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1.1 Introduction 

“Quantum Materials” emerged as one of the most vivacious areas across the 

landscape of present research in physics. These materials are very efficient to apply in faster 

quantum computing, memory devices, information technology, and spintronics devices. 

Such materials are advantageous over classical or nanostructured materials as they are 

associated with novel entanglements or topological properties. The topological properties 

signify the word topology, which is a branch of mathematics associated with another 

mathematical term genus number representing the number of holes in the surface [1], [2]. 

The Noble Prize in theoretical condensed matter physics was given to David J. Thouless, 

F. Duncan M. Haldane, and J. Michael Kosterlitz in 2016 for their theoretical work on 

topological phase transition and topological phases of matter. The perception of topological 

matters initiated by the concept of quantum Hall effect (QHE) [3], [4] in a two-dimensional 

(2-D) electron gas system under the application of an out-of-plane magnetic field, which is 

a quantum version of the classical Hall phenomena. As a result of the quantum Hall effect 

(QHE), a novel state of quantum matter with a conducting edge state and an insulating bulk 

containing localized electrons has been discovered. However, similar phenomena can be 

realized as quantum spin Hall effect (QSHE) [5], [6], [7] in two-dimensional or three-

dimensional (3-D) topologically protected materials without application of external 

magnetic field, driven by internal spin-orbit coupling (SOC) [8], [9] of the material 

protected by time-reversal symmetry (TRS) [4], [10]. Certain materials like topological 

insulators (TIs) [4], [11], Weyl semimetals (WSMs) [12]–[15] and Skyrmions  [16] are the 

most studied quantum materials that exist with strong SOC under TRS protection. Among 

them, the 2-D or 3-D TIs are the types of materials with insulating bulk and the conducting 

edge state or surface state driven by strong SOC protected by the TRS. However, the WSMs 

might be considered as 3-D analogue of Graphene upon breaking either time-reversal 



Chapter 1                                                                       Introduction  

 

2 
 

symmetry or inversion symmetry. Additionally, unlike the topological surface state (TSS), 

the Fermi surface of the surface state of WSMs represents an open line termed the Fermi 

Arc linking the surface projections of Weyl nodes [17]. Moreover, the Skyrmions are 

topologically protected spin configurations observed in non-centrosymmetric non-trivial 

heli-magnets exhibiting particle-like characteristics that provide enormous stability even at 

nanoscale at a particular temperature range under very small perturbation [18]–[20]. The 

Skyrmions are basically the potential carrier of information possibly be applied in future 

high-density data storage devices, ultrafast spintronics devices and microwave devices. The 

present thesis is based upon the detailed investigation of magnetic and transport properties 

of such bulk and heterostructured magnetic topological insulators and magnetic Weyl 

semimetals displaying Skyrmion-like exotic spin texture. The unique properties of these 

materials prepare a good podium for understanding interesting physics and can potentially 

be used in future technological applications [4]. Therefore, the study of these quantum 

materials provides us the best logical corridor to connect the most important key 

components of science and technology, which are matter, energy and information. 

1.2 Topology in Topological Phase 

As we have discussed earlier, quantum materials are associated with the topological 

property, which originates with the concept of topology. Topology is a mathematical 

perception, according to which the doughnut and the coffee mug shown in Figure 1.1 (a) 

are identical by means they can be transformed into one another through smooth 

deformation without tearing or gluing. Thus, geometrical constructions undergoing smooth 

deformations and transformation are topologically invariant to each other. For example, a 

solid sphere can be revolved into a disc by compressing along a diagonal axis exhibiting 

topological invariance. Nevertheless, the same solid sphere shares a different topology from  
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Figure 1.1: (a) Schematic representation of topology showing smooth deformation from 

cup to doughnut. (b-e) Are representing genus numbers for different topological systems. 

(f) Shows that the cut on the doughnut is not changing its Topology [21]. 

a doughnut-shaped geometry, as it is impossible for them to convert into each other’s shape 

by only stretching and bending. Thus, one of the fundamental concepts in topology is to 

categorize objects by counting the number of holes they enclose. To construct a more 

formal definition, we use the value of genus (𝑔) given by the Gauss-Bonnet theorem [21]. 

In mathematics, this theorem connects the curvature (geometry) of the surface to its 

topology and correlates it to the genus of the object as, 

                                                ∮ (𝐾. 𝑑𝐴)
0
𝑐𝑙𝑜𝑠𝑒𝑑 

𝑠𝑢𝑟𝑓𝑎𝑐𝑒
= 4п(1 − 𝑔)                                        (1.1) 

Where K specifies the Gaussian curvature for a sphere with radius r as;  = 1
𝑟2⁄  . Here, 𝑔 

signifies the value of the genus related to the number of holes enclosed in an object. In 

Figure 1.1 (b-e), we have shown objects with different genus values (same as the number 

of holes), representing different topological classes. Geometries consuming an equal 

number of holes are topologically equivalent.  

In a band insulator, such a smooth deformation is similar to the modification in the 

Hamiltonian of a many particles system without closing the bulk band gap. Two quantum 

states are said to be topologically equivalent only if a smooth transformation occurs from 

one state to the other without shutting the band gap. Hence, they are topologically similar 

if the insulators can constantly transform into one another without closing the energy gap. 
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Another mathematical term, Chern number, η, is also a topological invariant like 

genus number, and it distinguishes the two states in topologically protected materials. 

Figure 1.1 (f) shows some exterior cuts on the doughnut, though the no of holes enclosed 

in the shape is still one evidencing the topology is protected against such deformation. 

