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Abstract

Continuously varying loading conditions and the cost-based operation of a competitive
power market lead to the problem of congestion as one of the most crucial issues. In
day-ahead power market operation (PMO), customer participation (CP) and generation
rescheduling (GR) are the most effective techniques preferred by the system operator to
eliminate congestion. In this paper, a cascaded Deep Neural Network (DNN) module
has been presented for estimating customer participation and power generated by Wind
Energy Source (WES) as on-site generation (OSG) to manage congestion. The proposed
module is a cascade combination of Artificial Neural Network (ANN) as a filtering module
(FM) and DNN as a congestion management (CM) module. The CM module estimates the
customer participation for all receptive costumers, power supplied by wind energy sources
under uncertain conditions and generation rescheduling of all generators with minimum
cost for all unseen congested power system loading patterns. The proposed CM approach
provides an instant and efficient solution to manage congestion with minimum cost. The
developed module has been examined on IEEE 30-bus power system. The maximum error
found in the testing phase is 1.1865% which is very less and within the acceptable limit.

1 INTRODUCTION

In a competitive power market, participants try to get electricity
from the cheapest available source. This tendency sometimes
causes the transmission networks to operate beyond transfer
limits and the system is said to be congested. Congestion
management (CM) is supposed to be the most crucial issue of a
restructured power system. A comprehensive summary of CM
methods has been proposed by [1]. Congestion can be effec-
tively eliminated through several methods either by demand
side management (DSM) or by generation side management.
Generation side management includes generation rescheduling
(GR) [2, 3]. In a newly developed power market environment
as the load is supposed to be the cause of congestion, DSM is
proving itself as a promising tool for congestion management
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[4]. DSM is the method to modify the customer’s demands
either by CP or by their behavioural changes through education,
that is, energy efficiency (EE) [5]. Through financial incentive-
based CP, receptive customers take part in power system
operation and modify their demands to manage congestion [6].
However, the reduction of demand opposes the theme of the
business model of any commodity market which requires more
and more consumption. Load reduction accomplished by CP
has to be restricted in order to avoid customer dissatisfaction.
So, in order to limit the customer participation amount, on-site
generation has to be added for managing congestion [7, 8].
Thus, targeted DSM along with on-site generation can be an
effective alternative to congestion management [9]. Due to sev-
eral advantages such as cost-effectiveness, clean energy source,
renewable energy source [10, 11], no toxins, no pollution, less
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2 AGRAWAL ET AL.

TABLE 1 Comparison of proposed CM approach with the reported methods

Reported methodology Congestion control scheme Advantages Disadvantages Reference

Rider optimization GR Minimize rescheduling cost EA based optimization [2]

PSO GR Bid based generators rescheduling EA based optimization [3]

Random drift-PSO CP Incentive based CP EA based optimization [6]

Differential Evolution DG CM with renewable energy source EA based optimization [7]

Flower Pollination DG CM with renewable energy source EA based optimization [8]

GAMS and CPLEX software CP Real time-based pricing EA based optimization [9]

Q-learning algorithm DG Social welfare maximization EA based optimization [11]

Artificial bee colony Wind energy source Sensitivity based Wind placement EA based optimization [12]

GAMS software DR CM with renewable energy source EA based optimization [15]

MOPSO DRP 2-objective functions EA based optimization [16]

MATPOWER (Matlab) TCSC placement CM with renewable energy source EA based optimization [17]

Jaya Algorithm Transmission switching / DR Hybrid power system EA based optimization [18]

Cascaded Deep NN [Proposed] CP/WES/GR Instant / ready CM – [Proposed]

maintenance cost etc. [12] wind energy source has proven to
be the most preferable on-site generation plant nowadays, it
reduces the carbon emission as well [13]. However, continu-
ously changing wind velocity imparts uncertainty in the power
output of wind energy sources [14], which has to be taken into
account while expecting scheduled output from WES as on-site
generation [15].

In the literature, several evolutionary algorithms (EA) have
been suggested for optimizing control parameters to manage
congestion [16–18]. A comparison of evolutionary techniques-
based CM has been presented in Table 1.

The optimum solutions obtained by these evolutionary
algorithms are always affected by the selection of initial param-
eters, number of generations, population size and many other
parameters [19–21]. During the exploitation phase of many
evolutionary algorithms, rejection of low fitness solutions for
achieving global best may result in loss of optimal solu-
tion. As well as for each loading condition (minor changes)
simulation starts from the initial phase which may lead to
sluggish performance of these algorithms. Presently increas-
ing loading scenarios and the competitive environment of the
emerging power market have made its operation very complex
and tedious. To overcome this situation, a quick and efficient
solution is required and Deep NN has been found suitable
for this purpose. Deep NN contains multiple hidden layers.
Parameter sharing, sub-sampling and sparse connectivity of
adjacent layers reduce the number of learning parameters and
learning time during the training phase. Therefore, makes the
estimation performance of Deep NN very fast even for large
data sizes [22]. Such type of extreme features of Deep NN
has attracted the focus of researchers. In the field of power
system Deep NN have been found for estimating generation
rescheduling [23], photovoltaic power [24, 25], wind speed [26]
and Locational marginal price [27] etc. Deep NN has also
been suggested for residential customer participation in smart
grids [28, 29].

