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Abstract—Automated feature extraction capability and sig-
nificant performance of Deep Neural Networks (DNN) make
them suitable for Internet of Things (IoT) applications. However,
deploying DNN on edge devices becomes prohibitive due to the
colossal computation, energy, and storage requirements. This
paper presents a novel approach, EarlyLight, for designing and
training lightweight DNN using large-size DNN. The approach
considers the available storage, processing speed, and maximum
allowable processing time to execute the task on edge devices. We
present a knowledge distillation based training procedure to train
the lightweight DNN to achieve adequate accuracy. During the
training of lightweight DNN, we introduce a novel early halting
technique, which preserves network resources; thus, speedups
the training procedure. Finally, we present the empirically and
real-world evaluations to verify the effectiveness of the proposed
approach under different constraints using various edge devices.

Index Terms—Deep neural networks, early halting, edge de-
vices, knowledge distillation.

I. INTRODUCTION

Internet of Things (IoT) applications use sensors that gen-
erate a large amount of sensory data to perform a given
task of real-time monitoring and detection [1], [2]. In time-
critical IoT applications such as fire or gas leakage detection
in industrial warehouses, the sensory data processing must be
completed within a specific time limit from its occurrence.
Such time interval is referred to as Maximum Allowable
Processing (MAP) time. Further, the edge devices are usually
battery operated and smaller in size, having limited storage and
processing capacity. Due to the limited storage and processing,
such edge devices delayed the task execution [3], [4]. It creates
a vulnerable research challenge to execute a time-critical task
within MAP time on a resource constraint edge device.

Moreover, the high accuracy and automated feature extrac-
tion capability of Deep Neural Networks (DNN) make them
suitable for IoT applications. However, the deployment of
DNN on edge devices becomes prohibitive due to the excessive
demand for resources [5]. Generally, the resources include
storage and processing capacity. Next, a DNN compression
technique transforms large-size DNN to lightweight for edge
devices without significantly reducing performance [6]. A
lightweight DNN has fewer parameters and can run on an edge
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device within limited storage. Further, lightweight DNN also
reduces the inference time. Most of the existing compression
techniques compress DNN up to a certain percentage without
simultaneously considering the available resources of edge
devices, desired accuracy, and MAP time of the task.

Knowledge Distillation (KD) is a concept that improves the
performance of the lightweight DNN using the generalization
ability of the large-size DNN [7]. KD uses keywords teacher
and student for large-size and lightweight DNN, respectively,
where prior transfers knowldege to the latter. It trains a
student under the guidance of a teacher. Most of the existing
KD approaches utilized the knowledge limited to the pre-
trained teacher model and did not consider the knowledge
from the training process of the teacher model. Different
from the existing work, Zhou et al. [8] employed the concept
of using two teachers, i.e., scratch and pre-trained. Scratch
teacher compels the student to follow an optimal path towards
achieving final logits. A pre-trained teacher helps in avoiding
the loss due to random initialization. The authors in [9]
proposed a framework, where a large-size DNN supervised the
whole training process of lightweight DNN. The lightweight
DNN shared parameters with large-size DNN to get low-level
representation from the large-size. The main limitation of the
prior work [8], [9] were not to considered the constraints
of the edge devices while designing and training lightweight
DNN. Furthermore, using multiple teachers [8] throughout the
training of the student consumes huge resources.

In this paper, we assume a given large-size DNN that can
process a task successfully. However, it requires higher storage
and processing time. Therefore, we propose an approach,
namely EarlyLight, to design a lightweight DNN using a large-
size DNN that can process the task in MAP time on edge
devices. Next, to achieve higher accuracy using lightweight
DNN, we present a knowledge distillation based lightweight
DNN training scheme. The scheme introduces a novel early
halting technique that significantly reduces training time and
required resources. Specifically, we address the problem of
designing and training a lightweight DNN using a given large-
size DNN, where trained lightweight DNN satisfy the α and
β constraints. α and β are the maximum available memory on
edge devices and MAP time, respectively.

Major contributions and novelty of the work: To the
best of our knowledge, this is the first work to address the
problem of designing lightweight DNN by considering α and
β constraints of the edge devices. Along with this, the major
contributions and novelty of this work are as follows:
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Transforming large-size to lightweight DNN: The first
contribution is to obtain a lightweight DNN from a large-size
DNN. To do this, we dropout the unimportant units followed
by reducing resource consumption from the large-size DNN
using weight factorization and the minimal gated units on
different layers of dropout DNN. The novel contributions lie
in consideration of the number of connections in the given
large-size DNN and maximum iteration runs for dropout. None
of the existing work considers both in the dropout. These
novel considerations speed up the procedure of estimating the
updated dropout rate. In addition, considering α and β during
dropout and reducing the resources (through weight factoriza-
tion and minimal gated unit) makes our work different.