Likewise, the topological surface state is robust against chemical substitution or any 

external disruption until it affects the topology. However, to describe it, we can define a 

Berry curvature in the Brillion zone in place of a Gaussian curvature defined in equation 

(1.1). The surface integral of Berry flux Fm can be expressed as [8]:  

                                                  𝐹𝑚(𝐾) = ∇𝑘 × 𝐴𝑚(𝐾)                                               (1.2) 

Berry phase, which is correlated to the Bloch wave functions (|𝑢𝑚(𝐾)˃, where K represents 

the momentum), can be used to explain the Chern invariant physically. When K is 

transported around a closed loop |𝑢𝑚(𝐾)˃, it gets a Berry phase which may be expressed 

by the line integral: 

                                                       𝐴𝑚 =  𝑖⟨𝑢𝑚|∇𝑘 |𝑢𝑚⟩                                                               (1.3) 

Berry flux surface integral is one way to put it:  

                                                       𝐹𝑚(𝐾) = ∇ × 𝐴𝑚(𝐾)                                                  (1.4) 

The total Berry flux in the Brillouin zone is the Chern invariant and may be expressed as: 

                                                      η𝑚 =
1

2𝜋
∫ 𝑑2𝑘 𝐹𝑚(𝐾)                                                      (1.5) 

Here η𝑚  represents a quantized integer. If η = 0, an insulator is considered trivial; if η = 1, 

it is a quantum spin Hall insulator. A trivial insulator, for η=0, has a gapped edge, whereas 

a quantum spin Hall insulator with η=1 has a pair of gapless helical edge states, carrying 



Chapter 1                                                                       Introduction  

 

5 
 

the electrons having opposite spins. Hence, the edge is conducting for this system unlike 

the trivial insulator.  

1.3 Preservation of Time Reversal Symmetry  

Time reversal symmetry is a fundamental phenomenon to be conserved in 

topologically protected systems. The concept of symmetry comes with the perception 

associated with the phases of matter through a phase transition. For example, we get liquid 

crystals by breaking translational symmetry, which the Landau phase transition theory can 

explain. Furthermore, we can achieve other complex phases such as ferromagnetic (FM) 

phase braking rotational symmetry and superconducting (SC) phase with broken gauge 

symmetry. In contrast, for the topologically invariant phase, preserving time reversal 

symmetry is a must to protect the topological surface state. The TRS protects the TSS 

against non-magnetic impurities and imperfections, diminishing the possibility of 

electronic backscattering. In the presence of such robust TSS driven by strong spin 

momentum locking, the electrons can move only in the forward direction. The electrons 

can propagate along a backward direction if and only if the electron spin flips its direction. 

This behavior is because the electron spin is exclusively locked with its momentum vector.  

 

Figure 1.2: Schematic diagram of motion of two electrons having opposite spins with 

preservation of TRS in TSS. 
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As a result, electrons having opposite spin configurations follow reverse pathways, 

as exhibited in Figure 1.2. However, with respect to an observer, these two incidents are 

identical with reversed directions. 

1.4 The Concept of Topology Initiated by Quantum Hall Effect 

Before the discovery of the quantum Hall phenomenon, different states of matter 

related to atoms and their electrons were categorized in the domain of quantum materials 

using the principle of broken symmetries. All the systems like crystalline solids, magnetic 

materials, and superconductors are examples of violating translational, rotational, and 

gauge symmetries, respectively. Nevertheless, as the first condensed matter system without 

spontaneous violation of any symmetry, the concept of the quantum Hall state and the 

quantum spin Hall state arrived with the preservation of topological properties. The 

properties of such matters depend on their topology, and they are topologically distinct 

from the formerly familiar states of matter. Hence, the concept of the topological phase of 

matter originated from the theory of the quantum Hall effect, which is the quantum version 

of the classical Hall effect. Edwin Hall discovered the classical Hall effect in 1879 [22], 

according to which, ideally, the transverse resistivity in a conducting system exhibits linear 

dependence with the applied out-of-plane magnetic field. Because under a transverse 

electromagnetic field, the charge carriers in a metal experience Lorentz force resulting 

accumulation of equal and opposite charges on the opposite surfaces of the conductor. 

Thus, the transverse Hall voltage (VH) is initiated by this phenomenon, as shown in Figure 

1.3 (a). Systematic analysis of the Hall effect provides information about the type of charge 

carriers along with typical values of charge carrier density and charge carrier mobility of 

the respective system.  𝑅𝐻 represents the Hall coefficient as: 

                                                𝑅𝐻 =
𝑧𝑉𝐻

𝐼𝑥𝐵
=

1

𝑛𝑒
                                                    (1.6) 
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Here, z is the thickness of the conducting bar; Ix represents the current flowing through the 

system; B is the out-of-plane applied magnetic field; VH is Hall voltage; n is exhibiting the 

charge carrier density of the electric charge. 

 

Figure 1.3: (a) Schematic diagram of the Hall effect. (b) Variation of resistivity with the 

applied magnetic field for classical Hall effect [23]. 

 

Figure 1.4: (a) Longitudinal (ρxx) and transverse resistivity (ρxy) variation with 

applied magnetic field, revealing the integer quantum Hall Effect at a very low temperature. 

(b) Quantization of energy level in discrete Landau Levels with the application of magnetic 

field by increasing magnetic field strength, only those Landau levels that lie below the 

Fermi level are occupied [24].  

Nonetheless, Von Klitzing first discovered the quantum Hall effect in 1980 with the 

application of a transverse magnetic field on a 2-D electron gas system (2DEG) at very low 

temperature, a century after the first discovery of the Hall effect, and later awarded with 

the noble prize in 1985 [3], [4]. Under a perpendicular magnetic field, the electrons are 

localized and stacked inside the system exhibiting insulating behavior as the bulk state. 