To the best of the authors’ knowledge, a cascaded Deep NN-
based CM approach by employing customer participation and
wind energy source as on-site generation has not been found in
the literature. The proposed Deep NN is a cascade combination
of the filtering module (ANN) and the CM module (Deep NN).
The filtering module, which is trained by a modified back prop-
agation algorithm, filters out the congested and non-congested
power system loading patterns exactly in two classes. CM mod-
ule is a Deep NN and estimates the customer participation for
receptive customers, generation rescheduling for generators and
wind energy source as on-site generation for all unseen con-
gested power system loading patterns to manage congestion.
For creating actual power market scenarios, the power system
loading patterns have been generated by perturbing ±10% load
at all load buses and congestion has been managed by Deep
NN-based CP, GR and WES. The cascaded Deep NN has been
examined on IEEE 30-bus system [16].

The main contribution of the paper is as follows:

∙ This paper proposes an instant-ready solution for CM in
deregulated market by employing customer participation
considering wind energy sources.

∙ The cascaded Deep NN is a combination of the filtering
module and CM module.

∙ The filtering module is an artificial neural network, trained by
a modified back propagation algorithm and filters out suc-
cessfully congested and non-congested loading patterns for
an imbalanced data set.

∙ CM module is a Deep NN which estimates customer partici-
pation, generation rescheduling and active power supplied by
wind energy sources accurately and instantly for all unseen
power system loading patterns.

∙ Uncertainty of wind energy sources has also been considered
and modelled with the Weibull distribution function.

∙ The presented Deep NN mitigates congestion efficiently and
provides operating flexibility for the system operator.

 17521424, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/rpg2.12678 by Indian Institute O

f T
echnology, W

iley O
nline L

ibrary on [28/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



AGRAWAL ET AL. 3

This paper consists of the following sections: In the second
section, problem formulation with different objective functions
and constraints has been presented. In the third section, a
brief description of the developed cascaded Deep NN has been
given. In the fourth section proposed research methodology of
this work has been discussed. In the fifth section, the proposed
approach has been demonstrated on IEEE 30-bus system. In
the sixth section conclusion of the paper is discussed.

2 PROBLEM FORMULATION

Here, CM has been framed as an operational cost minimization
problem subject to various equality and inequality constraints
and operational cost consists of conventional generation cost,
CP cost and OSG cost. Any optimization technique may
be preferred for optimal power flow (OPF). Particle swarm
optimization (PSO) is the well-accepted population-based opti-
mization algorithm that has been suggested for CM [16], hence
it has been used here for the minimization of cost. The objective
function has been modelled as follows:

2.1 Objective function

Here, along with operational cost, demand reduction by recep-
tive customers has also been minimized. Similarly, OSG cost
minimization has been accompanied by optimizing the size
and site of WES. The objective function and constraints are
given as follows: Components of overall operational cost can
be formulated as follows:

2.1.1 Conventional generation cost

Conventional generation cost CG ($/h) has been computed
using quadratic cost function as:

CG =

NG∑
i=1

(ai + biPGi
+ ciP

2
Gi

) i = 1, 2, 3……… .NG (1)

where PGi
is the real power generated by ith generating unit, ai ,

bi and ci are the cost coefficients of ith generating unit and NG
is the total number of generators.

2.1.2 Cost of wind energy source

The cost of WES, that is, CWES ($/h) can be expressed as
follows [17]:

CWES = 𝜓 × PWES (2)

where 𝜓 is the cost of WES in $/MW h, PWES is the real power
output in MW of wind energy source and is given as follows
[17]:

PWES =
1
2

airdensity ×Wt × 𝜂WES × v3
w (3)

The power output of WES is quite uncertain due to the con-
tinuously varying speed of wind at any specific location. Hence,
the variable wind speed has to be taken into account for the
computing power output of WES. The Weibull probability den-
sity function (PDF) [18] has been explored to estimate wind
speed within certain bounded limits and can be modelled as
follows [18]:

f (vw ) =

(
h
s

)
×
( vw

s

)h−1
× exp

[
−
(

vw
s

)h]
0 < vw < ∞ (4)

where vw is wind speed, s is the wind velocity multiplying fac-
tor and h is the shape factor of WES. Thus, by considering the
shape of the wind wave and velocity scaling the wind speed can
be maintained within desirable limits. Consequently, WES out-
put can be obtained within zero and rated values. The desired
values of h and s should normally be greater than zero. Accord-
ing to wind velocity, the wind power output can be expressed as
follows [18]:

PWES =

⎧⎪⎪⎨⎪⎪⎩

0 vw
⟨

vwi
and
⟩

vwc

Prated
WES

( vw − vwi

vwr
− vwc

)
vwi

≤ vw ≤ vwr

Prated
WES vwr

≤ vw ≤ vwc

(5)

where vwi
is the cut-in wind speed, vwr

is the rated wind speed,
and vwc

is the cut-off speed of the wind. Equation (5) reveals that
rated power output from WES can only be obtained when wind
speed varies between rated and cut-off speed. The expression
for Weibull PDF to model uncertain power output of WES can
be given as [18]:

f (PWES ) = h

(
vwr

− vwi

sh × Prated
WES

)
×

[
vwi

+
PWES

Prated
WES

(
vwr

− vwi

)h−1
]

× exp

⎡⎢⎢⎢⎣−
⎧⎪⎨⎪⎩

vwi
+

PWES

Prated
WES

(
vwr

− vwi

)
s

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦

h

(6)

2.1.3 Customer participation cost

For managing congestion under CPP customer participation
cost CCP ($/h) can be written as follows [16]:

CCP =

NCP∑
j = 1

𝜇 j (7)

where 𝜇 j ($/h) is the CPP cost for jth receptive customer and
NCP is the total number of receptive customers and NCP ∈

NLB , where NLB is the total number of load buses. Incentive
(𝜇 j ) in $/h paid to the jth receptive customer can be given as
follows [16]:
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4 AGRAWAL ET AL.

