Leaf20-50<br>20-50Spherical<br>spherical-Antisavida<br>antibacteri<br>al.Eucalyptus<br>oleosaHAuCl4<br>HAuCl4Leaf28<br>20-50Spherical<br>spherical-Antamwar et<br>al. <tr<< td=""><td>benghalensis</td><td></td><td></td><td></td><td></td><td>ytic</td><td></td></tr<<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | benghalensis                 |                    |        |                 |                          | ytic                |                               |
| Vetiveria<br>zizanioides and<br>Cannabis sativaHAuCl4<br>leafRoot<br>and<br>leaf10-35<br>and<br>leafSphericalAntifunga<br>l<br>and<br>leafSwain et al.<br>2016Haucl4<br>subdariffaHAuCl4<br>leafleaf10-60SphericalCytotoxici<br>tyMishra et al.<br>2016Panax ginseng<br>petrocarpumHAuCl4<br>HAuCl4Root<br>Flower10-40SphericalAntibacter<br>ialSingh et al.<br>2016Peltophorum<br>pterocarpumHAuCl4<br>HAuCl4Flower<br>c5-50Spherical<br>Spherical-Balamurugan.<br>et al. 2016Carica papaya,<br>carica papaya,<br>roseus and mixedHAuCl4<br>HAuCl4Leaf3.5-9,<br>2-20,<br>6-18Spherical, Triangular<br>spherical, Triangular<br>antibacteri<br>alAntitumar<br>antibacteri<br>al.Muthukumar et<br>al. 2016Dendropanax<br>morbiferaHAuCl4<br>HAuCl4Leaf10-20<br>2-20,<br>6-18Polygon, Hexagon,<br>SphericalAnticance<br>rWang et al.<br>2016Dendropanax<br>morbiferaHAuCl4<br>HAuCl4Leaf10-20<br>20-30,<br>30-70Polygon, Hexagon,<br>Spherical, Triangular<br>Hexagonal, RodAnticance<br>rWang et al.<br>2016Cordia myxa<br>oleosaHAuCl4<br>HAuCl4Leaf20-50<br>20-50Spherical<br>Spherical-Ankamwar et<br>al. 2017Eucalyptus<br>oleosaHAuCl4<br>HAuCl4Leaf28<br>28Spherical<br>20-50Antioxida<br>nt,<br>antibacteri<br>al.Pourmortazavi<br>et al. 2017Eucalyptus<br>oleosaHAuCl4<br>HAuCl4Leaf28<br>28Spherical<br>28An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                    |        |                 |                          | n of dye            |                               |
| zizamioides and<br>Cannabis sativaand<br>leafand<br>leaf12016Hibiscus<br>sabdariffaHAuCl4<br>Panax ginsengHAuCl4<br>HAuCl4leaf10-60SphericalCytotoxici<br>tyMishra et al.<br>2016Panax ginseng<br>pterocarpumHAuCl4<br>Carica papaya,<br>Catharanthus<br>roseus and mixedHAuCl4<br>HAuCl4Flower<br>Leaf5-50<br>2-20,<br>6-18Spherical-<br>attributer<br>attributer<br>al.Singh et al.<br>2016Mimusops elengi<br>morbiferaHAuCl4<br>HAuCl4Leaf<br>Leaf3.5-9,<br>2-20,<br>6-18Spherical, Triangular<br>2-20,<br>6-18Antitumar<br>,<br>attributer<br>al.Muthukumar et<br>al.Mimusops elengi<br>morbiferaHAuCl4<br>HAuCl4Leaf0.200<br>2.0-30,<br>30-70Spherical<br>Polygon, Hexagon,<br>Spherical, Triangular<br>Spherical, Triangular<br>catalyticMajumdar et al.<br>2016Condia myxa<br>cleasaHAuCl4<br>HAuCl4Leaf<br>Leaf40-70,<br>20-30,<br>30-70Spherical, Triangular<br>Polygon, Hexagon,<br>Polygon, Hexagonal, Rod<br>Polygon-<br>Geraldes et al.<br>2016Cordia myxa<br>cleasaHAuCl4<br>HAuCl4Leaf<br>Leaf20.50<br>2.0-30,<br>30-70Spherical, Triangular,<br>Hexagonal, Rod-<br>-<br>al.Antioxida<br>al. 2017Eucalyptus<br>cleasaHAuCl4<br>HAuCl4Leaf<br>Leaf28<br>2.0-30,<br>30-70Spherical<br>Pentagonal,<br>Triangular,<br>Hexagonal-<br>-<br>-<br>-Antioxida<br>al. 2017Eucalyptus<br>cleasaHAuCl4<br>HAuCl4Leaf<br>Leaf28<br>2.0-30<br>2.0-30,<br>30-70Spherical<br>Pentagonal,<br>Triangular,<br>He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vetiveria                    | HAuCl <sub>4</sub> | Root   | 10-35           | Spherical                | Antifunga           | Swain <i>et al</i> .          |
| Cannadors sativationTeamTeamTeamTeamControlHibiscus<br>sabdariffaHAuCl4leaf10-60SphericalCytoxicMishra et al.<br>2016Panax ginsengHAuCl4Root10-40SphericalAntibacter<br>ialSingh et al.<br>2016Peltophorum<br>pterocarpumHAuCl4Flower5-50Spherical-<br>et al. 2016Balamurugan.<br>et al. 2016Carica papaya,<br>Catharanthus<br>roseus and mixedHAuCl4Leaf3.5-9,<br>2-20,<br>6-18Spherical, Triangular<br>antibacterAntitumar<br>al. 2016Muthukumar et<br>al. 2016Mimusops elengiHAuCl4Bark9-14SphericalCatalyticMajumdar et al.<br>2016Dendropanax<br>morbiferaHAuCl4Leaf10-20Polygon, Hexagon,<br>Spherical, Triangular<br>AnticanceAnticance<br>rWang et al.<br>2016Camellia<br>sinensis, J.<br>communis and<br>Green coconutHAuCl4Leaf40-70,<br>20-30,<br>30-70Spherical, Triangular<br>Pentagonal, Rod-Geraldes et al.<br>2016Cordia myxaHAuCl4Leaf20-50Spherical,<br>Pentagonal,<br>Triangular,<br>Hexagonal-Antioxida<br>et al. 2017Eucalyptus<br>oleosaHAuCl4Leaf28SphericalAntioxida<br>nt<br>et al. 2017Elettaria<br>cardamonumHAuCl4Leaf25Spherical<br>PhericalAntioxida<br>nt<br>et al. 2017Elettaria<br>cardamonumHAuCl4Leaf25Spherical<br>PhericalAntioxida<br>nt<br>et al. 2017Elettaria<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>zizanioides</i> and       |                    | and    |                 |                          | 1                   | 2016                          |
| HauCla<br>sabdariffaHAuCla<br>leatleat<br>loco10-60<br>sphericalSphericalCytotoxici<br>tyMishra et al.<br>2016Panax ginseng<br>Peltophorum<br>pterocarpumHAuCla<br>HAuClaRoot10-40SphericalAntibacter<br>ialSing et al.<br>2016Peltophorum<br>pterocarpumHAuCla<br>Catharanthus<br>roseus and mixedHAuCla<br>LeafLeaf<br>Leaf3.5-9,<br>2-20,<br>6-18Spherical, Triangular<br>catharanthus<br>roseus and mixedAntitumar<br>dutukumar et<br>al. 2016Mimusops elengi<br>morbiferaHAuCla<br>LeafLeaf<br>2-20,<br>6-18SphericalCatalytic<br>sphericalMajumdar et al.<br>2016Dendropanax<br>morbiferaHAuCla<br>LeafLeaf<br>20-30,<br>30-70Polygon, Hexagon,<br>spherical, Triangular<br>Hexagonal, RodAnticance<br>rWang et al.<br>2016Cordia myxa<br>oleosaHAuCla<br>HAuClaLeaf<br>Leaf20-50<br>20-30,<br>30-70Spherical, Triangular<br>Hexagonal, Rod-Ankamwar et<br>al. 2017Cordia myxa<br>oleosaHAuCla<br>HAuClaFruit<br>Leaf20-50<br>20-50<br>20-50<br>Spherical, Triangular,<br>Hexagonal,<br>Triangular,<br>Hexagonal,<br>Triangular,<br>Hexagonal-Ankamwar et<br>al. 2017Eucalyptus<br>oleosaHAuCla<br>HAuClaLeaf<br>Leaf28<br>28<br>20-50Spherical<br>20-50-Antioxida<br>antibacteri<br>al.Eucalyptus<br>oleosaHAuCla<br>HAuClaLeaf<br>20-5020-50<br>20-50Spherical<br>20-50Eucalyptus<br>oleosaHAuCla<br>LeafLeaf<br>20-5028<br>28<br>20-50Sph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cannabis sativa              |                    | leaf   | 10.00           |                          | <b>Q</b>            |                               |
| Panax ginsengHAuCl4Root10-40SphericalAntibacterSingh et al.<br>ialPeltophorum<br>pterocarpumHAuCl4Flower5-50Spherical-Balamurugan.<br>et al. 2016Catharanthus<br>roseus and mixedHAuCl4Leaf3.5-9,<br>2-20,<br>6-18Spherical, Triangular<br>antibacteri<br>alAntitumar<br>al. 2016Mimusops elengiHAuCl4Bark9-14SphericalCatalaranthus<br>antibacteri<br>alMajumdar et al.<br>2016Dendropanax<br>morbiferaHAuCl4Leaf10-20Polygon, Hexagon,<br>SphericalAnticance<br>rWang et al.<br>2016Dendropanax<br>morbiferaHAuCl4Leaf10-20Polygon, Hexagon,<br>SphericalAnticance<br>rWang et al.<br>2016Camellia<br>sinensis, J.<br>communis and<br>Green coconutHAuCl4Leaf20-50Spherical, Triangular,<br>Hexagonal, Rod-Geraldes et al.<br>2016Cordia myxa<br>oleosaHAuCl4Leaf20-50Spherical, Triangular,<br>Hexagonal, Rod-Antianwar et<br>al. 2017Eucalyptus<br>oleosaHAuCl4Leaf28Spherical-Antioxida<br>nt<br>et al. 2017Eucalyptus<br>oleosaHAuCl4Leaf25SphericalAntioxida<br>nt<br>et al. 2017Pourmortazavi<br>et al. 2017Sphaeranthus<br>indicusHAuCl4Leaf25SphericalCell<br>division,<br>PollenBalalakshmi et<br>al. 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hibiscus<br>sabdariffa       | HAuCl <sub>4</sub> | leaf   | 10-60           | Spherical                | Cytotox1c1          | Mishra <i>et al</i> .<br>2016 |
| TurnersHardenHoraFordSphericalHardenHardenHardenHardenPeltophorum<br>pterocarpumHAuCl4Flower5-50Spherical-Balamurugan.<br>et al. 2016Carica papaya,<br>Catharanthus<br>roseus and mixedHAuCl4Leaf3.5-9,<br>2-20,<br>6-18Spherical, Triangular<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Panar oinseno                | HAuCl              | Root   | 10-40           | Spherical                | Antibacter          | Singh et al                   |
| Peltophorum<br>pterocarpumHAuCl4<br>resensand mixedFlower<br>resensand mixed5-50<br>resensand mixedSpherical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I and Students               | 11110014           | Root   | 10 10           | Spherical                | ial                 | 2016                          |
| pterocarpumrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrecrec <td>Peltophorum</td> <td>HAuCl<sub>4</sub></td> <td>Flower</td> <td>5-50</td> <td>Spherical</td> <td>-</td> <td>Balamurugan.</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Peltophorum                  | HAuCl <sub>4</sub> | Flower | 5-50            | Spherical                | -                   | Balamurugan.                  |