Chapter 1                                                                       Introduction  

 

8 
 

However, at the edges (for 2-D), the electrons cannot complete full circles and skip through 

the edges, creating semi-circles revealing conducting edge states at certainly low 

temperatures and high magnetic fields. Thus, unlike the classical hall effect where the 

transverse resistivity (ρxy) displays a linear dependency with the applied magnetic field (as 

shown in Figure 1.3 (b)), for QHE, the transverse resistivity is quantized (shown in Figure 

1.4 (a)) as: 

                                                              ρxy  =  
ℎ

N𝑒2
                                                        (1.7) 

Where N is an integer, h is the Plank constant, and e is the electron’s charge. Due to the 

quantization of electronic motion in the cyclotron orbit, the energy levels are also quantized 

as the Landau levels, as displayed in Figure 1.4 (b). The energy of Landau levels can be 

expressed as: 

                                                     𝐸𝑛 =  ( 𝑁 +  
1

2
 ) ħ𝜔𝑐                                                                             (1.8) 

                                                        Where, 𝜔𝑐  =
𝑒𝐵

𝑚
                                                      (1.9) 

Here N is an integer, B is the perpendicular magnetic field, and m is the electronic cyclotron 

mass. As shown in Figure 1.4 (b), the Landau levels below Fermi energy (EF) are occupied 

(valance band), and the levels above EF are empty (conduction band) at an absolute zero 

temperature and in the absence of a magnetic field. However, when we apply some 

transverse magnetic field, the Landau levels shift upward. At a certain condition, the EF is 

situated between two Landau levels when there is a finite separation between the occupied 

and unoccupied states, similar to the band gap in an insulator. Nevertheless, the situation 

changes when the EF lies inside a Landau level without exhibiting a band gap like a 

conductor. This phenomenon is reflected in the magnetic field dependency of the 

longitudinal resistivity (ρxx) (Figure 1.4 (a)), showing metallic and insulating behavior 
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periodically with quantization of ρxy. This QHE is a quantum mechanical aspect that 

initiates the evolution of various quantum phases of matter in quantum materials with the 

perception of topology.  

1.5 Quantum Spin Hall Effect (QSHE) 

In continuation to our previous section, if we consider two identical replicas of 

quantum hall systems situated at the same position under the application of equal and 

opposite out-of-plane magnetic field (Figure 1.5 (a)), it is possible to nullify the net 

magnetic field. However, there may still exist some spin-polarized current. After the 

discovery of such a hypothetical phenomenon, many theories were developed suggesting 

different systems possessing similar properties in the absence of an external magnetic field. 

Finally, Kane and Mele proposed the quantum spin Hall effect model in 2005 based on the 

concept of QHE [25]. They enlightened on the topologically protected systems in which 

such property can be aroused without applying an external magnetic field, merely driven 

by the internal spin-orbit coupling protected by the TRS. Preserving the time reversal 

symmetry, the spin up and spin down in the system follow identical but opposing courses 

at the edges, which are mutually exclusive to each other, as exhibited in Figure 1.5 (b). 

Such a QSHE system behaves practically similarly to the hypothetical model of a two-

quantum hall system, as shown in Figure 1.5 (a). Noticeably, in QHE, the TRS is broken 

due to the application of the external magnetic field.  

However, in QHSE, the TRS is protected, as no external field is required. Internal 

spin momentum locking provides the required perturbation to achieve such a phenomenon, 

distinguishing the QSHE from the QHE. Further, the band structure (energy–momentum 

diagram) corresponding to a QHE system displays an insulating bulk band gap with the 

conducting edge state driven by the skipping orbital motion of electrons, as shown in Figure  
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Figure 1.5: (a) Two copies of a QHE edge state for an opposite magnetic field. (b) An 

amalgamation of these two QHE states creates a quantum spin Hall state without a 

magnetic field [7]. 

 

Figure 1.6: (a) Band structure corresponding to QHE and (b) SQHE are exhibited here [4]. 

(c) QHE with both right-moving and left-moving edge states that are robust against 

backscattering. (d) QSHE with upper state right moving spin up and left moving spin down. 

Backscattering is suppressed from non-magnetic impurities [26]. 

1.6 (a). Whereas, in QSHE, up and down spin of electrons exhibit both left and right moving 

paths protected by time reversal symmetry, and the edge states corresponding to them 

demonstrate a Dirac cone ideally at the Fermi surface as shown in Figure 1.6 (b). 

Additionally, if we consider the one-dimensional motion of electrons along forward 

and backward directions, their paths may interfere due to random scattering leading to 
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resistance. So, to avoid such random collisions, spatial separation between the counterflow 

directions is needed following a basic traffic control. Here comes the essence of the QHE 

in the quantum materials controlling the traffic to rule out the scattering effect. Thus, in 

QHE, the electrons are spatially separated in two mutually exclusive pathways at two 

opposite edges of the system, as shown in Figure 1.6 (c). So, the symbolic equation shows 

that the fundamental degrees of freedom are also spatially separated in a QH bar,  

“2 = 1 (forward mover) + 1 (backward mover).” Noticeably, the states are robust in the 

sense that the spin-polarized edge states corresponding to the left and right moving 

electrons remain unaffected from scattering even with the presence of non-magnetic 

impurity. The propagating electron is prohibited from backscattering and follows a path 

enclosing around the impurity due to the topological protection [9], as seen in Figure 1.6 

(c). Such robust dissipationless transport may serve the spintronics and semiconductor 

device industry when we overcome the necessity of a large magnetic field as in the QHSE 

system. However, Figure 1.6 (d) exhibits a spinful 1D system containing four basic 

channels without applying an external field. In a QSHE system, these channels are spatially 

divided into separate traffic lanes while maintaining the TRS by means that each edge has 

a right mover with an upward spin and a left mover with a downward spin, as shown by the 

symbolic equation “4 = 2 + 2.” For QHSE, backscattering is forbidden for both the left and 

right movers. To elaborate on this mechanism, Xiao-Liang Qi provided a basic analogy 

regarding the antireflecting coating in most eyeglasses and lenses [9]. The reflected light 

from the top and bottom surfaces interferes destructively, leading to perfect transmission 

(shown in Figure 1.7 (a)) modulated by the optical wavelength and coating dimension. 