𝜇 j = INC ×
(

d0 j
− d j

)
(8)

where INC is the incentive paid to the customer in $/MW h,
d0 j

is the initial demand, that is, the demand of jth receptive
customer before getting involved in CPP and d j is the reduced
demand, that is, demand of customer after being involved in
CPP.

The demand of jth receptive customer d j can be hypotheti-
cally expressed as follows [16]:

d j = d0 j
× [1 + 𝜖 ×

{
(EPCP − EP0) + (INC − PEN )

EP0

}
(9)

where EP0 and EPCP are the electricity prices in $/h before and
after CPP, 𝜖 denotes the self-elasticity of customer’s demand and
PEN is the penalty imposed on defaulter customers in $/MW
h which is considered to be zero here.

Finally, the operational cost function to be minimized can be
written as follows:

F = minimize {CG +CCP +CWES } (10)

2.2 Constraints of CM problem

In the present work, the equality and inequality constraints
which are involved during the optimization process are
as follows:

2.2.1 Equality constraints

Power balance equations contribute to the equality constraints.
These can be expressed as follows:

NG∑
i=1

PGi
−

NLB∑
j=1

PD j
− PL = 0 (11)

NG∑
i=1

QGi
−

NLB∑
j=1

QD j
− QL = 0 (12)

where PGi
and QGi

are the active and reactive power generation
at ith bus respectively, PD j

and QD j
are the active and reactive

power demands at jth bus respectively, PL and QL are the total
active and reactive power losses respectively.

2.2.2 Inequality constraints

Power system operational and security constraints which are to
be kept within certain operational limits have been considered
as inequality constraints. These can be listed as follows:

a. Generation constraints: Generator voltage VG , active power
PG and reactive power QG have been kept restricted within
their upper and lower limits, as follows:

Pmin
Gi

≤ PGi
≤ Pmax

Gi
i = 1, 2, 3……NG (13)

Qmin
Gi

≤ QGi
≤ Qmax

Gi
i = 1, 2, 3……NG (14)

V min
Gi

≤ VGi
≤ V max

Gi
i = 1, 2, 3……NG (15)

b. Security constraints: Maximum and minimum voltage lim-
its at all the load buses and maximum thermal limit over
transmission lines have been included as security constraints.
These are given as follows:

V min
k ≤ Vk ≤ V Max

k k = 1, 2, 3………… NLB (16)

Smaxl
≥ Sl l = 1, 2, 3……… .. …NBR (17)

where Smaxl
is the maximum thermal limit over lth line in

MVA, Sl is the apparent flow over lth line in MVA.
c. Customer participation constraints:

CPP cost 𝜇 j must be bounded within lower and upper lim-
its. Similarly, the amount of CP has to be kept restricted
to avoid any kind of customer dissatisfaction. These lim-
its must be mentioned in a financial contract framed by
ISO. This can be written as follows:

𝜇min
j ≤ 𝜇 j ≤ 𝜇max

j j = 1, 2, 3……NCP (18)

CPmin
j ≤ CPj ≤ CPmax

j j = 1, 2, 3……NCP (19)

where CPj is the amount of customer participation for jth
receptive customer.

a. On-site generation constraints:

The amount of active power supplied by WES in the role
of on-site generation is bounded within upper and lower
limits, given as follows:

Pmin
WES ≤ PWES ≤ Pmax

WES (20)

3 CASCADED DEEP NEURAL
NETWORK

The developed module is a cascade combination of back
propagation-based ANN and Deep NN and has been pro-
posed for congestion management by reducing the demand
under CPP and by employing WES as OSG in the deregulated
power market. The basic architecture of the filtering module and
congestion management module can be given as follows:
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AGRAWAL ET AL. 5

3.1 FILTERING MODULE

The proposed filter module filters out the congested and non-
congested PSLP in two separate classes. It is a modified back
propagation algorithm-based Feed-Forward multi-layer ANN
[30]. The architectural diagram of the filtering module has been
shown in Figure 1. This module gives a single output for each
PSLP. In the case of congested PSLP, it shows 0.9 (high actual
output) and 0.1 (low actual output) for non-congested PSLP.
The training set data of this ANN holds an unequal number
of epitomes for the dominance class (higher), that is, congested
power system loading patterns (CPSLP) and for the subordinate
class (lower), that is, non-congested power system loading pat-
terns (NCPSLP). Such a type of training data set is termed as an
imbalance training data set [31].

For this type of imbalance training set the rate of conver-
gence of net output error is very low when ANN-based filtering
module is trained by a standard back propagation algorithm that
leads to higher error in subordinate classes as shown in Figure 2.