| Carther paparya,<br>Catharanthus<br>roseus and mixedHAuCl4<br>aLeafJ20,<br>6-18Spherical, Haugula<br>antibacteri<br>alHAuthuna<br>al. 2016Minusops elengi<br>morbiferaHAuCl4<br>HAuCl4Bark<br>Leaf9-14SphericalCatalytic<br>2016Majumdar et al.<br>2016Dendropanax<br>morbiferaHAuCl4<br>HAuCl4Leaf10-20<br>20-30,<br>30-70Polygon, Hexagon,<br>SphericalAnticance<br>rWang et al.<br>2016Camellia<br>sinensis, J.<br>communis and<br>Green coconutHAuCl4<br>HAuCl4Leaf40-70,<br>20-30,<br>30-70Spherical, Triangular<br>Hexagonal, Rod-Geraldes et al.<br>2016Cordia myxa<br>oleosaHAuCl4<br>HAuCl4Fruit<br>Leaf20-50<br>20-50Spherical,<br>Pentagonal,<br>Triangular,<br>Hexagonal-Antioxida<br>et al. 2017Eucalyptus<br>oleosaHAuCl4<br>HAuCl4Leaf28<br>28<br>20-50Spherical<br>Pentagonal,<br>Triangular,<br>HexagonalAntioxida<br>nt<br>et al. 2017Elettaria<br>cardamonumHAuCl4<br>HAuCl4Seed15.2<br>2<br>20-7Spherical<br>PolrencialAntioxida<br>nt,<br>al.<br>2017Sphaeranthus<br>indicusHAuCl4<br>HAuCl4Leaf<br>2525<br>25<br>25<br>25Spherical<br>20-20<br>20-20Cell<br>20-20<br>20-20<br>20-20Sphaeranthus<br>indicusHAuCl4<br>HAuCl4Leaf<br>2525<br>25<br>25Cell<br>20-20<br>20-20<br>20-20<br>20-20<br>20-20Cell<br>20-20<br>20-20<br>20-20<br>20-20<br>20-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pterocarpum<br>Carica papaya | HAuCL              | Leaf   | 3 5-9           | Spherical Triangular     | Antitumar           | et al. 2016<br>Muthukumar et  |
| roseus and mixed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Catharanthus                 | IIAuC14            | LCal   | 2-20,           | Spherical, Illangula     | Antitulliai         | <i>al.</i> 2016               |
| Image: Addition of the second secon | roseus and mixed             |                    |        | 6-18            |                          | antibacteri         |                               |
| Minimusops elengi<br>morbiferaHAUCl4<br>aBark9-14<br>aSphericalCatalytic<br>aMajumdar et al.<br>2016Dendropanax<br>morbiferaHAUCl4Leaf10-20Polygon, Hexagon,<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Minurali                     | IIACl              | Deals  | 0.14            | Subariasl                | al                  | Mainm dan 14 -1               |
| Dendropanax<br>morbiferaHAuCl4Leaf10-20Polygon, SphericalHexagon, SphericalAnticance<br>rWang et al.<br>2016Camellia<br>sinensis, J.<br>communis and<br>Green coconutHAuCl4Leaf40-70,<br>20-30,<br>30-70Spherical, Triangular<br>Hexagonal, Rod-Geraldes et al.<br>2016Cordia myxa<br>oleosaHAuCl4Fruit20-50Spherical,<br>Pentagonal,<br>Triangular,<br>Hexagonal-Antiaxida<br>et al. 2017Eucalyptus<br>oleosaHAuCl4Leaf28Spherical<br>PentagonalAntioxida<br>nt<br>et al. 2017Pourmortazavi<br>et al. 2017Elettaria<br>cardamomumHAuCl4Seed15.2Spherical<br>PentagonalAntioxida<br>nt,<br>alRajan et al.<br>2017Sphaeranthus<br>indicusHAuCl4Leaf25Spherical<br>PouricalCell<br>division,<br>PollenBalalakshmi et<br>al. 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mimusops elengi              | HAUCI <sub>4</sub> | Багк   | 9-14            | Spherical                | Catalytic           | 2016                          |
| morbiferaImage: Construct of the sector of the           | Dendropanax                  | HAuCl <sub>4</sub> | Leaf   | 10-20           | Polygon, Hexagon,        | Anticance           | Wang <i>et al</i> .           |
| Camellia<br>sinensis, J.<br>communis and<br>Green coconutHAuCl4Leaf40-70,<br>20-30,<br>30-70Spherical, Triangular<br>Hexagonal, Rod-<br>2016Geraldes et al.<br>2016Cordia myxaHAuCl4Fruit20-50Spherical,<br>Pentagonal,<br>Triangular,<br>Hexagonal-<br>Pentagonal,<br>Triangular,<br>Hexagonal-<br>Ankamwar et<br>al. 2017Eucalyptus<br>oleosaHAuCl4Leaf28Spherical<br>Pentagonal-<br>Antioxida<br>ntAntioxida<br>et al. 2017Elettaria<br>cardamomumHAuCl4Seed15.2Spherical<br>PentagonalAntioxida<br>nt,<br>autibacteri<br>alRajan et al.<br>2017Sphaeranthus<br>indicusHAuCl4Leaf25Spherical<br>PollenCell<br>division,<br>al. 2017Balalakshmi et<br>al. 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | morbifera                    |                    |        |                 | Spherical                | r                   | 2016                          |
| Sinelasts, J.<br>communis and<br>Green coconutHAuCl4Fruit20-50,<br>30-70Hexagonal,<br>Pentagonal,<br>Triangular,<br>Hexagonal-<br>Ankamwar et<br>al. 2017Cordia myxaHAuCl4Fruit20-50Spherical,<br>Pentagonal,<br>Triangular,<br>Hexagonal-Ankamwar et<br>al. 2017Eucalyptus<br>oleosaHAuCl4Leaf28Spherical<br>PentagonalAntioxida<br>ntPourmortazavi<br>et al. 2017Elettaria<br>cardamomumHAuCl4Seed15.2Spherical<br>PentagonalAntioxida<br>nt,<br>allRajan et al.<br>2017Sphaeranthus<br>indicusHAuCl4Leaf25Spherical<br>PentagonalCell<br>division,<br>al. 2017Balalakshmi et<br>al. 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Camellia                     | HAuCl <sub>4</sub> | Leaf   | 40-70,          | Spherical, Triangular    | -                   | Geraldes <i>et al</i> .       |
| Green coconutHAuCl4Fruit20-50Spherical,<br>Pentagonal,<br>Triangular,<br>Hexagonal-Ankamwar et<br>al. 2017Eucalyptus<br>oleosaHAuCl4Leaf28SphericalAntioxida<br>ntPourmortazavi<br>et al. 2017Elettaria<br>cardamomumHAuCl4Seed15.2Spherical<br>ntAntioxida<br>ntRajan et al.<br>2017Sphaeranthus<br>indicusHAuCl4Leaf25Spherical<br>ntCell<br>division,<br>PollenBalalakshmi et<br>al. 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | communis and                 |                    |        | 20-30,<br>30-70 | nexagolial, Kou          |                     | 2010                          |
| Cordia myxaHAuCl4Fruit20-50Spherical,<br>Pentagonal,<br>Triangular,<br>Hexagonal-Ankamwar et<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Green coconut                |                    |        |                 |                          |                     |                               |
| Eucalyptus<br>oleosaHAuCl4Leaf28SphericalAntioxida<br>ntPourmortazavi<br>et al. 2017Elettaria<br>cardamomumHAuCl4Seed15.2SphericalAntioxida<br>ntRajan et al.<br>2017Sphaeranthus<br>indicusHAuCl4Leaf25SphericalCell<br>division,<br>al. 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cordia myxa                  | HAuCl <sub>4</sub> | Fruit  | 20-50           | Spherical,               | -                   | Ankamwar et                   |
| Eucalyptus<br>oleosaHAuCl4<br>HAuCl4Leaf<br>Leaf28<br>28<br>SphericalSpherical<br>AntioxidaAntioxida<br>et al. 2017Elettaria<br>cardamomumHAuCl4Seed15.2<br>HAuCl4Spherical<br>HAuCl4Antioxida<br>AntioxidaRajan et al.<br>2017Sphaeranthus<br>indicusHAuCl4Leaf25Spherical<br>HAuCl4Cell<br>division,<br>Al. 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                    |        |                 | Pentagonal,              |                     | al. 2017                      |
| Eucalyptus<br>oleosaHAuCl4Leaf28SphericalAntioxida<br>ntPourmortazavi<br>et al. 2017Elettaria<br>cardamomumHAuCl4Seed15.2SphericalAntioxida<br>ntRajan et al.<br>2017Sphaeranthus<br>indicusHAuCl4Leaf25SphericalCell<br>division,<br>al. 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |                    |        |                 | Hexagonal                |                     |                               |
| oleosantet al. 2017Elettaria<br>cardamomumHAuCl4Seed15.2SphericalAntioxida<br>nt,<br>antibacteri<br>alRajan et al.<br>2017Sphaeranthus<br>indicusHAuCl4Leaf25SphericalCell<br>division,<br>PollenBalalakshmi et<br>al. 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Eucalyptus                   | HAuCl <sub>4</sub> | Leaf   | 28              | Spherical                | Antioxida           | Pourmortazavi                 |
| Elettaria       HAuCl4       Seed       15.2       Spherical       Antioxida       Rajan et al.         cardamomum       Image: Antioxida       Rajan et al.       2017       2017         sphaeranthus       HAuCl4       Leaf       25       Spherical       Cell       Balalakshmi et division, al. 2017         indicus       Image: Antioxida       Rajan et al.       Pollen       Pollen       Pollen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oleosa                       |                    |        |                 |                          | nt                  | <i>et al.</i> 2017            |
| Sphaeranthus     HAuCl <sub>4</sub> Leaf     25     Spherical     Cell     Balalakshmi et       indicus     HAuCl <sub>4</sub> Leaf     25     Spherical     Cell     Balalakshmi et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Elettaria                    | HAuCl <sub>4</sub> | Seed   | 15.2            | Spherical                | Antioxida           | Rajan <i>et al</i> .<br>2017  |
| Sphaeranthus     HAuCl <sub>4</sub> Leaf     25     Spherical     Cell     Balalakshmi et       indicus     Image: Constraint of the second seco                                                                                 | curuumomum                   |                    |        |                 |                          | antibacteri         | 2017                          |
| Sphaeranthus<br>indicusHAuCl4Leaf25SphericalCell<br>division,<br>al. 2017Balalakshmi et<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                    |        |                 |                          | al                  |                               |
| inaicus division, al. 2017<br>Pollen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sphaeranthus                 | HAuCl <sub>4</sub> | Leaf   | 25              | Spherical                | Cell                | Balalakshmi <i>et</i>         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | indicus                      |                    |        |                 |                          | division,<br>Pollen | at. 2017                      |