Train the lightweight DNN: We present a knowledge
distillation based technique to train lightweight DNN (stu-
dent) where, we incorporate two large-size DNN (teachers)
with the same structural configuration, i.e., un-trained teacher
and pre-trained teacher. We introduce a novel early halting
technique, where the student and the un-trained teacher are
simultaneously trained up to certain (i.e., halting) epochs
under the guidance of the pre-trained teacher. Afterwards, the
student training is propagated under the guidance of the pre-
trained teacher. Such a novel mechanism of early halting saves
the resources; therefore, speedups the training. The proposed
training procedure transfers the knowledge from trained large-
size DNN to lightweight DNN by minimizing the loss. The
proposed training procedure transfers the knowledge from
trained large-size DNN to lightweight DNN by minimizing
the loss and improves its performance. We also propose
an iterative algorithm to determine the optimal and trained
lightweight model. Apart from neural architecture search [10],
the proposed algorithm required a limited steps due to α and
β constraints.

Experimental evaluations: We verify the effectiveness of
the EarlyLight on the existing large-size DNN [11]–[16],
datasets, and edge devices. The results show that the proposed
work can significantly improve performance and minimize
latency. We also demonstrate real-world evaluation for loco-
motion mode recognition and evaluate the performance.

Paper Organization. In the next section, we briefly discuss
the existing literature. Section III presents the preliminary and
overview of the solution. We propose an EarlyLight approach
to train and design a lightweight DNN in Section IV. The
further two sections present the empirically and real-world
evaluations. Finally, the paper concludes in Section VII.

II. BACKGROUND AND MOTIVATION

Dropout in DNN: The prior studies used random [17],
fixed [18], [19], or optimal [20], [21] dropout methods for
reducing resources of DNN. Authors in [17] highlighted the
concept of random dropout to handle the overfitting problem in
DNN. Such random dropout deteriorated the DNN structure.
To mitigate the random dropout problem, Han et al. in [18]
proposed a mechanism of pruning and splicing side-by-side.
The connection pruned during training can be spliced in back-
propagation. They established a quadratic relation between the
number of connections and neurons on the layers of DNN.

To obtain lightweight DNN, the authors in [19] disassembled
a large DNN into small ones. They further estimated the
gradients of smaller models. These gradients are compared to
obtain the most reliable model. The fixed dropout [18], [19]
hampered the opportunities to improve the accuracy of the
compressed DNN. Thus, the authors in [20] proposed a DNN
compression technique that has incorporated the estimation of
optimal dropout rather than a fixed value.

Reducing resource requirements of DNN: The existing work
reduced the resource requirements of DNN by reducing the
complexity of computing units [22]–[28], weights and bi-
ases [26], [27], and filter pruning [29]. The authors in [22]
utilized the concept of layer factorization to reduce floating-
point operations of fully connected layer and convolutional
filter of DNN. The authors in [23] performed DNN compres-
sion using weight quantization and layers pruning. The authors
not considered the quantization scheme for convolutional and
fully connected layers. Next, to reduce the massive resource
demand and high complexity of neural architecture search. The
authors in [25] proposed the concept of the once-for-all (OFA)
network. The authors decoupled training and architecture
search stages with minimal accuracy compromise. The authors
claimed to get a sub-network from OFA with no additional
training cost. Similarly, the authors in [26] proposed the
concept of iteratively shrinking and expanding DNN, utilizing
sparsifying regularizer and multiplicative factor, respectively.

Training of lightweight DNN using KD: KD improves the
performance of lightweight DNN using large-size DNN [7]–
[9], [30]–[34]. Authors in [7] proposed a KD technique, where
the generalization ability of a pre-trained teacher is transferred
to the student to improve its recognition performance. The
logits of teacher and student are compared to estimate the
distillation loss that should be minimized during the training
of the student. The authors in [30] introduced the concept
of simultaneous training of scratch teacher and student. It
provided a soft target of logits for estimating the distillation
loss between teacher and student. Next, Zhou et al. [9] pre-
sented a mechanism to share some initial layers of student and
scratch teacher to improve the recognition accuracy. Further,
the authors in [31] examined the effectiveness of KD by
exploiting the impact of various factors on KD’s performance,
shedding light on its strengths and limitations. Similarly,
the authors in [32] determined the limitations of KD and
identifies certain classes of data that are challenging to distill
effectively. However, it focuses primarily on the identification
of undistillable classes without providing concrete solutions
or alternative approaches to overcome this limitation. Finally,
authors in [8] introduced the concept of pre-trained teacher
and scratch teacher where, both teachers simultaneously guide
student model.