To reduce this error, the ANN-based filtering module is
trained by a modified back propagation algorithm [30, 31]. This
computes a descent vector 𝜇 in weight space, for each iteration.
This descent vector 𝜇 points the gradient vector in a downhill
direction for both dominance as well as subordinate class and
satisfies Equation (21) and weights are modified according to
Equation (22).

−𝜇.∇E1 (W ) < 0 and − 𝜇.∇E2 (W ) < 0 (21)

W (k + 1) = W (k) − 𝜏𝜇 (22)

where W (k + 1) and W (k) are the weights in (k+1)th and kth
iteration, 𝜏 is the learning rate.

FIGURE 1 Architecture of filtering ANN module

FIGURE 2 Relationship between the gradient error vectors

FIGURE 3 Directions of gradient error vectors in modified BP algorithm

The magnitude of the descent vector 𝜇 can be determined by
using Equation (23).

𝜇 = ∇EK (W ) + ∇EK− (W ) (23)

where E1(W ) and E2(W ) represent the error due to domi-
nance and subordinate class. In this way, by using a modified BP
algorithm the error for both classes reduces appropriately.

This is shown in Figure 3 that the direction of vec-
tor 𝜇 is decided to bisect the angle between −∇E1(W )
and−∇E2(W ) as follows [31]:

−∇E1 (W )

−∇E1 (W )
𝜇 = frac−∇E2 (W )−∇E2 (W ) 𝜇 (24)

Therefore, for the imbalance training data set the rate of
learning has been accelerated by one order of magnitude as
given in Equation (24) employing an adaptive learning rate.

3.2 Deep neural network-congestion
management module

The architecture of the developed Deep NN has been shown
in Figure 4 This is a convolution-based Deep NN and esti-
mates the CP, GR and power of WES under uncertainty. Deep
learning-based MATLAB toolbox has been employed for the
proposed Deep NN. Convolution-based Deep NN consists of
many hidden layers unlike conventional ANN and is applicable
for image data. Classification and estimation (for continuously
varying data) tasks can be effectively performed by CNN-based
Deep NN. In developed Deep NN estimates CP, GR and active
power of WES for continuously changing power system loading
patterns. The proposed Deep NN contains six different kinds of
layers. The input layer is the first one and receives input patterns
in image formation only. The second layer which is the convo-
lution layer performs the convolution operation between input
image signals and kernel filters. It may be multi-dimension but
in this case, its dimension is 2D. Sparse connectivity of adjacent
layers, sub-sampling and parameter sharing properties of these
layers reduces the dimension of learning parameters and make
the Deep NN faster. The batch normalization layer is the third
layer which standardizes the input pattern set and reduces the
epochs and finally improves the performance and reduces the
learning time of Deep NN. ReLu layer, that is, a fourth layer
termed as the rectified linear unit has been applied as an activa-
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FIGURE 4 Architecture of Deep Neural Network

 

 

Yes 

NO 

Yes 

Start

PSLP = 1 

Generate PSLP Randomly 

Run OPF to get preferred schedule for minimizing cost 

Is there any 
congestion? 

Consider all receptive costumers and WES 

Run OPF to get CP, GR and PWES with minimum cost 

PSLP > = PSLPmax 

Stop 

NO 

PSLP = PSLP +1 

FIGURE 5 Steps for generating PSLP

FIGURE 6 Schematic diagram of proposed research methodology for CM

tion function. A fully connected layer is the second last and fifth
layer while the final output (sixth) layer is the regression output
layer which estimates output continuously. The endmost output
of the Deep NN is to minimize the loss function. In the present
work, a root mean square error has been considered as a loss
function and can be presented as follows [24]:

RMSE =

√∑I
i=1

(
yi − ŷi

)2
I

(25)

where yi and ŷi are the actual output and predicted outputs for
the pattern set of I size.

4 RESEARCH METHODOLOGY

Cascaded Deep NN provides the instant-ready solution for
continuously varying loading patterns in the power system to
manage congestion. For training and testing of the proposed
model with a realistic power system situation, power system
loading patterns have been generated by varying the active and
reactive power system load. The steps for generating these
power system loading patterns have been systemically shown in
Figure 5

The proposed research methodology for the congestion
management approach has been shown in Figure 6. In the
present approach, a cascade combination of ANN-based fil-
tering module and a Deep NN-based CM module has been
developed. The filtering module is a feed-forward ANN which
is trained by a modified back propagation algorithm while
the CM Module is a Deep NN. Several power system loading
patterns have been generated and given to the filtering module,
which filters out the congested power system loading patterns

(CPSLP) and non-congested power system loading patterns
(NCPSLP). Only CPSLP have been applied to the Deep NN as
input. Deep NN has been trained to predict CP, GR and PWES
for continuously varying power system loading patterns as
actual output (regression) which is very close to actual output.
Thus, the developed Deep NN predicts CP for all receptive
costumers, generation rescheduling for all conventional gener-
ators and active power generated by WES under uncertainty as
output with minimum cost. Hence, by relieving the congestion
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AGRAWAL ET AL. 7

FIGURE 7 Actual and predicted output of deep NN for CP at bus
number 7

FIGURE 8 Actual and predicted output of deep NN for CP at bus
number 8

of transmission lines the proposed method provides an instant-
ready solution for the system operator to operate deregulated
power market.