|               |                    |       |        |                       | germinati |                |
|---------------|--------------------|-------|--------|-----------------------|-----------|----------------|
|               |                    |       |        |                       | on        |                |
| Mussaenda     | HAuCl <sub>4</sub> | Leaf  | 44.1±0 | Spherical, Triangular | Catalytic | Francis et al. |
| glabrata      |                    |       | .82    |                       |           | 2017           |
| Citrus maxima | HAuCl <sub>4</sub> | Fruit | 25.7±1 | Spherical, Rod        | Catalytic | Yu et al. 2017 |
|               |                    |       | 0      |                       |           |                |

Leaf extracts of *Magnifera Indica* and fruit extacts of *Pear* were also investigated for their synthesis potential of AuNPs (Philip 2010a, Ghodake et al. 2010). The tuber of Dioscorea bulbifera and rhizome of Zingiber officinale also were successfully showed the great synthesizing potential for the spherical AuNPs in the size range of 11-30 and 5-15 nm respectively (Ghosh et al. 2011, Kumar et al. 2011). The leaf extracts of Anacardium occidentale, Murrava koenigii, Ocimum sanctum, Mentha piperita were also used for the green synthesis of AuNPs (Philip et al. 2011, Sheny et al. 2011, Philip and Unni 2011, MubarakAli et al. 2011). Similarly several authors have reported the green synthesis of AuNPs using different parts of the plants which are given in **Table 1.9** (Mondal *et al.* 2011, Das et al. 2011, Fayaz et al. 2011b, Zhan et al. 2011, Elavazhagan and Arunachalam 2011, Arulkumar and Sabesan 2011, Noruzi et al. 2011, Aromal et al. 2012, Reddy et al. 2012, Kumar et al. 2012b, Noruzi et al. 2012, Aromal and Philip 2012, Jayaseelan et al. 2013, Gopinath et al. 2013, Arunachalam et al. 2013, Sujitha and Kannan 2013, Basavegowda et al. 2014, Krishnaraj et al. 2014, Nadagouda et al. 2014, Pasca et al. 2014, Rajan et al. 2014, Zayed and Eisa 2014, Elia et al. 2014, Muniyappan and Nagarajan 2014, Emmanuel et al. 2014, Salunke et al. 2014, Adavallan and Krishnakumar 2014, Anand et al. 2015, Murugan et al. 2015, Paul et al. 2015b, Swain et al. 2016, Mishra et al. 2016, Singh et al. 2016, Balamurugan et al. 2016, Muthukumar et al. 2016, Majumdar et al. 2016, Wang et al. 2016, Geraldes et al. 2016)