Motivation: This work is motivated by the following lim-
itations, as noted in the existing literature. The prior work
on the dropout technique in DNN [17]–[19] used a fixed or
random value of dropout. It leads to the pruning of important
connections having lower weights, which results in significant
accuracy compromise. Moreover, the work [17], [18], [21],
[35] do not guarantee the pruning of computing units in the
recurrent neural network that consumes colossal resources.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3297026

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Indian Institute Of Technology (Banaras Hindu University) Varanasi. Downloaded on January 29,2024 at 06:35:10 UTC from IEEE Xplore.  Restrictions apply. 



3

Next, the work in [22], [23], [28], [29], [36], [37] reduced
the size of DNN. However, the authors did not consider the
constraints for edge device while compressing the DNN.

Further, to obtain a compressed (or lightweight) DNN using
neural architecture search [38] is cost-ineffective, energy-
consuming, and requires substantial resources for its execution.
Finally, the existing literature on knowledge distillation [7]–
[9], [30]–[32], [34] adopted mechanisms to improve the perfor-
mance of the lightweight DNN. However, none-of-the existing
work emphasized reducing resources during the training of
lightweight DNN and maintaining significant accuracy.

III. PRELIMINARY AND OVERVIEW OF SOLUTION

This section describes the terminologies and notations used
in this work. We also discuss an overview of the solution to
design a lightweight DNN from a large-size for a given edge
device. Table I illustrates the list of notations used in this work.

A. Preliminary
Let D denotes a dataset having n instances and k class

labels, containing sensory measurements of p different sensors.
An instance i of dataset D is denoted as xi, ∀i ∈ {1, · · · , n}.
Each instance xi holds values of all p sensors and corre-
sponds to one class label l of k available classes, where,
l ∈ {1, · · · , k}. Let the large-size and lightweight DNN are
denoted by M t and Ms, respectively.

Definition 1 (Knowledge distillation). Knowledge distilla-
tion refers to a process for improving the performance of a
lightweight DNN (Ms). Here, the knowledge (or generaliza-
tion ability) of a large-size DNN (M t) is utilized for training
Ms, so the model Ms can mimic a similar output pattern as
M t. This training from M t to Ms is sometimes referred as
student-teacher training [7] in knowledge distillation.

The training of student Ms using knowledge distillation
from teacher M t incorporates the comparison of their logits.
The logits are the output features vector obtained at one layer
before the softmax layer (output layer). Let ti denote the
logit vector of M t for ith training instance of dataset D,
where, 1 ≤ i ≤ n. Let tij (1 ≤ j ≤ k) is an element of
ti, which can be estimated as tij = wijxij + bj , where,
xij ∈ X , wij ∈ WT , and bj ∈ b represent an element
of feature matrix, weight matrix, and bias vector of teacher
model, respectively. Similarly, we can estimate student logit
vector si for ith training instance of D.

Definition 2 (Maximum Allowable Processing time). A task
in time-critical applications must be processed within a pre-
defined time interval. Such time interval is known as Maximum
Allowable Processing (MAP) time, denoted by β. Let an edge
device processes x FLOPs per unit time. A task of y FLOPs
can successfully process on an edge device if y/x ≤ β. MAP,
β, comprises processing capacity (in FLOPs) and memory
access latency (estimated using relative memory model).

B. Problem statement and overview of solution
Consider an edge device that can provide a maximum α

space to store and process a task of β MAP time. In this

work, we investigate the following problem: how to design a
lightweight DNN using a given large-size DNN such that the
trained lightweight DNN can successfully process a task on
an edge device with given α and β constraints?

We propose the EarlyLight approach that first designs
a lightweight DNN for edge devices. The approach trains
the lightweight DNN using KD. Section IV-A1 and Sec-
tion IV-A2 present procedures to design a lightweight DNN
from large-size using dropout and reducing the parameters
of the computationally complex units, respectively. While
designing lightweight DNN, we consider the given constraints
α and β of the edge device. We next present a procedure to
train the designed lightweight DNN incorporating knowledge
of pre-trained and un-training large-size DNN. We further
introduce a novel early halting technique to accelerate the
training of lightweight DNN, discussed in Section IV-B.

TABLE I: List of notations used in this work.