Similarly, an electron may reflect by any impurity present in the system and can interfere 

with other electron reflection paths either destructively or constructively. If the impurity is 

non-magnetic, the electrons with a clockwise or anticlockwise path turn around the 
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impurity rotating the spin by an angle 2π under TRS protection. Thus, such electron paths 

always interfere destructively, resulting in perfect dissipationless transmission, as 

displayed in Figure 1.7 (b). However, in the presence of a magnetic impurity, TRS is 

violated. As a result, the backscattered electrons no longer interfere destructively with each 

other. Physically, with an even number of forward channels, dissipation exists, so the robust 

edge state in QSHE preserves only with the odd number of forward or backward mover 

electrons. The QSHE was predicted theoretically and probed experimentally in 2-D HgTe 

quantum wells with strong SOC [27], [28]. Then this effect was observed in conventional 

TIs like BiSb alloys, Sb2Te3, Bi2Se3, and Bi2Te3 bulk crystals [29]–[31].  

 

Figure 1.7: (a) Light waves that are reflected by the top (blue line) and bottom (red line) 

surfaces of a lens with an antireflection coating interfere destructively, suppressing 

reflection. (b) Schematic diagram of two opposite scattering paths around an impurity for 

the QSH state. The 2π total path difference between them results in the suppression of 

Fermion backscattering [13].  

1.6 Anomalous Hall Effect (AHE) to Quantum Anomalous Hall Effect (QAHE) 

In non-magnetic materials, the Hall voltage is proportional to the applied magnetic 

field due to Lorentz force, as discussed earlier in detail. The slope of the curve displays 

linear field dependence and is governed by the type of charge carriers and their density. 

After discovering the ordinary Hall effect (OHE) (Figure 1.8 (a)), Hall carried out the same 

experiments for the ferromagnetic materials and observed an unusual change in slope at a 

low magnetic field. Later, such unusual behavior was found to be originated due to 
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spontaneous magnetization in the ferromagnetic materials and was recognized as an 

anomalous hall effect, as shown in Figure 1.8 (b). The internal spin-orbit coupling may play 

a significant role behind such an anomaly, though the exact reason is still under discussion. 

Other probable reasons include skew scattering or side jump of carriers (extrinsic 

mechanisms) and some other intrinsic mechanisms, which may also be responsible for AHE  

 

Figure 1.8: The variation of Hall resistivity ρxy with the applied magnetic field B. (a)  

Ordinary Hall effect (b) Anomalous Hall effect (c) Measured hysteresis loop from quantum 

anomalous Hall effect [32]. 

[32]. The quantum mechanical version of the anomalous Hall effect is known as the 

quantum anomalous Hall effect. Soon after discovering the quantum anomalous Hall effect, 

it was realized that the theory used to explain the QHE might be used in explaining QAHE 

in magnetic quantum materials.  

All six members of the hall effect family have already been described in sections 

1.4, 1.5, and 1.6. They have been summarized in the following section to compare them in 

short, as shown in Figure 1.9 (a-f). Here, OHE, AHE, and SHE exhibit classical 

mechanisms, and QHE, QAHE, and QSHE are the quantum mechanical version of them. 

For OHE and QHE, an external magnetic field is required along the out-of-plane direction. 

AHE and QAHE occur in magnetically ordered materials; thus, no external magnetic field 

is needed. However, due to the presence of an external or internal magnetic field, the TRS 

is broken for all four systems OHE, AHE, QHE QAHE. Here comes the SHE and QSHE 
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Figure 1.9: The schematic diagram to compare the six members of the Hall effect family 

as (a) ordinary Hall effect, (b) anomalous Hall effect, (c) spin Hall effect (SHE), (d) 

quantum Hall effect, (e) quantum anomalous Hall effect, and (f) quantum spin Hall effect 
[33]. 

with TRS protection with SOC. All the quantum mechanical systems are topologically 

identical and different from each other. However, the QSHE is the pioneer of topologically 

invariant quantum materials and TRS preservation. 

1.7 Spin-Orbit Coupling Initiating Band Inversion Mechanism 

The spin-orbit coupling has been mentioned several times to describe the 

topological properties in previous sections. Here I will discuss what it means and why it is 

so important for quantum matters. When the electron spin and its intrinsic angular 

momentum interact with its orbital angular momentum, the SOC arises. On the other hand, 

we can say that the spin up and spin down electrons encounter at the TSS in alternate 

effective fields, leading them to transmit in the reverse direction. This phenomenon is 

known as spin momentum locking and is valuable from the application point of view as a 

data storage and switching device application because this prohibits electron motion from 

backscattering. If a spin-up electron is locked with its momentum and propagates in the 

forward direction, backscattering may occur only if the spin flips to the opposite direction, 
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which is impossible under TRS. However, backscattering can occur if TRS is broken (in 

case of magnetic impurity or applying an external magnetic field). Thus, the SOC and TRS 

both preserve the robustness of TSS and do not allow backscattering. Generally, the s and 

p orbital electrons initiate the conduction and valence bands in ordinary semiconductors 

where the conduction band (s-band) shifts upward, and the valance band (p-band) shifts 

downwards [9]. Therefore, these bands never cross each other in ordinary materials. 

However, the presence of strong SOC initiates a band inversion in topological materials 

(mainly TIs), which is accountable for the unique properties. Here, due to strong SOC in 

heavy metals, the p-band (valance band) shifts upward and the s-band shifts downward 

direction. Due to this band shifting, the s and p bands cross each other, and the normal band 

structure gets inverted, called band inversion [34], [35]. Hence, due to band inversion, the 

p-band energy becomes higher than the s-band. The points where the bands intersect each 

other introduce the surface state overcoming the bandgap. For example, we studied the 

orbital splitting in the atomic energy levels of a conventional topological insulator Bi2Se3 

and displayed it in Figure 1.10 [30]. The energy level shifting and splitting may happen 

fundamentally due to chemical bonding, crystal field splitting, and spin-orbit coupling. The 

unit cell of Bi2Se3 consists of two Bi and three Se atoms, and the outermost configuration 

of Bi and Se atoms are 6S2 6p3 and 4S2 4p4, respectively. Hereby, the outermost cell of each 

atom contains three p orbitals as px, py and pz. Therefore, there are total fifteen p orbitals in 

a unit cell of Bi2Se3. As shown in Figure 1.10, in stage I, Bi energy levels are pushed up, 

and Se levels are pushed down because of chemical bonding. In stage II, due to crystal field 

splitting Bi energy level splits into two levels with one odd and one even parity denoted as 