Recently, Ankamwar *et al.* Pourmortazavi *et al.* have used the fruit and leaf extract of *Cordia myxa* and *Eucalyptus oleosa* respectively for the potent synthesis of AuNPs (Pourmortazavi *et al.* 2017, Ankamwar *et al.* 2017). Rajan *et al.* 2017 and Balalakshmi *et al.* 2017 have reported the green synthesis of spherical AuNPs using seed extract of *Elettaria cardamomum* and leaf extract of *sphaerathus indicus*. They observed that the synthesized AuNPs were spherical in shape with average size 15.2 and 25 nm respectively (Rajan *et al.* 2017, Balalakshmi *et al.* 2017). The leaf extract of *Mussaenda glabrata* have showed the synthesis of spherical and triangular AuNPs which corroborated greater catalytic activity towards the degradation of dye (Francis *et al.* 2017). The fruit extracts of *Citrus maxima* was used for the synthesis of spherical and rod shaped AuNPs with the average size of  $25.7\pm10$  nm.

#### 1.4.2.1 Photoinduced synthesis

Although, the green synthesis of AgNPs and AuNPs using plant extracts was more economical and eco-friendly than other biological routes, but still the consumption of long time duration and energy while heating and stirring was its huge limitation. Therefore, it was needed to be modified with energy and time efficient route. The photoinduced synthesis of AgNPs and AuNPs using plant extracts avoided the use of energy and time consumption. Hence it has become a completely economical and eco-friendly route for the size controlled biosynthesis of the AgNPs and AuNPs where the rate of biosynthesis is increased by natural sunlight. There are several articles which have been published for the biosynthesis of AgNPs using sunlight induced route. Zarchi *et al.* have reported the rapid biosynthesis of AgNPs using ethanol extract of *Andrachnea chordifolia* via sunlight-induced route (Zarchi *et al.* 2011). Dong *et al.* produced a stepwise synthesis of AuNPs under solar radiation (Dong *et al.*  2004). Biosynthesis of AgNPs was reported by Sahu *et al.* using an aqueous extract of *Cynodon dactylon* under bright sunlight radiation (Sahu *et al.* 2013).



Scheme 1.5 Illustration of the different steps of photoinduced synthesis of AgNPs and AuNPs

We have also reported the photoinduced synthesis of AgNPs using aqueous extract of Croton

bonpnandianum (Kumar et al. 2017b), Erigeron bonariensis (Kumar et al. 2016c), Xanthium

strumarium (Kumar et al. 2016d), Murraya koenigi (Kumar et al. 2017c), and Physalis angulata (Kumar et al. 2017d).

The photoinduced synthesis of AgNPs and AuNPs using leaf extract (LE) is mediated by the involvement of hydrated electrons released form the metal ions  $(Ag^+ Au^{3+})$  and LE complex upon irradiation. When the LE is added into the metal ion solution, the OH group of polyphenolic compound (for example, tannin) present in LE bound with metal ions  $(Ag^+$  $Au^{3+})$  and formed the  $Ag^+/Au^{3+}$ -LE complex. The first step involves the photoactivation of  $Ag^+/Au^{3+}$  - LE complex. The second step involves the release of hydrated electrons by debonding of OH group of LE after absorbing the photons of light (Yang *et al.* 2015, Zhou *et al.* 2014, Pal and Pal 1999). The third step involves the reduction of  $Ag^+$  and  $Au^{3+}$  to  $Ag^0$  and  $Au^0$  respectively by the hydrated electrons produced earlier (Sakamoto *et al.* 2009). In the fourth step, the  $Ag^0$  and  $Au^0$  nucleates to form nanoclusters which are followed by the fifth step where the formation of AgNPs and AuNPs occurrs by the aggregation of nanoclusters (**Scheme 1.5**).

# 1.5 Properties of AgNPs and AuNPs

AgNPs and AuNPs exhibit extraordinary properties than metallic silver and gold respectively which made them excellent to be used in various applications. These properties are:

## **1.5.1 Tunable shape and size**

The AgNPs and AuNPs possess several important physicochemical properties such as tunable size (surface area), shape, surface charge, etc. which are very important for determining their biological interactions and impacts.

| Nanoparticles<br>Diameter (nm) | Surface area (nm <sup>2</sup> ) | Volume (nm <sup>3</sup> ) | Surface<br>Area:Volume |
|--------------------------------|---------------------------------|---------------------------|------------------------|
| 10                             | 314                             | 523                       | 0.60                   |
| 20                             | 1260                            | 4190                      | 0.30                   |
| 30                             | 2830                            | 14100                     | 0.20                   |
| 40                             | 5030                            | 33500                     | 0.15                   |
| 50                             | 7850                            | 65500                     | 0.12                   |
| 60                             | 11300                           | 113000                    | 0.10                   |
| 70                             | 15400                           | 180000                    | 0.09                   |
| 80                             | 20100                           | 268000                    | 0.08                   |
| 90                             | 25400                           | 382000                    | 0.07                   |
| 100                            | 31400                           | 523600                    | 0.06                   |

 Table 1.10 Relationship between the diameter, surface area, volume and surface area to volume ratio (https://nanocomposix.com/pages/silver-nanoparticles-physical-properties)

It is well documented that smaller nanoparticles have a larger surface area and, therefore, have greater toxic potential. AgNPs and AuNPs have unique properties due to their small size.