Symbol Description Symbol Description
D Dataset n Instances in D
Qi Neurons at layer i Mt Teacher model
Ms Student model Πs Student classifier
LDL Distillation loss LCE Cross entropy loss
LAL Attention loss xte Testing instance
yte Testing label d Dropout

IV. EARLYLIGHT: LIGHTWEIGHT NEURAL NETWORKS ON
EDGE DEVICES USING EARLY HALTING

This section proposes an approach to design and train
lightweight DNN on edge devices using early halting in knowl-
edge distillation, acronymed as EarlyLight. The approach
comprises mainly two phases: 1) designing of lightweight
DNN for edge device and 2) training of the designed DNN.
The designing phase involves the transformation of a given
large-size DNN into a lightweight, considering the α and β
constraints of the edge device. We assume that a dataset D and
a large-size DNN M t are given prior to this transformation.
Later, the training phase introduces the technique of early
hating in KD. The halting simultaneously reduces training time
and improves the accuracy of the designed lightweight DNN.
Fig. 1 illustrates the overview of the EarlyLight approach.

2. Model size 

Required RAM
Weight factorization

Designing of Lightweight

Neural Networks
Input

Output:

Training of Lightweight

Neural Networks

KD−based early halting

Sharing layers

Apply dropout

Reduce gated operation

GRU MGU

LSTM coupled
−LSTM

1. Large−size DNN

3. MAP

networks for edge device
Trained lightweight neural 

(α)

(β)

Fig. 1: An overview of EarlyLight approach. MAP: Maximum Allowable
Processing, GRU: Gated Recurrent Unit, MGU: Minimal Gated Unit, LSTM:
Long Shot Term Memory, KD: Knowledge Distillation.
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A. Designing of lightweight DNN

This section describes the technique of designing
lightweight DNN for edge devices, satisfying α and β
constraints. We initially assume a large-size DNN (M t) that
is transformed into a lightweight DNN. First, we define the
expression for execution time and memory consumption of
lightweight DNN. Using the defined expressions, we deduce
an optimization problem to minimize memory consumption
and execution time for given constraints α and β, respectively.
We next introduce the technique of estimating optimal dropout
to reduce the resource requirement of M t, which results in
the dropout DNN. Later, the resources of the dropout DNN is
minimized via weight factorization (convolutional and fully
connected layers) and reduction in gated operations (recurrent
layers). The resultant DNN is a lightweight neural network
that satisfies the edge device’s constraints α and β.

Let be and em denote the memory and time requirements for
executing single FLOP, respectively. Such be and em depend
on the hardware capacity of the edge devices. We deduce the
expression for temporary memory consumption (Tmem.) and
execution time (Texec.) to run the lightweight DNN on a given
edge device. The expressions are given as:

Tmem. = be

L∑
i=1

Fi, Texec. = em

L∑
i=1

Fi,

where, Fi denotes number of FLOPs for layer i of regular
large-size or reduced lightweight model, given in Table II.

Finally, the objective function of a lightweight DDN Ms

for a given edge device with the average available space α
and MAP time β is given as:

min ΩTmem. + (1− Ω)Texec.

s.t., c1 : Tmem. ≤ α, c2 : Texec. ≤ β, (1)

where, Ω (0 ≤ Ω ≤ 1) is used to neutralize the mismatch
between units of execution time and memory consumption.
Solving Eq. 1 is tedious as the available resources on the edge
devices changes dynamically. Therefore, we use a heuristic-
based solution to apply dropout on large-size DNN and further
reduce the resources requirement of dropout DNN.

1) Applying dropout on the large-size DNN: We first ap-
ply the dropout over given large-size DNN (M t) to curtail
unimportant or inferior connections. The resultant dropout
DNN is equivalent to a lightweight DNN with weights scaled
with a given dropout rate. The dropout over M t reduces
the required memory and execution time. Moreover, high
and low dropout rates cause under-fitting and over-fitting
of the DNN, respectively. A dropout over given large size
model M t is most not likely to incur overfit, if M t itself
does not overfit the data. The prior studies [17]–[21], the
dropout is mainly used to prevent overfitting by modifying
the network itself. The primary purpose of this work is to
reduce the size of large-size networks using dropout. A low
dropout rate requires considerable resources with minimal or
no accuracy compromise. However, high dropout rate leads
to substantial accuracy compromise. This work estimates the
optimal dropout that best suits our resources and accuracy
requirements. To initialize the selection of optimal dropout,

we set a dropout rate (denoted by d) preferably with a higher
value like d = 0.5 for hidden units and d = 0.8 for input
units [17]. Let Qb and Qa denote the number of connections,
before and after dropout, respectively. Let maxiteration, and c
are the maximum iteration runs for the dropout and a hyper-
parameter, respectively. The updated dropout rate is given as
follows: d′ ← d×max

{√
Qb

Qa
,
(

1− iteration
c×maxiteration

)}
.