𝑃1𝑥𝑦𝑧
− , 𝑃1𝑥𝑦𝑧

+ , respectively. In contrast, Se energy level splits into three states with different 

parity i.e., two odds, one even denoted as 𝑃0𝑥𝑦𝑧
− , 𝑃2𝑥𝑦𝑧

−  and 𝑃2𝑥𝑦𝑧
+ , respectively. In stage 
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III, strong SOC leads to band inversion in the Bi2Se3 system as the energy level below the 

EF moves to the upside, and the level above the EF moves downward.  

 

Figure 1.10: Schematic picture of the band inversion of Bi and Se p orbitals in Bi2Se3 at 

the ᴦ point. Stage I represents the effect of chemical bonding, Stage II represents the crystal 

field splitting, Stage III represents the effect of SOC [9]. 

1.8 Weak Localization (WL) and Weak Antilocalization (WAL) Effects 

 Weak antilocalization is a phenomenon associated with the TSS describing the 

localization and delocalization of electrons in the system. WAL originated from π Berry 

phase generally appears at very low temperatures under the application of a small magnetic 

field resulting in a destructive quantum interference between time-reversed loops created 

by scattering trajectories [9], [36]. The destructive interference can prevent the 

backscattering of electrons. As a result, the value of conductivity increases with decreasing 

temperature due to the reduction in decoherence mechanisms at low temperatures. The 

interference and conductivity can be destroyed by applying a magnetic field. Therefore, the 

signature of WAL is a negative magnetoconductivity which can be easily observed in many 

topological materials. It has been realized that large spin-orbit scattering in some materials 
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may proceed a crossover in quantum interference from destructive to constructive with 

varying temperatures and magnetic fields. The electrons are localized in the conductors due 

to constructive interference between two time-reversed paths of the electron wave function, 

reducing their ability of current transport exhibiting the WL effect. In 1980, Hikami, 

Larkin, and Nagaoka (HLN) [37] analyzed the WAL effect for 2-D systems at very low 

temperatures and small magnetic fields. The HLN equation can be expressed as [38]–[41]: 

                       ΔG(B)  =  G(B) −  G(0) =  
𝛼𝑒2

𝜋ℎ
[𝜓 (

1

2
+

ℎ

8𝜋𝑒𝐵𝑙𝜑
2 ) − 𝑙𝑛 (

ℎ

8𝜋𝑒𝐵𝑙𝜑
2 )]          (1.10) 

Where lφ represents phase coherence length, ψ is a digamma function and 𝐴 =
𝛼𝑒2

𝜋ℎ
 

represents the no. of the conduction channel, and α is the prefactor value. 

 

Figure 1.11: (a) The two time-reversed scattering loops without spin-momentum locking 

exhibiting weak localization in magnetoconductivity (ΔG (B)). (b) The two time-reversed 

scattering loops with spin-momentum locking exhibited weak antilocalization in ΔG (B) 

[13]. 

Further, the bulk state (3-D) of TIs may demonstrate the WAL effect with quantum 

correction at low fields similar to the surface state. However, TI bulk state comprises a 

finite gap which generally leads to the WL effect. Also, the WAL behavior diminishes with 
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the implementation of the magnetic field. Therefore, the consistent quantum correction to 

the bulk state conductivity is given by [42]–[44]: 

          ΔG(B)  =  − 
𝑒2

2𝜋ℎ
[𝜓 (

1

2
+

𝐵𝛷

𝐵
) − 𝑙𝑛 (

𝐵𝛷

𝐵
)] +

3𝛼𝑒2

2𝜋ℎ
[𝜓 (

1

2
+

𝐵′𝑠𝑜

𝐵
) − 𝑙𝑛 (

𝐵′𝑠𝑜

𝐵
)]     (1.11)  

The above-written quantum interference effect (QIE) formula consists of two contending 

contributions describing the field-dependent crossover from WAL to WL phenomena. The 

first term explains the WAL effect at the lower fields, and the rest is accountable for the 

WL effect at relatively higher magnetic fields [43], [45]. Here, 

                                                               𝐵𝛷 =
ℎ

8𝜋𝑒𝑙𝜑
2                                                      (1.12) 

                                                              𝐵𝑆𝑂 =
ℎ

8𝜋𝐷𝑒𝜏𝑠𝑜
                                                  (1.13) 

                                                               𝐵𝑒 =
ℎ

8𝜋𝐷𝑒𝜏𝑒
                                                    (1.14) 

                                                      And  𝐵′𝑆𝑂 =
4

3
𝐵𝑆𝑂 + 𝐵𝛷                                         (1.15) 

Here, 𝜏𝑠𝑜 is the spin-orbit scattering time and 𝜏𝑒 is the elastic scattering time. Hence, 𝜏𝜑 is 

considered as electron dephasing time with a relation, 𝑙𝜑 = (𝐷𝜏𝜑)1/2.  Here, D represents 

the diffusion constant. 

1.9 Quantum Materials 

The basic mechanisms of quantum materials have already been discussed in the 

previous sections; now, the classification of such materials as topological insulators, Weyl 

semimetals, superconductors, and quantum spin liquid, Graphene, spin ice systems are 

well-known in the world of quantum materials. These materials possess different shapes 

and compositions but share a common thing: electron confinement, which occurs along one 

or more directions and causes mysterious properties in such systems. The geometrical 
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constraints of these systems drive electrons to act collectively instead of independently. As 

a result, a bunch of electrons may behave like a quasi-particle and originates different 

fascinating properties like superconductivity, the development of mass-less fermions, or 

the apparently impossible single pole magnets. In particle physics, recent research has 

developed some familiar quasi-particles predicted by complex theories practically by the 

large hadron collider overcoming all the difficulties. However, quantum materials open 

new prospects to explore fundamental as well as applied material science. The topological 

current in quantum materials is meant to serve the future generation of spintronics with 

nonreciprocal responses based on the generalized current transmission, i.e., information. 