Figure 1.4 Different nanostructures of AgNPs (A) spheres, (B) cubes, (C) truncated cubes, (D) right bipyramids, (E) bars, (F) spheroids, (G) triangular plates, and (H) wires (Rycenga *et al.* 2011)



Figure 1.5 Different nanostructures of AuNPs (A) spheres, (B) cubes, (C) nanobranches, (D) nanorods (aspect ratio) =  $2.4 \pm (0.3)$ , (E) nanorods (aspect ratio) =  $3.4 \pm (0.5)$ , (F) nanorods (aspect ratio) =  $4.6 \pm (0.8)$ , (G) nanobipyramids (aspect ratio) =  $1.5 \pm (0.3)$  (H) nanobipyramids (aspect ratio) =  $2.7 \pm (0.2)$ , (I) nanobipyramids (aspect ratio) =  $3.9 \pm (0.2)$ , (J) nanobipyramids (aspect ratio) =  $4.7 \pm (0.2)$  (Chen *et al.* 2008)

All nanoparticles regardless of their chemical constituents have extremely high surface area: volume ratios (**Table 1.10**). Thus, many of the physical properties of the nanoparticles such as solubility and stability are dominated by the nature of the nanoparticle surface. For comparison, a regular size baseball has a diameter of 73,000,000 nm, a surface area of 16,800,000,000,000 nm<sup>2</sup>, and a volume of 204,000,000,000,000,000,000 nm<sup>3</sup>. The surface area to volume ratio is 0.00000008, a factor of 7,500,000 less than 10 nm nanoparticles.

Rycenga *et al.* have prepared different nanostructures of AgNPs like spheres, cubes, truncated, bipyramids, bars, spheroids, triangular plates, and wires which are shown in **Figure 1.4** (Rycenga *et al.* 2011). Similarly, Chen *et al.* have also prepared different nanostructures of AuNPs (Chen *et al.* 2008) (**Fig.1.5**).

## **1.5.2 Charged surface**

Studies have found that the biological effects of AgNPs depend on the different surface charges of their coatings, which can affect the interaction of AgNPs with living systems (Powers *et al.* 2011). Chang *et al.* have shown that cationic trimethyl chitosan nitrate-capped AgNPs (TMCN-AgNPs) have a positive surface charge and display high storage stability at the room temperature. They also found that the TMCN-AgNPs with positively charged surfaces killed Gram-positive, Gram-negative, and *Acinetobacter baumannii* strains at very low concentrations (Chang *et al.* 2017).

# **1.5.3 Excellent stability**

The stability of the nanoparticles can be explained through three conceptions: electrostatic, steric and their combined electrostatic repulsive forces.

# **1.5.3.1 Electrostatic stabilization**

The concept of electrostatic stabilization originated from the repulsive electrostatic force which is experienced by nanoparticles surrounded by a double layer of electric charges. The DLVO theory states that the nanoparticles are stable when the electrostatic repulsion dominates the attractive van der Waals forces (Freitas and Müller 1998). The sum of attractive forces (van der Waals) and repulsive forces (due to a double layer of counter ions) gives an idea of total energy potential (V<sub>T</sub>) which determines the stability of the nanoparticles. It is considered that when the kinetic energy (E<sub>k</sub>) of particle motion is less than V<sub>T</sub>, the particles are stable whereas the particles are unstable when the E<sub>k</sub> is greater than V<sub>T</sub> (Kraynov and Müller 2011). It is assumed that the approach of negatively charged anions (rather than positive cations) to a metal sphere induces a partial positive charge ( $\delta$  +) on the surface (**Figure 1.6 A**).



Figure 1.6 Schematic representation of (A) coulomb repulsion between partially charged particles as the origin of electrostatic stabilization, (B) neutral metal sphere having radius 'R' showing the distribution of the surface charge and geometry of the electric field, when the adsorbate is a single external charge 'q' in the distance 'L' from the centre. The electric potential of this system is equivalent to the superposition of the potential of an external point charge q and the induced dipole moment 'd' (Kraynov and Müller 2011)

Equally "charged" particles repel each other, which is the basis of general electrostatic stabilization (Ott and Finke 2007, Özkar and Finke 2002). However, the above description does not adquately consider the redistribution of electron charge density on the metal sphere. Let us assume that an external charge q approaches the surface of a neutral non-grounded metal sphere (**Figure 1.6 B**). Note that this implies that the overall electric charge of this sphere is zero and remains so. Close to the approaching charge, an excess of surface charges (with opposite sign) accumulates, whereas excess charges of opposite sign appear on the other side of the sphere (Landau and Lifshitz 1982).

# 1.5.3.2 Steric stabilization

The concept of the steric stabilization is based on the steric repulsion between molecules or ions which get adsorbed on neighboring particles. The extent of stabilization is based on size and chemical nature of these molecules. The large and bulky molecules provide an efficient stabilization due to the geometric constraints around nanoparticles.



Figure 1.7 Schematic illustrations of steric stabilization (A) elongated or conical molecules adsorbed *via* anchoring centres (small black dot) hinder nanoparticles from close contact, (B) long polymer threads encapsulate a nanoparticle, (C) chelate effect, when the stabilizer is adsorbed *via* more than one anchoring centre (small black dots)

For the approaching nanoparticles, the elongated or conical geometry is advantageous to keep them apart (**Figure 1.7 A**). The nanoparticles get encapsulated into a sphere when the length of the stabilizing agent is significantly longer than its size. A sphere can be formed encapsulating the nanoparticle as represented in (**Figure 1.7 B**). Therefore, high molecular weight polymers are often employed as stabilizers for nanoparticles.

To provide long residence time and to prevent the spontaneous desorption of the nanoparticle, the stabilizers are needed to be adsorbed strongly enough on its surface. When the stabilizer gets adsorb on the surface of nanoparticles from several centers, the chelating effect enhances the adsorption of the stabilizers on its surface (**Figure 1.7 C**). The frequent driving force for strong binding between the stabilizers and metal surface is chemisorption.

Metals with more valence orbitals than valence electrons have an "electron deficient" surface. Thus, molecules readily "donating" electron density (i.e., with chemical groups associated with free electron lone pair, such as divalent sulphur, trivalent phosphorus, and trivalent nitrogen moieties or molecules with  $\pi$ -electrons, e.g., aromatic systems) often adsorb very strongly on metal surfaces (although the opposite examples are also known) (Temirov *et al.* 2006). Strongly adsorbing, large molecules are prime candidates for stabilization of nanoparticles.

Nanoparticles are either charge-stabilized or sterically stabilized. The stability of the charge-stabilized nanoparticles is measured by zeta potential. The nanoparticles having zeta potentials greater than 20 mV or less than -20 mV have sufficient electrostatic repulsion which provides them sufficient stability in solution. The nanoparticles can dissolve into ionic form in highly acidic or basic condition. Highly acidic or basic solutions can also increase the dissolution rate of the nanoparticles into an ionic form that can plate onto the sides of the container or re-deposit onto existing nanoparticles changing the average diameter and size distribution. AgNPs are also susceptible to light (especially ultraviolet light) and should be stored in the dark.