5 RESULTS AND DISCUSSION

Here, the problem of congestion has been handled by employ-
ing cascaded Deep NN which estimates customer participation,
generation rescheduling and wind energy source (under uncer-
tainty) to manage congestion. The developed model has been
examined on IEEE 30-bus system [16]. This bus system com-
prises six generator buses (numbered as bus no. 1, 2, 13, 22, 23
and 27), 24 load buses (21 non-zero load buses) and 41 trans-
mission lines. Simulations have been carried out by using the
Matlab platform.

FIGURE 9 Actual and predicted output of deep NN for CP at bus
number 12

FIGURE 10 Actual and predicted output of deep NN for CP at bus
number 17

FIGURE 11 Actual and predicted output of deep NN for CP at bus
number 19
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8 AGRAWAL ET AL.

FIGURE 12 Actual and predicted output of deep NN for CP at bus
number 21

FIGURE 13 Actual and predicted output of deep NN for CP at bus
number 30

FIGURE 14 Actual and predicted output of deep NN for GR at slack bus

FIGURE 15 Actual and predicted output of deep NN for GR at
generator 2

FIGURE 16 Actual and predicted output of deep NN for GR at
generator 3

FIGURE 17 Actual and predicted output of deep NN for GR at
generator 4
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AGRAWAL ET AL. 9

FIGURE 18 Actual and predicted output of deep NN for GR at
generator 5

FIGURE 19 Actual and predicted output of deep NN for GR at
generator 6

FIGURE 20 Actual and predicted output of deep NN for PWES

Continuously varying power system loading patterns have
been generated by perturbing real and reactive demands ±10%
(randomly) at all (21) non-zero load buses. Increased load cre-
ates congestion over transmission lines. In order to manage
congestion, customer participation has been called through sen-
sitivity analysis on load buses [32, 33]. As a result of this analysis,
a total of seven buses numbered as 7, 8, 12, 17, 19, 21 and
30 have been determined for participating in the customer
participation program. The maximum and minimum amount
of demand reduction by a receptive customer has been taken
within 0.1–10% of actual demand respectively. However, this
amount in actual conditions depends upon the severity of the
congestion. The electricity prices have been considered the
same before and after CP.

The air density and overall efficiency of WES have been
taken as 1.225 kg/m3 and 49% respectively. The cost of WES
has been assumed as 3.75$/MW h [17]. For WES, the uncer-
tainty of power output due to changeable wind velocity has been
taken into account by considering the Weibull probability den-
sity function [18]. The maximum amount of power supplied
by OSG has been taken as 10 MW. While implementing OSG,
the optimum location of WES has been determined to be bus
number 8.

After several trials, by considering the different architecture
of cascaded Deep NN the best results have been found and
given here. For creating a real power market scenario, 601 power
system loading patterns have been generated by varying ±10%
load at all 21 non-zero load buses. Out of 601 power sys-
tem loading patterns only 470 loading patterns have been used
to train and 130 loading patterns have been used to test the
developed cascaded Deep NN.

Training of the filtering module (ANN) has been accom-
plished by the modified back propagation algorithm to filter
out the congested and non-congested power system loading
patterns accurately. In the training phase, out of 470 power sys-
tem loading patterns, 454 loading patterns have been filtered
as congested while 16 loading patterns have been classified as
non-congested loading patterns. In the testing phase, out of 130
unseen power system loading patterns 120 loading patterns have
been filtered out as congested while the remaining 10 as non-
congested loading patterns. The classification performance of
the filtering module has been found accurate.

After several trials, the optimum size of various layers for
Deep NN has been determined and implemented here. Inputs
for this CM module (Deep NN) are the active power load (21),
reactive power load (21) and apparent power load (21). Hence,
the size of the input layer has been taken as 3 × 21 × 1 (63
inputs). Deep NN has been trained by 454 congested load-
ing patterns (classified by filter module). During the testing
phase, unseen 120 congested loading patterns (classified by fil-
ter module) have been given to Deep NN. The output of the
Deep NN is the estimation of customer participation for all
seven receptive costumers (bus no. 7, 8, 12, 17, 19, 21, 30),
generation rescheduling for all conventional generators (bus
no. 1, 2, 3, 4, 5, 6) and active power supplied by wind energy
source (bus no. 8) under uncertainty with minimum cost. Thus
a total of 14 predicted outputs (7 for customer participation,
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10 AGRAWAL ET AL.

TABLE 2 Actual output, predicted output and percentage error for customer participation