Topological protection provides dissipationless robust quantum states making such 

materials useful in magnetoelectronic integrated circuits, high-density storage devices, and 

quantum computing which may contribute to future energy and information technologies. 

Therefore, I am intended to introduce the historical development of some physically 

existing quantum materials like 2-D and 3-D topological insulators, Weyl semimetals, and 

Skyrmions, along with their structures and intriguing properties. Indeed, these materials 

pave the way for next-generation quantum electronic and computational technologies. 

1.9.1 Topological Insulators 

As described in the previous section, topological insulators are widely studied 

quantum materials with an insulating bulk and a conducting surface (edge) state. The 

surface states are quite different from the ordinary conducting states where electrons with 

opposite spins are distributed over a Fermi surface with spin degeneracy. These surface 

states are topologically invariant, and this phenomenon is made possible by the two 

important features in quantum mechanics, which are: 

1. symmetry under the reversal of the direction of time, and 
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2. spin–orbit interaction that usually occurs in mercury and bismuth-like heavy 

elements. 

However, depending on the properties and dimensionality, the TIs can be classified into 

two categories as: 

1. 2-D topological insulators  

2. 3-D topological insulators  

Let us discuss the historical development and intriguing properties of these TIs.  

1.9.1.1 2-D Topological Insulators  

As discussed earlier, the electrons associated with opposite spins follow identical 

but opposite lanes at the edges creating spin-polarized currents due to large SOC and 

preservation of TRS. In 2-D TIs, the electrons follow one-dimensional (1-D) conduction 

channels having edge states. As a 2-D system, Graphene was proposed as the system that 

may show the QSHE at the beginning by Kane and Mele in 2005 [25]. However, carbon 

possesses a very weak SOC. Thus, QSHE could not be observed in Graphene 

experimentally. Then, the presence of QSHE state in HgTe quantum wells (QW) was 

predicted by Bernevig et al. in 2006 [27]. A thin layer of HgTe is inserted between two 

layers of CdTe to construct 2-D QW structures that provide a special route to change the 

compound’s electronic structure. The thickness of HgTe plays a significant role in the band 

structure of this heterostructure [4], [9], [46]. The electronic band structure of this 

heterostructure at the ᴦ point has an inverted band structure. The confinement energy 

increases as the value of dHgTe decreases, due to which the energy band shifts. When the 

thickness d attains the critical value, i.e., d = dc, QSHE emerges without any external 

magnetic field. The heterostructure of CdTe/HgTe/CdTe and the band structures of HgTe, 

CdTe are shown in Figure 1.12 (a). With the variation of the width ‘d’ of the quantum well, 
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the corresponding band structure is represented in Figure 1.12 (b). After the critical width 

dc, band inversion at the ᴦ point occurs, 1-D helical edge state comes to light, and band 

inversion occurs at the boundaries of the 2-D quantum well. At the critical thickness dc 

(6.3nm), the bandgap vanishes, and the Dirac cone touches each other at a point called 

Dirac point. The QSHE in HgTe quantum well systems has been experimentally verified 

and reported. The experimental evidence for the spin polarization of the QSH edge state 

also supports this phenomenon. Soon after this theoretical envision, König et al. [28] 

confirmed it experimentally by observing QSHE in HgTe at 30 mK without the application 

of an external magnetic field. Therefore, HgTe QW is considered the first 2-D TI. After the 

experimental validation of QSHE in CdTe/HgTe/CdTe QW, it was also predicted that 

QSHE may also exist in type II semiconductor such as InAs/Gasb/AlSb, when Fermi level 

lies in the bulk band gap [47]. 

 

Figure 1.12: (a) Bulk energy bands for HgTe and CdTe at ᴦ point (b) CdTe/HgTe/CdTe 

quantum well in normal regime d < dc and in inverted regime d > dc [27]. 
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1.9.1.2 3-D Topological Insulators  

After the development of 2-D topological insulators, the concept of 3-D topological 

insulators was established by Moore and Balents [48], Roy [49], Fu, Kane, and Mele [50]. 

2-D topological system contains conducting edge state, whereas 3-D topological insulators 

comprise conducting surface state with 2-D conduction channel. In 3-D TIs, the surface 

state’s band structure can be described as a 2-D state with a single Dirac cone. Comparison 

between 2-D and 3-D TIs have been displayed as a schematic in Figure 1.13. Strong 

topological insulators have an odd number of Dirac cones. 3-D TIs possess four Z2 

topological invariants (υ0, υ1, υ2, υ3), where υ0 is associated with strong topological 

invariant and υ1 - υ3 belongs to the weak topological invariant. The strong topological 

insulator υ0 = 1 follows that there must be an odd number of Dirac cones present at the 

surface of topological insulators. The spin-momentum locking in the perpendicular 

direction of the surface state is the most intriguing property of the 3-D topological 

insulators. The state having momentum K and –K possess opposite spins, i.e., up spins 

propagate in the +ve x direction, and down spins move in the –ve x direction. Therefore, 

the backscattering does not occur at the surface state of topological insulator and the surface 

state becomes robust. 