#### **1.5.4 Easy functionalization**

AgNPs and AuNPs can be functionalized very easily using various ligands. Some of them act as both reducing and stabilizing agent. The surface functionalization strategies of the nanoparticles are the prerequisite for the targeted applications since they affect its stability. Ravindran *et al.* have stabilized AgNPs using bovine serum albumin (BSA) via chemisorption for the biosensing application (Ravindran *et al.* 2010). Thiol has an extremely strong affinity towards both AgNPs and AuNPs. Naik *et al.* used peptides for synthesis and stabilization of AgNPs (Naik et al. 2002). Mondal et al. used cysteine and lysine to prepare water dispersible AgNPs and AuNPs (Mandal et al. 2001). Michael Faraday was the first who prepared gold hydrosol by the reduction of an aqueous solution of chloroaurate using phosphorus (Faraday 1857). Turkevich was the first who used citrate as both reducing and stabilizing agent for the synthesis of AuNPs (Turkevich et al. 1951). Thereafter, alkanethiol was employed by Mulvany et al. which was followed by Brust and Schiffrin in 1994 who reported two-phase synthesis strategy using thiolgold interaction to stabilize AuNPs. After that several ligands, polymers were used to functionalize the AuNPs. The commonly used polymers are polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyvinyl methyl ether (PVME), chitosan, polyethyleneimine (PEI), polydiallyl dimethyl ammonium chloride (PDDA), and polymethylmethacrylate (PMMA) etc. Some other sulfur-containing ligands used for the protecting AuNPs are disulfides, di and trithiols, thioethers, xanthates, and resorcinarene tetrathiols. Iodine can be used to oxidize and decompose these thiol-stabilized AuNPs. 167 Amine-capped AuNPs were reported using primary amines (Saha et al. 2012).

#### **1.5.5 Biocompatibility**

The AgNPs and AuNPs are most biocompatible nanoparticles because they are composed of inert material. Connor *et al.* have shown that AuNPs incorporated into human cell did not cause any toxicity (Connor *et al.* 2005). Similarly, Pauksch *et al.* studied the biocompatibility of AgNPs on the mesenchymal stem cells and osteoblasts by adding 10  $\mu$ g/g of AgNP and incubated for 21 days. He did not observe any effect on the differentiation of these cells (Pauksch *et al.* 2014).

## 1.5.6 Surface plasmon resonance (SPR)

Surface plasmon resonance is the significant optical property of AgNPs and AuNPs which results from the collective oscillation of free conduction electron after interaction with electromagnetic waves of visible light (Wei *et al.* 2015). This collective oscillation of the free conduction electrons is very sensitive to changes in the size and shape of the nanoparticle. The energy required to collectively excite the motion of the surface plasmon electrons increases with the decrease in diameter of the nanoparticles (Knoll 1998). For example, the energy required to excite the surface plasmon electron is comparable to the energy of visible light for AuNPs having diameters of 5 nm. Therefore, AuNPs strongly absorb with a maximum absorbance at wavelengths near 520 nm. AuNPs with diameters larger than 5 nm strongly absorbs with a maximum absorbance towards longer wavelengths. Thus one can tune the maxima of the SPR absorbance between 520 nm to 1000 nm (i.e., right from the visible into the near-infrared) by changing the diameter of the nanoparticle. Therefore, SPR of AgNPs and AuNPs result in strong visible and near-infrared (NIR) scattering and absorption. In addition to this, the SPR band is also sensitive to change in the dielectric properties of the surrounding medium (Kurihara and Suzuki 2002). Media of high dielectric constants (refractive indices) are effectively more polarizable and thus coupled with the surface plasmon electrons more readily, and the energy required to excite the electrons collectively is decreased. That is, the maximum in the SPR absorbance shifts to lower energy (longer wavelengths). In this context, the nanoparticles have an inherent sensing ability.

## 1.6 Applications of AgNPs and AuNPs

Due to extraordinary properties like tunable shape and size, biocompatibility, high surface plasmon resonance, AgNPs and AuNPs are being widely used in several applications such as antimicrobial, cytotoxicity, sensing, catalysis, drug delivery, wound healing, etc.

# 1.6.1 Antibacterial

AgNPs and AuNPs are widely used nanomaterials for their potent antibacterial activity. When the bacterial cultures are exposed to the AgNP and AuNPs, primarily the Ag<sup>+</sup> ions and  $Au^+$  are released into aqueous solution following partial oxidation (Chaloupka *et al.* 2010). These ions after interacting with the plasma membrane, interfere with the cellular functions like permeability and respiration, and ultimately killed the cells by lysis. AgNPs and AuNPs also prevent the replication of DNA and synthesis of protein by binding with DNA or by denaturing ribosomes (Chaloupka et al. 2010). Cui et al. have explained the detailed study of antibacterial activity against E. coli. The antibacterial activity of the nanomaterials depends on the structure of cell wall. On the basis of cell wall structure, the bacteria are classified into two major groups; Gram-negative (having a thick layer of peptidoglycans) and Gram-positive (having a thin layer of peptidoglycan). The Grampositive bacteria are affected strongly comparatively Gram-negative bacteria. Dhand et al. have shown the effective antibacterial activity of AgNPs synthesized from Coffea arabica seed (Dhand et al. 2016). Abdel-Raouf et al. have investigated the antibacterial activity of both AuNPs synthesized from Galaxaura elongata (Abdel-Raouf et al. 2017).

# 1.6.2 Antifungal

Bahrami-Teimoori *et al.* have reported the green synthesis of AgNPs (10-32 nm) using the extract prepared from the leaves of *Amaranthus retroflexus* and they investigated

its antifungal activity against the plant pathogenic fungi such as *Macrophomina phaseolina*, *Alternaria alternata* and *Fusarium oxysporum* (Bahrami-Teimoori *et al.* 2017). Narayan and Park have demonstrated the antifungal activity of AgNPs synthesized from turnip leaf extract against the wood-degrading fungal pathogens such as *Gloeophyllum abietinum*, *G. trabeum*, *Chaetomium globosum*, and *Phanerochaete sordid* (Narayanan and Park 2014).

AgNPs and AuNPs are also used as antifungal agents. Swain et al. have used root and leaf extracts of Vetiveria zizanioides and Cannabis sativa for the synthesis of AuNPs which showed an excellent potential towards antifungal activity (Swain et al. 2016). Abelmoschus esculentus seed extract was utilized by Jayaseelan et al. for the green synthesis of AuNPs with size ranging from 45-75 nm. Thus obtained AuNPs were investigated for the antifungal activity against Puccinia Aspergillus graminis, flavus, Aspergillus niger and Candida albicans using standard well diffusion method (Jayaseelan et al. 2013). Wani et al. have investigated size dependent antifungal activity of AuNPs which exhibited excellent antifungal activity against the fungus, Candida. They observed that discs shaped AuNPs corroborated stronger antifungal activity as compared to polyhedral shaped AuNPs (Wani and Ahmad 2013).

## 1.6.3 Antiviral

Although, the viruses are very serious for agriculture and human health, but still there are very few reports available on the antiviral activity of AgNPs and AuNPs. For example, the antiviral activity of the AgNPs synthesized by *Aspergillus ochraceus* was investigated by Vijaykumar and Prasad where they used the plaque count method to determine the effectiveness against M13 phage (Vijayakumar and Prasad 2009). Gaikwad *et al.* reported the mycomediated synthesis of AgNPs which showed the antiviral activity against herpes

simplex virus and human parainfluenza virus type 3 (Gaikwad *et al.* 2013). Sujitha *et al.* have used *Moringa oleifera* seed extract for the synthesis of AgNPs which showed great antiviral activity against dengue serotype DEN-2 and its major vector *Aedes aegypti* (Sujitha *et al.* 2015). The antiviral activity of AuNPs was also reported by some authors. Kesarkar *et al.* have synthesized AuNPs and observed its entry inhibitory as well as neutralizing activity against HIV virus (Kesarkar *et al.* 2017). Baram *et al.* have used mercaptoethanesulfonate functionalized AuNPs (MES-AuNPs) as effective inhibitors of Herpes simplex virus type 1 infection which was based on its ability to mimic cell-surface-receptor heparan sulfate (Baram-Pinto *et al.* 2010).