PSLP Output CP 7 CP 8 CP 12 CP 17 CP 19 CP 21 CP 30

1 Actual output 0.013142 0.121842 0.052473 0.042241 0.044588 0.082135 0.049657

Predicted output 0.013100 0.121400 0.052400 0.041800 0.044500 0.081700 0.049400

% Error 0.612700 0.346500 0.165800 1.001400 0.264700 0.579300 0.513500

2 Actual output 0.014712 0.136405 0.058744 0.047290 0.049917 0.091952 0.055592

Predicted output 0.014600 0.135900 0.058200 0.047200 0.049700 0.091500 0.055400

% Error 0.759000 0.345800 0.961300 0.271200 0.532500 0.482600 0.401300

3 Actual output 0.013570 0.125809 0.054181 0.043616 0.046039 0.084810 0.051273

Predicted output 0.013400 0.125400 0.054000 0.043400 0.045700 0.084100 0.051000

% Error 1.030200 0.291100 0.299800 0.507900 0.633700 0.871300 0.539100

4 Actual output 0.013772 0.127688 0.054990 0.044268 0.046727 0.086076 0.052039

Predicted output 0.013700 0.126600 0.055000 0.044100 0.046200 0.085800 0.051600

% Error 0.711500 0.835100 0.028900 0.436600 1.174200 0.355600 0.912900

5 Actual output 0.013036 0.120862 0.052051 0.041901 0.044229 0.081475 0.049258

Predicted output 0.012900 0.119800 0.051700 0.041600 0.043900 0.080700 0.048800

% Error 1.185200 0.918400 0.629200 0.825200 0.850500 0.956900 0.896000

6 Actual output 0.014893 0.138081 0.059466 0.047871 0.050531 0.093083 0.056275

Predicted output 0.014900 0.136700 0.058800 0.047300 0.049900 0.092100 0.055600

% Error 0.153200 0.975300 1.108400 1.119700 1.162000 1.083200 1.176600

7 Actual output 0.014350 0.133043 0.057297 0.046124 0.048687 0.089686 0.054222

Predicted output 0.014300 0.131800 0.056800 0.046000 0.048700 0.088900 0.054100

% Error 0.347800 0.955800 0.912100 0.258300 0.063700 0.907100 0.240800

8 Actual output 0.014668 0.135993 0.058567 0.047147 0.049766 0.091675 0.055424

Predicted output 0.014600 0.135600 0.058300 0.046700 0.049400 0.091300 0.055200

% Error 0.565400 0.300900 0.479900 0.892800 0.755100 0.396200 0.445100

9 Actual output 0.014854 0.137721 0.059311 0.047746 0.050399 0.092839 0.056128

Predicted output 0.014800 0.136400 0.058800 0.047500 0.049800 0.092000 0.055700

% Error 0.153600 0.949100 0.851000 0.616300 1.138600 0.852800 0.840200

10 Actual output 0.012788 0.118565 0.051062 0.041105 0.043389 0.079926 0.048321

Predicted output 0.012800 0.117700 0.050800 0.040700 0.043200 0.079900 0.048200

% Error 0.270500 0.746600 0.570700 0.901100 0.320000 0.039800 0.193800

11 Actual output 0.015262 0.141503 0.060940 0.049057 0.051783 0.095389 0.057669

Predicted output 0.015200 0.141100 0.060600 0.048500 0.051200 0.094700 0.057400

% Error 0.214700 0.274500 0.523100 1.044400 1.125600 0.729900 0.384100

12 Actual output 0.013993 0.129737 0.055873 0.044978 0.047477 0.087458 0.052874

Predicted output 0.013900 0.129200 0.055200 0.044900 0.047000 0.087300 0.052400

% Error 0.796700 0.451800 1.117300 0.281600 1.069700 0.133000 0.959200

13 Actual output 0.014714 0.136424 0.058753 0.047296 0.049924 0.091965 0.055599

Predicted output 0.014700 0.135700 0.058300 0.046800 0.049800 0.091900 0.055500

% Error 0.386300 0.537300 0.686200 1.114100 0.230800 0.060000 0.259600

14 Actual output 0.014679 0.136093 0.058610 0.047182 0.049803 0.091742 0.055465

Predicted output 0.014500 0.135300 0.058100 0.047200 0.049400 0.091700 0.055200

% Error 0.937300 0.593500 0.929000 0.032200 0.870200 0.065500 0.389300

15 Actual output 0.014927 0.138396 0.059602 0.047980 0.050646 0.093295 0.056403

Predicted output 0.014800 0.137500 0.059100 0.047700 0.050500 0.093300 0.056100

% Error 0.647400 0.640900 0.847500 0.665700 0.207300 0.031100 0.547700

(Continues)
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AGRAWAL ET AL. 11

TABLE 2 (Continued)

PSLP Output CP 7 CP 8 CP 12 CP 17 CP 19 CP 21 CP 30

16 Actual output 0.013038 0.120883 0.052060 0.041909 0.044237 0.081489 0.049266

Predicted output 0.013000 0.120400 0.052000 0.041500 0.044200 0.080600 0.049100

% Error 0.273300 0.409200 0.168600 1.055700 0.124700 1.132800 0.417700

17 Actual output 0.013880 0.128692 0.055423 0.044616 0.047094 0.086753 0.052448

Predicted output 0.013800 0.128200 0.055000 0.044500 0.046900 0.086200 0.052400

% Error 0.814200 0.345500 0.821500 0.198000 0.372400 0.622700 0.087200

18 Actual output 0.014331 0.132866 0.057220 0.046063 0.048622 0.089567 0.054150

Predicted output 0.014300 0.131800 0.057000 0.045800 0.048400 0.088800 0.053800

% Error 0.058200 0.834100 0.466700 0.504200 0.413500 0.896600 0.599000

19 Actual output 0.015210 0.141019 0.060732 0.048890 0.051606 0.095063 0.057472

Predicted output 0.015100 0.139500 0.060600 0.048700 0.051400 0.094400 0.057300

% Error 0.678900 1.107400 0.151500 0.387600 0.473000 0.699300 0.325100

20 Actual output 0.014938 0.138499 0.059646 0.048016 0.050683 0.093364 0.056445

Predicted output 0.014800 0.137500 0.059200 0.047700 0.050500 0.092500 0.056100

% Error 1.178200 0.704500 0.759900 0.672900 0.336600 0.876000 0.673000

TABLE 3 Actual output, predicted output and percentage error for generation rescheduling and PWES