Therefore, immediately after the experimental verification of the existence of 

QSHE in 2-D in HgTe quantum well in 2008, Hsieh et al. [52] reported the first 

experimental evidence of the presence of the 3-D topological state in Bi1-xSbx. Further, the 

presence of QSHE in 3-D Bi1-xSbx was observed by utilizing the angle-resolved 

photoemission spectroscopy technique (ARPES) [52]. Soon after the experimental 

discovery of Bi1-xSbx, in 2009, Zhang et al. [53] predicted some chalcogenide compounds 

(A2B3) as 3-D TI theoretically by using ab initio theory. The non-trivial surface state and 
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calculated bulk bandgap of Sb2Se3, Bi2Se3, Sb2Te3, and Bi2Te3 have been shown in Figure 

1.14. The band structure can be easily seen in these materials, which are experimentally 

verified using ARPES. In Figure 1.14, the linear dispersion at the surface state can be 

 

Figure 1.13: (a-b) 2-D and 3-D topological insulators with spin-polarized edge and surface 

states at the system boundary are shown schematically in real space. (c-d) The development 

of the 1-D and 2-D Dirac cones is depicted in the energy band diagrams of the 2-D and 3-

D topological insulators in momentum space. BCB corresponds to the bulk conduction 

band, and BVB represents the bulk valence band [51]. 

 

Figure 1.14: Calculated band structure of Sb2Se3, Sb2Te3, Bi2Se3, and Bi2Te3 by ab initio 

DFT. The occupied bulk and surface states have been represented by red, and the blue color 

signifies the bulk band gap [5]. 
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Seen in the ARPES spectrum of Sb2Te3, Bi2Se3, and Bi2Te3. The presence of Dirac cone in 

the band structure confirmed it as a TI, and the bulk band gap was calculated as 100 meV 

for Bi2Te3, 260 meV for Sb2Te3, and 300 meV for Bi2Se3, respectively. Bi2Se3, Bi2Te3 and 

Sb2Te3 possess topologically protected surface states like Bi1-xSbx [5], [54]. These 

topological materials are easy to prepare as pure phase single crystals in 3-D and also can 

be grown as 2-D thin films in a perfect environment. They exhibit topologically protected 

surface states as 2-D and 3-D, making them the most studied TI system. 

 

Figure 1.15: (a) Crystal structure of Bi2Se3, the red box shows single quintuple layer (b) 

shows that three different A, B, and C sites are assigned to a triangular lattice in one 

quintuple layer (c) Se and Bi atoms are arranged in a sequence in quintuple [9]. 

However, 3-D Bi2Se3, Bi2Te3, and Sb2Te3 are layered materials and belong to the 

rhombohedral crystal structure with R3̅m space group. Figure 1.15 shows the crystal 

structure of Bi2Se3. The structure contains five atoms per unit cell as Se1-Bi1-Se2-Bi1’-
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Se1’ along the c-axis, manifesting one quintuple layer. The atomic layers consist of 

covalent bonds, whereas the weak Van der Waals force exists between two adjacent 

quintuple layers. The thickness of one quintuple layer is 1 nm. Each layer of atoms makes 

a triangle lattice known as a tetradymite-type lattice. The triangle layers are ordered A-B-

C-A-B-C type arrangement along the z-axis. In one unit cell, there are two Bi atoms and 

three Se atoms in which two equivalent Bi (Bi1 and Bi1’) atoms, two equivalent Se atoms 

(Se1 and Se1’), and one equivalent Se atom (Se2) are present. 

1.9.2 Weyl Semimetals 

Weyl semimetals are a class of quantum materials possessing a topological phase 

of matter and are regarded as an intermediate state between metal and insulators. These 

semimetals are quite different from the topological insulators and can be considered as 3-

D analogous to Graphene by breaking either TRS or inversion symmetry (IS). In WSM, the 

valence and conduction bands touch each other in bulk at certain points. These linear-

dispersive band-crossing points in bulk are called Weyl nodes. These Weyl nodes act as a 

magnetic monopole in momentum space and always exist in pairs. The charge of the Weyl 

node is associated with the Berry flux in the momentum space. It has been manifested that 

the charge associated with Berry curvature in band structure must be zero; hence there must 

be an even number of Weyl nodes overall. The Weyl nodes projection on the surface 

Brillouin zone is connected by an open line surface state called the Fermi arc, as displayed 

in Figure 1.16 (a) [55]. The low-energy bulk excitations of Weyl semimetal are Weyl 

fermions. The transport by such types of excitations in the materials is fascinating due to 

its unique properties and potential applications. Thus, the WSM surface state is depicted as 

the Fermi arc at the Fermi surface, which differs from the TIs. Hermann Weyl proved that 

a massless fermion exists in the Dirac equation in 1929 [56], which was later called the 
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Weyl fermion. Except for neutrinos, which have chirality, all fermions in the standard 

model are Dirac fermions. In a Weyl semimetal, Weyl Fermions exist as a low-energy 

excitation, in which electronic bands diffuse linearly along the three-dimensional 

momentum space from a node known as a Weyl point. WSMs are associated with a lack of 

time-reversal or inversion symmetry. These Weyl points act as topological charges, sources 

(+ chirality), and sink (- chirality) of Berry curvature. The topological entanglement 

between conduction and valence bands, which is analogous to a magnetic field in the 

momentum space, can be described by a quantity called the Berry curvature. If these Weyl 

points are not present in pairs, the Berry flux diverges. Topological Fermi arcs are likely to 

arise on the 001 surface, linking the opposing chirality projections of the W1 and W2 Weyl 

points, as illustrated in Figure 1.16 (b, c). Because they are both compressed into the thin 

surface gap between the projected bulk electron and hole pockets, surface Fermi arcs are 

difficult to distinguish experimentally from trivial surface states or projected bulk states. A 

topological Fermi arc on the Fermi surface has been shown in Figure 1.16 (a) and (b) for a 

conventional Weyl semimetal. 

 

Figure 1.16: (a) Schematic diagram of Weyl semimetal showing Fermi arc as the surface 

state. (b) Surface projection of a pair of Weyl cones connecting the Fermi arc. (c) Location 

of experimentally determined Weyl nodes in the 3-D Brillouin zone and their surface 

projection [17]. 
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1.9.3 Skyrmions 

Another eminently relevant and auspicious discovery in the field of topological 

matter is the magnetic Skyrmion. After the phenomenal discovery of Skyrmions by Tony 

Skyrme (1960), magnetic Skyrmions were discovered in the chiral magnet MnSi [57]. 