#### 1.6.4 Anticancer

Several authors have reported the cytotoxicology studies of AgNPs and AuNPs against various cancer cell lines. Venugopal *et al.* have synthesized AgNPs in the range of 5-20 nm from *Syzygium aromaticum* and investigated its cytotoxicity activity against breast cancer cell line (MCF-7) and breast cancer cell line (A549) (Venugopal *et al.* 2017). The AgNPs synthesized from the leaf extract of *Ficus religiosa* with average size 21 nm was investigated for the cytotoxic study on different cell lines (Nakkala *et al.* 2017). Jacob *et al.* have used the dried fruits of *Ficus carica* for the green synthesis of AgNPs which showed anticancerous activity on MCF-7 (Jacob *et al.* 2017). Jang *et al.* have used aqueous flower extract of *Lonicera hypoglauca* as reducing and capping agents for the synthesis of AgNPs and applied it in In vitro anticancer activity on MCF-7 (Jang *et al.* 2016). The cytotoxic study of AgNPs and AuNPs synthesized from *Spinacia oleracea* was investigated by Ramachandran *et al.* on mouse myoblast cancer cell line (Ramachandran *et al.* 2017).

Similarly, Naraginti and Li reported the anticancerous activity of AgNPs and AuNPs synthesized from *Actinidia deliciosa* (Naraginti and Li 2017).

### **1.6.5** Catalytic

Green synthesized AgNPs and AuNPs have also been used as a catalyst in several decontamination based reactions. The beet root extract mediated synthesis of AgNPs also showed good catalytic activity against the degradation of 4-Nitro phenol (Bindhu and Umadevi 2015). Tahir *et al.* reported the catalytic degradation of methylene blue using AgNPs synthesized from extract of *Salvadora persica* (Tahir *et al.* 2015). Aromal and Philip reported the green synthesis of AuNPs using the extract of *Trigonella foenum-graecum* and investigated its size-dependent catalytic activity. They observed that smaller AuNPs showed better catalytic activity than larger AuNPs (Aromal and Philip 2012). *Breynia rhamnoides* derived AgNPs and AuNPs showed potent catalytic activity for the degradation of 4-Nitro phenol to 4-Amino phenol (Gangula *et al.* 2011).

## 1.6.6 Biosensing

Green synthesized AgNPs and AuNPs are also being used as a biosensor for the colorimetric detection of several water pollutants. For example; Annadhasan *et al.* have utilized green synthesized AgNPs and AuNPs. They observed that the synthesized AgNPs were sensitive for the colorimetric detection of  $Hg^{2+}$  and  $Mn^{2+}$  whereas AuNPs were sensitive for  $Hg^{2+}$  and  $Pb^{2+}$  (Annadhasan *et al.* 2014). Annadhasan and Rajendiran reported highly sensitive and selective colorimetric detection of  $Hg^{2+}$  using AgNPs synthesized from green route (Annadhasan and Rajendiran 2015). The sensitive and selective detection of  $Hg^{2+}$  was also reported by Kumar *et al.* using aqueous extract of *Muraaya koienigii* (Kumar *et al.* 2017c). Basiri *et al.* have synthesized AgNPs using *Cucumis melo* juice. Thus obtained

AgNPs were further utilized for the colorimetric detection of  $Cu^{2+}$  (Basiri *et al.* 2017). Kumar *et al.* also showed the colorimetric detection of Iron (III) using AgNPs synthesized from *Croton bonlandianum* (Kumar *et al.* 2017b). The green synthesized AgNPs were also capable of detecting the cysteine from serum samples as reported by Shen *et al.* (Shen *et al.* 2016) Balavigneswaran *et al.* have prepared AgNPs using aqueous leaf extract of Anacardium occidentale for the rapid detection of chromium (IV) (Balavigneswaran *et al.* 2014). Joshi *et al.* have synthesized AgNPs through *S. aromaticum* and investigated the pH controlled detection of chromium (IV) (Joshi *et al.* 2016).

#### 1.6.7 Drug delivery

The investigation of the biological effect of the nanoparticles is very important for the effective drug delivery system. Since AgNPs and AuNPs have unique physical and chemical properties as well as strong binding affinity towards thiols, amino acids, proteins, carboxylic acid aptamers and disulfides, therefore these are being used extensively in the field of drug delivery (Khan *et al.* 2014). Kumar and Poornachandra have studied the in vitro release of Miconazole from Miconazole-AgNPs which was evaluated in phosphate buffer saline (PBS) at pH 5.5 and 7.4 for 6 h. they observed that 90% of the Miconazole was released at pH 5.5 whereas only 30% release was observed at pH 7.4 (Kumar and Poornachandra 2015). The curcumin-loaded AgNPs hydrogel prepared by Ravindra *et al.* was studied against antibacterial activity and drug delivery application. It was found that the modified AgNPs showed a controlled release of curcumin and significantly active against *E. coli* as compared to normal AgNPs (Ravindra *et al.* 2012). Paciotti *et al.* have studied the drug delivery using PEG-modified AuNPs where they target tumor cells by extravasation using AuNPs coated with a mixture of tumor necrosis vector and PEG-thiol (Paciotti *et al.* 2004). Light-controlled

external release strategy was used by Yeh *et al.* to deliver the anticancer drug 5-fluorouracil into cells using AuNPs functionalized with monolayer of zwitterionic and photocleavable ligands on the surface (Yeh *et al.* 2012).

### 1.6.8 Gene delivery

Since last decade, AuNPs has emerged out as an excellent candidate for the delivery of small drug molecules or large biomolecules such as DNA and siRNA. Generally, gene therapy is meant for the treatment and control of diseases by the use of nucleic acids. Guo *et al.* have reported that charge reversal polyelectrolyte deposited AuNPs effectively enhanced the gene delivery efficiency and gene expression in the context of RNA interference (Guo *et al.* 2010). Niidome *et al.* have prepared AuNPs using NaBH<sub>4</sub> in the presence of 2-aminoethanethiol which formed a complex structure with plasmid DNA containing a luciferase gene. This complex particle could be used to deliver a gene into the target HeLa cells in about 3 h (Niidome *et al.* 2004). Umeda *et al.* have reported that the combination of phototherapy with conventional gene has improved the efficiency of gene delivery into cells (Umeda *et al.* 2005). The work reported by Niidome *et al.* revealed the release of plasmid DNA from AuNPs after exposing to pulsed laser irradiation (Niidome *et al.* 2004).