PSLP Output GEN1 GEN2 GEN3 GEN4 GEN5 GEN6 PWES

1 Actual output 40.882249 54.409720 16.485874 21.747767 16.083459 29.902899 8.331784

Predicted output 40.469900 54.222300 16.299800 21.692600 16.073100 29.775100 8.306200

% Error 1.008605 0.344400 1.128800 0.253500 0.064500 0.427500 0.307600

2 Actual output 45.768770 60.913136 18.456377 24.347206 18.005862 33.477095 9.327655

Predicted output 45.464600 60.622400 18.242800 24.160800 17.950400 33.401300 9.289400

% Error 0.664599 0.477300 1.157000 0.765500 0.308300 0.226500 0.410000

3 Actual output 46.331261 61.661748 18.683202 24.646430 18.227151 33.888523 8.603082

Predicted output 45.820600 61.031500 18.676400 24.535200 18.099800 33.601500 8.511000

% Error 1.102144 1.022100 0.036700 0.451300 0.698400 0.847000 1.070500

4 Actual output 45.630585 60.729227 18.400653 24.273697 17.951499 33.376021 8.731544

Predicted output 45.253700 60.286600 18.292900 24.243800 17.849400 33.305600 8.730200

% Error 0.825969 0.728800 0.585500 0.123000 0.568800 0.210900 0.015100

5 Actual output 39.782884 52.946588 16.042552 21.162948 15.650959 29.098780 8.264834

Predicted output 39.508000 52.324400 15.878500 21.068200 15.614100 28.758300 8.251900

% Error 0.690957 1.175200 1.022800 0.447600 0.235500 1.170000 0.156800

6 Actual output 47.479218 63.189551 19.146119 25.257098 18.678768 34.728184 9.442290

Predicted output 47.020200 63.036900 19.091000 25.178400 18.625800 34.721200 9.398800

% Error 0.966735 0.241500 0.288000 0.311600 0.283400 0.020200 0.460100

7 Actual output 43.531495 57.935571 17.554189 23.157063 17.125697 31.840663 9.097764

Predicted output 43.077800 57.367400 17.380600 23.090800 16.967300 31.825600 9.007100

% Error 1.042159 0.980700 0.989100 0.286100 0.925000 0.047200 0.996600

8 Actual output 40.560552 53.981578 16.356149 21.576637 15.956901 29.667598 9.299492

Predicted output 40.085000 53.549000 16.198400 21.417300 15.840100 29.384700 9.276000

% Error 1.172454 0.801300 0.964600 0.738500 0.731900 0.953600 0.252800

(Continues)
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12 AGRAWAL ET AL.

TABLE 3 (Continued)

PSLP Output GEN1 GEN2 GEN3 GEN4 GEN5 GEN6 PWES

9 Target output 47.317142 62.973846 19.080761 25.170880 18.615006 34.609635 9.417636

Predicted output 47.316800 62.788000 18.938500 25.014800 18.583200 34.256800 9.313200

% Error 0.000619 0.295200 0.745700 0.620000 0.170900 1.019400 1.108800

10 Actual output 39.501038 52.571483 15.928897 21.013017 15.540078 28.892627 8.107734

Predicted output 39.095700 52.274900 15.928500 20.910100 15.408100 28.698700 8.014500

% Error 1.026064 0.564100 0.002700 0.489900 0.849000 0.671300 1.149800

11 Actual output 44.475558 59.192015 17.934885 23.659268 17.497100 32.531188 9.676243

Predicted output 44.152600 58.912000 17.854100 23.598200 17.413800 32.240300 9.633200

% Error 0.726259 0.473100 0.450200 0.258200 0.476000 0.894100 0.444900

12 Actual output 41.752727 55.568230 16.836897 22.210828 16.425913 30.539602 8.871699

Predicted output 41.262700 55.173300 16.656400 21.984700 16.335900 30.351500 8.768100

% Error 1.173685 0.710700 1.072300 1.017900 0.548200 0.615900 1.167700

13 Actual output 43.888839 58.411156 17.698289 23.347156 17.266279 32.102038 9.328935

Predicted output 43.614300 57.856800 17.555500 23.108800 17.121500 31.879000 9.315400

% Error 0.625617 0.949100 0.806600 1.020800 0.838600 0.694600 0.144700

14 Actual output 45.775702 60.922362 18.459172 24.350894 18.008589 33.482165 9.306317

Predicted output 45.515500 60.846500 18.376300 24.268900 17.922900 33.406500 9.222400

% Error 0.568523 0.124600 0.449100 0.336600 0.475700 0.226100 0.902200

15 Actual output 42.035282 55.944279 16.950838 22.361136 16.537073 30.746273 9.463821

Predicted output 41.635900 55.399400 16.823800 22.198000 16.534300 30.562800 9.398800