Skyrmions are evidenced to be adequately advantageous over domain wall memory devices 

considering the requirement of a small electrical excitation current to transmit an equivalent 

amount of information [58]. Eventually, Skyrmions represent topologically protected field 

configurations with particle-like characteristics providing enormous stability even at the 

nanoscale. Figure 1.17 shows different types of magnetic configurations classified as 

Skyrmions. Such vortex-like whirling nano-object in non-centrosymmetric non-trivial 

metallic helimagnet displaying topologically invariant spin texture represents it as a 

potential carrier of information in future high-density data storage ultrafast spintronics and 

microwave devices. Irrespective of such amusing properties, the utilization of Skyrmions 

has not been accomplished yet as spintronic devices. There are several shortcomings related 

to the current-driven motion of such magnetic particles and the restricted region of 

Skyrmions phase-space (H-T). 

           The origin of Skyrmions is based on four simple mechanisms: 1) long-ranged 

magnetic dipolar interaction, 2) Dzyaloshinskii-Moriya interaction (DMI), 3) Frustrated 

exchange interaction, 4) Four-spin exchange interaction [59], [60]. DMI modulated 

Skyrmions emerged with inordinate attention existing with a particular direction of 

whirling [61]. A Skyrmion introduced material displays the Skyrmion phase at a specific 

temperature range, which is a compelling property of any Skyrmion-hosting material. The 

stability of this Skyrmion phase can be well-tuned by different adjusting parameters such 

as physical, mechanical, and chemical pressure employing uniaxial strain and chemical 
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substitutions. Meanwhile, competition occurs between the ferromagnetic (FM) exchange 

and antisymmetric DMI resulting a chiral spin helical state appeared periodically below the 

transition temperature in terms of Curie temperature (TC) of the specific material [62]. The 

weak magneto crystalline anisotropy can be used to establish how the spiral propagation 

vector is oriented, analogous to the high-symmetry crystallographic directions. Degeneracy 

is induced along the direction of the propagation vector in the cubic system. As a result, a 

macroscopic sample develops a multidomain helical state, and this is conceivable to 

consider a Skyrmion as a two-dimensional object trivially sustained along the third 

dimension. Thus, the multidomain helical state is revolutionized by applying an external 

magnetic field to a single-domain state. This state starts propagating parallel to the applied 

magnetic field with a conical spiral [63]. When the Zeeman energy overcomes the DMI 

energy, the phase converts towards a completely polarized state [64]. In such a system, an 

extremely small current is required to modify the spin configurations by virtue of the small 

domain size. As a result, such materials hold great promise for information technology. 

Subsequently, the challenge is to discover the specific operating region of Skyrmion in the 

magnetic field (H) - temperature (T) phase space and somehow expand the functional 

range. The complicated struggle amidst the exchange interaction, DM spin-orbit 

interaction, and anisotropic crystallinity in a non-centrosymmetric helimagnetic compound 

develops the field temperature (H-T) phase diagram. This exclusive property enlarges the 

utilization space of such materials as high-potential information devices, drastic 

spintronics, and dynamic microwave devices. Co3Sn2S2 is a shandite-type compound 

possessed with Kagome sub-lattices that initiated an unconventional magnetic phase below 

its ferromagnetic transition temperature. This phase induces a spin state which is non-trivial 

at low-field H-T phase space [65]. Previously, the implementation of AC susceptibility 

measurements on the Ni/Fe-substituted Co3Sn2S2 compounds was executed to examine the 
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unconventional magnetic phase under a certain magnetic field to comprehend the 

consequence of chemical substitution on such compounds [66]. The discovery of such a 

magnetic Weyl-semimetal exhibiting analogous magnetic domain microstructure triggered 

the research related to Skyrmionic semimetals [67]. Earlier literature assured the possibility 

of tuning the stability of the Skyrmion phase in a Skyrmion lattice to a broader and higher-

temperature region by the implementation of uniaxial strain [68]–[71], chemical 

substitution [63], [72]–[75], physical or chemical pressure [59]. Also, a certain magnetic 

anomaly was presented as a signature of the non-colinear Skyrmionic phenomenon by H. 

C. Wu et al. with the application of a very low magnetic field under physical or chemical 

pressure. They further depicted an H-T phase diagram recognizing the Skyrmion phase in 

Co3Sn2S2 originated by magnetic susceptibility measurement [76]. Such stimulating 

discoveries introduce the magnetic WSM Co3Sn2S2 as a promising applicant in spin-

frustrated systems exploring the isentropic and isothermal magnetic moment below the 

ordering temperature.  

 

Figure 1.17: Detailed magnetic configurations of (a) a Bloch-type Skyrmion, characterized 

by a transverse helix with an anticlockwise spin rotation, (b) a Néel-type magnetic 

Skyrmion, characterized by the anticlockwise-rotated magnetization in a spin cycloid, 

and (c) a magnetic anti-Skyrmion, characterized by boundary walls that have alternating 

Bloch and Néel types as one trace around the boundary [77]. 

1.10 Objective of Present Thesis 

 In my thesis, my objective is to prepare different quantum materials: topological 

insulators and Weyl semimetals and to study their basic mechanisms like physical, 

magnetic, and thermoelectric properties. To do so, firstly, I have chosen some 3-D single 
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crystalline topological insulators along with a minimal quantity of magnetic impurity to 

observe their intriguing topological properties. Then, I prepared heterostructures of some 

primary topological insulators and ferromagnetic materials to observe the magnetic 

interfacial consequence and how the dimensional confinement affects the topological 

properties. Furthermore, I planned to prepare a ferromagnetic Weyl semimetal that exhibits 

a Skyrmion-like vortex magnetic phase at a certain temperature region to enhance its 

Skyrmion stability and examine its magnetic properties with application of chemical 

pressure by chemical substitution. 