## **1.6.9 Wound healing**

AgNPs and AuNPs have been used extensively in wound healing applications, due to their strong antibacterial activity. So far, several studies have been done on the wound healing property of AgNPs and AuNPs. Wright *et al.* have investigated the wound healing property of AgNPs coated dressing material on wound created on the backs of pigs which were contaminated with *Pseudomonas aeruginosa*, *Fusobacterium* sp., staphylococci, by covering with dressing material containing AgNPs and without AgNPs. They observed the rapid wound healing in first few days of post-injury in the wound covered by dressing material containing AgNPs (Wright *et al.* 2002). The study on AgNPs impregnated bacterial cellulose (AgNPs-BC) was carried out by Wu *et al.* where they found that the slow release of AgNPs from AgNPs-BC exhibited excellent antibacterial activity with 99% reductions in *E. coli, S. aureus*, and *P. aeruginosa* which can be used as wound healing material (Wu *et al.* 2014). Recently, Lu *et al.* have reported the preparation of spongy AgNPs nanocomposite which showed enhanced wound healing property (Lu *et al.* 2017). The wound healing property of AuNPs in photobiomodulation therapy (PBMT) was investigated by Lau *et al.* which showed its much potential to accelerate wound healing due to enhanced epithelialization, collagen deposition and fast vascularization (Lau *et al.* 2017). Sivakumar *et al.* investigated the wound healing efficacy of AgNPs and AuNPs showed a great potential towards wound healing without showing any toxic effects (Sivakumar *et al.* 2017).

#### **1.7 Selection of plant source**

Generally, the weed plants grow in stress condition which led them to synthesize secondary metabolites like polyphenolics such as tannin, flavonoids, terpenoids, alkaloids, enzymes, protein, sugars, etc. These secondary metabolites are the rich source of reducing and stabilizing agent which can reduce silver and gold metal ion into AgNPs and AuNPs.

In the current study, several plants present in our Institute campus (Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India) were investigated against the synthesis of AgNPs and AuNPs but due to the rich source of secondary metabolites, the weed plants; *Xanthium strumarium (X. strumarium)* and *Croton*
*bonplandianum* (*C. bonplandianum*) were used as a source of reducing and stabilizing agents.

#### **1.7.1** Xanthium strumarium

*X. strumarium* is an annual plant species and belongs to Asteraceae family. It is commonly known as cocklebur. This is a gregarious weed found throughout the India having the maximum length up to 1 m in height with a short, stout, hairy stem and commonly found in stress condition, along roads, canals and river banks (Kamboj *et al.* 2010). *X. strumarium* is a self-fertile plant and its flowering time in India is August-September. The flowers are monoecious and are pollinated by insects. The major route of seed dispersal is through animal which gets stick with the skin and hairs of the animals as the fruits have hooked bristles and two strong hooked beaks.

*X. strumarium* is considered as a reputed medicine in several parts of the world including Europe, China, Indo-China, Malaysia, and America. The root and fruits of this plant are used as a medicine. The Ayurveda advocates that *X. strumarium* has numerous medicinal properties like cooling, fattening, alexiteric, anthelmintic, tonic, laxative, digestive and antipyretic. It also improves appetite, voice, complexion, and memory. It is also used in curing of leucoderma, biliousness, a bite of poisonous insects, epilepsy, salivation, and fever. It is reported to be fatal to cattle and pigs (Kamboj *et al.* 2010). The American tribes use it to relieve constipation, diarrhea and vomiting. The phytochemical study of this plant revealed the presence of various phytochemicals such as alkaloids, flavonoids, triterpenoids, terpenoids, tannin, saponin, quinone, protein, and sugars (Farooq *et al.* 2014). *X. strumarium* L. fruits are used in traditional Chinese medicine for the treatment of sinusitis, rheumatism and skin pruritus; from this source a novel thiazinedione derivative has been

reported (Ma *et al.* 1998). The extracts from its various parts showed antifungal, antiinflammatory, antileishmanial, antitrypanosomal, hypoglycemic, anthelmintic, antiulcerogenic, diuretic, and anticancer activities (Kandhare *et al.* 2012; Sharifi *et al.* 2015). In our study, the leaf extract of *X. strumarium* was investigated for its potential of rapid biosynthesis of AgNPs and AuNPs.

### 1.7.1.1 Scientific classification of X. Strumarium

Kingdome: Plantae

**Division:** Magnoliophyta

Class: Magnolopsida

Order: Asterales

Family: Asteraceae

Genus: Xanthium

**Species:** *X. strumarium* 

Botanical Name - Xanthium strumarium



Figure 1.8 *X. strumarium* plant showing the leaves and fruits

## 1.7.2 Croton bonplandianum

C. bonplandianum, is a perennial herb belonging to family Euphorbiaceae. It is a native weed to the Southern Bolivia, Paraguay, Southwestern Brazil and Northern Argentina (Vennila et al. 2010). It is also found in India as an exotic weed and commonly found along the roads, canal, and other water stressed area. C. bonplandianum is commonly known as Kala Bhangra (Hindi), three-leaved caper (English), Ban Tulsi, Jungle Tulsi (Bengali), Eliamanakku (Tamil), Kukka mirapa (Telgu), Alpa bedhi soppu (Kannada). Flowering and fruiting time of C. bonplandianum is September to December (Thenmojhi et al. 2013). C. bonplandianum has a great medicinal value in Indian Ayurveda. The seeds of this plant are used to cure jaundice, abdominal dropsy, acute constipation, and internal abscesses (Reddy 1995). The extracts obtained from the various parts of this plant have potent antimicrobial and antitumor activity. This plant is also considered as chologogue and purgative. The fresh juice prepared from the leaves of this plant is used for the treatment of headache (Saggoo et al 2010). The latex of plants shows the healing of the wounds and cut. The plant has been credited with potential to cure the liver disorder, swelling of the body, cure against ringworms and skin diseases.

In spite of having medicinal value it has a great composition of reducing as well as capping agent required for the potent biosynthesis of AgNPs (Singh *et al.* 2014). *C. bonplandianum*, commonly known as Three-Leaved Caper.

# 1.7.2.1 Scientific classification of C. bonplandianum

Kingdome: Plantae

Division: Magnoliophyta

Class: Magnolopsida

**Order:** Euphorbiales

Family: Euphorbiaceae

Genus: Croton

Species: C. bonplandianum

**Botanical Name-** *C. bonplandianum* 



Figure 1.9 C. bonplandianum plant showing the leaves, flowers, and fruits

### **1.8 Research objectives**

The above mentioned background information from the exhaustive literature survey enlightened the fact of deep exploration of green synthesis using plant extracts. It encouraged for the development of completely eco-friendly and economically viable green route for the rapid synthesis of AgNPs and AuNPs without utilizing the external source of energy like heating and stirring. Therefore, it is necessary to develop such a route to explore the optimum synthesis of AgNPs and AuNPs by optimizing the various process parameters affecting the synthesis such as time, leaf extract dose, and metal ion concentration. Thus in the current study, following objectives were set to explore the optimum synthesis of AgNPs and AuNPs, characterization and further utilization in environmental and biological applications.

- Selection of suitable plant containing phytochemicals such as tannin, alkaloids, flavonoids, sugar, proteins, enzymes, etc.
- Development of one pot, eco-friendly, economically viable and energy efficient route for the swift synthesis of AgNPs and AuNPs.
- Optimization of different process variable affecting the synthesis of AgNPs and AuNPs such as exposure time, leaf extract dose, metal ion concentration.
- **a.** UV-visible spectroscopy
- **b.** Fourier Transform Infrared Spectroscopy (FT-IR) analysis
- c. X-Ray Diffraction (XRD) analysis
- d. Scanning Electron Microscopy (SEM) Analysis
- e. Energy-dispersive X-Ray spectroscopy (EDS) analysis
- f. Transmission Electron Microscopy (TEM) Analysis
- g. Selected Area Diffraction Pattern (SAED) Analysis
- h. Atomic Force Microscopy (AFM) Analysis
- i. X-Ray Photoelectron Spectroscopy (XPS) analysis

 Utilization of thus obtained AgNPs and AuNPs at an optimum condition for the environmental and biological applications