% Error 0.950078 0.973900 0.749200 0.729600 0.017100 0.596900 0.686900

16 Actual output 46.447399 61.816315 18.730035 24.708211 18.272841 33.973471 8.266222

Predicted output 46.321900 61.199900 18.676000 24.479900 18.256700 33.953000 8.205300

% Error 0.270131 0.997200 0.288400 0.924200 0.088500 0.060400 0.736400

17 Actual output 41.310542 54.979730 16.658584 21.975602 16.251953 30.216170 8.800214

Predicted output 41.066600 54.748600 16.545700 21.726800 16.138100 30.196100 8.749100

% Error 0.590541 0.420300 0.677500 1.132100 0.700800 0.066500 0.580800

18 Actual output 40.326197 53.669677 16.261645 21.451969 15.864703 29.496181 9.085652

Predicted output 39.895500 53.396000 16.072400 21.218100 15.780800 29.379000 9.061900

% Error 1.068051 0.509900 1.163900 1.090300 0.528800 0.397400 0.261400

19 Actual output 47.276243 62.919414 19.064269 25.149123 18.598916 34.579720 9.643212

Predicted output 46.954100 62.492500 18.872200 25.034400 18.394600 34.321100 9.626700

% Error 0.681318 0.678400 1.007400 0.456200 1.098600 0.748000 0.170900

20 Actual output 39.644310 52.762161 15.986672 21.089231 15.596442 28.997421 9.470849

Predicted output 39.247100 52.323800 15.932900 21.048600 15.578900 28.690800 9.399500

% Error 1.002043 0.830900 0.336100 0.192800 0.112500 1.057500 0.753100

6 for generator rescheduling and 1 for wind energy source)
have been obtained by developing cascaded Deep NN for 63
inputs.

A graphical representation of customer participation (at bus
numbers 7, 8, 12, 17, 19, 21 and 30) based on predicted outputs
obtained by Deep NN and actual outputs obtained by PSO-
OPF for all 120 congested power system loading patterns have
been shown from Figures 7–13.

Similarly, actual outputs obtained by PSO-OPF and predicted
outputs obtained by Deep NN for generation rescheduling

for all conventional generators including slack bus and active
power supplied by WES have been plotted and shown in
Figures 14–20.

Table 2 shows seven predicted outputs (obtained by cascaded
Deep NN), actual outputs (obtained by PSO-OPF) and per-
centage error between them for customer participation. The
maximum percentage errors calculated for these are 1.1852,
1.1074, 1.1173, 1.1197, 1.1742, 1.1328 and 1.1766. Table 3
shows generation rescheduling and wind energy source based
predicted outputs, actual outputs and percentage error among
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AGRAWAL ET AL. 13

the other seven estimated outputs, actual outputs and percent-
age error calculated between them. The maximum percentage
errors for these seven estimations are 1.173685, 1.1752, 1.1639,
1.1321, 1.0986, 1.1700 and 1.1677.

It has been observed that the performance of the devel-
oped filtering module has been found quite satisfactory to the
other filtering modules like classical ANN, extreme learning
machine (ELM), Deep NN and probabilistic neural network
for such type of imbalance data set which contains more num-
ber of epitomes in dominance class as compared to subordinate
class.

It has been observed from Figures 7–20 and Tables 2 and 3
that the predicted outputs obtained by Deep NN are very near
to the actual output. Precise estimations have been attained for
all 120 testing power system loading patterns. However, due to
limited space, the predictions only for 20 power system load-
ing patterns have been presented in Tables 2 and 3. It is very
clear from these tables that the maximum percentage error for
all six generating units, wind energy source and seven recep-
tive customers is 1.1865% which is very less and within the
acceptable limit. This can be stated that the proposed approach
provides an instant and ready estimation (predicted output is
very near to actual output) of customer participation, generation
rescheduling and active power supplied by wind energy sources
for managing congestion in all types of complex and critical
conditions of the deregulated power market. The presented
approach of CM has not been found in the literature.

6 CONCLUSION

This paper presents a cascaded Deep NN-based customer
participation along with wind energy sources for managing con-
gestion in the deregulated power market. The developed module
is a cascade combination of an ANN-based filtering module and
a Deep NN-based CM module. The filtering module is trained
by a modified back propagation algorithm which filters out
the congested and non-congested power system loading pat-
terns accurately in two classes. CM module (Deep NN) predicts
the incentive-based customer participation for receptive cos-
tumers, generation rescheduling for all conventional generators
and active power given by wind energy source (uncertainty con-
sidered) with minimum cost for all unseen power system loading
patterns. Continuously varying loading conditions in the power
market lead to a slower response of evolutionary algorithms
because every time its process starts from initial phases while the
presented cascaded Deep NN once developed and trained well,
predicts the customer participation, generation rescheduling
and PWES almost instantaneously. Hence, the developed module
provides an instant-ready solution for all power market scenar-
ios to manage congestion even for large size and imbalance data
set. The proposed CM approach enhances the operating flex-
ibility of emerging power market operations in complex and
critical scenarios. The cascaded Deep NN has been examined
on IEEE 30-bus system and found better in terms of accuracy
and time. Demand forecasting and the addition of photovoltaic
power sources can be added to the future scope of this research

work. It can be implemented in the large-size practical power
system as well.
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