Furthermore, the initial value of Qb is the nothing but
the number of connections in M t. The M t can be repre-
sented as {Wi, Zi : 1 ≤ i ≤ L}, where, Zi is a binary
matrix that indicates the state of the network connection at
layer i. It holds the information about a weight that retains
or discarded on a given dropout. The binary matrix Zi is
determined using discriminative function f(·) as, Z(j,k)

i =

f(W
(j,k)
i ),∀(j, k) ∈ I, where, I denotes the set of indices

of Wi at layer i. The function f(·) generates output 1 if
connection Qj,k

i remains after training and 0 otherwise. Let
M t denotes a deep learning model, which can be represented
as {Wi, Zi : 1 ≤ i ≤ L}, where, Zi is a binary matrix that
indicates the state of the network connection at layer i and L
is the number of layers in M t. It holds the information about a
weight that retains or discarded on a given dropout. The binary
matrix Zi is determined using discriminative function f(·) as,
Z

(j,k)
i = f(W

(j,k)
i ),∀(j, k) ∈ I, where, I denotes the set of

indices of Wi at layer i. The function f(·) generates output
1 if connection Qj,k

i remains after training and 0 otherwise.
Specifically, to apply dropout on layer i of a large-size DNN
M t, we randomly generate a binary mask Zi of same shape
with i, inspired from [39]. Afterwards, we scale the value of
binary mask Zi and replace i with following:

Dropout(i, Zi) = i⊗
( Size(Zi)

Sum(Zi)
.Zi

)
. (2)

The above equation (Eq. 2) is iteratively called to meet
the memory and execution time requirement of the resource
constraint device without much degradation of performance.
The steps involved in the selection of optimal dropout is
illustrated in Procedure 1. The weight W in SGD function()
is updated using gradient descent with learning rate η. L(·) is
a cross-entropy loss associated with the DNN.

Procedure 1: Applying dropout on large-size DNN.
Input: M t {Wi, Zi : 1 ≤ i ≤ L} with connection Qa,

learning rate η, loss of M t as L, l ∈ L ;
Initialize d(0) ← 0.5, i← 0, Qa ← connections of M t;

1 do
2 Dropout d(i) on l of M t with Qa connections;
3 Estimate loss: Lossi ←SGD function (Wi, Zi);
4 Qb ← reduced connections after dropout,

i← i+ 1;
5 Updating dropout using following formula:

6 d(i) ← d(i−1) ×max{
√

Qb

Qa
, (1− iteration

c×maxiteration
)};

7 Qa ← Qb /*Updating connections*/;
8 while (Lossi ≤ L);
9 return Dropout model with connections Qb;
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2) Reducing resources of dropout DNN: Next, we describe
the technique to reduce the resource requirements of the
dropout DNN in terms of Floating Point Operations (FLOPs)
and parameters. This reduction enforces the designing of
lightweight DNN that satisfies the α and β constraints of
the edge device. Apart from the prior work to reduce the
resources of either convolutional or recurrent layers. This work
introduces the technique to shrink the resource requirements
of DNN layers, including convolutional, fully connected, and
recurrent (Long Short Term Memory (LSTM) or Gated Recur-
rent Unit (GRU)). We apply weight factorization to reduce the
resource requirements of the convolutional and fully connected
layers. Further, we eliminate the gates of the recurrent units
to suppress the resources of LSTM and GRU. Procedure 2
summarizes the steps involved in reducing the dropout DNN,
satisfying α and β constraints of the edge devices.

Let Ii and Oi denote input and output dimensions of
layer i for dropout DNN, where i may be Convolutional
(Conv), Fully Connected (FC), LSTM, or GRU. The filter
size, input channels, output channels of a convolutional layer
i is represented as fi · gi, hi, and wi, respectively. Further, s,
Lg , and Gg denote step count, LSTM gates and GRU gates,
respectively. The parameters (Pi) and required FLOPs (Fi) at
layer i of DNN are given in Table II(a).

TABLE II: Number of parameters and FLOPs at layer i.

(a) Regular layer
Layer Parameter (Pi) FLOPs (Fi)
Conv (Ii · (fi · gi) ·Oi) +Oi (fi · gi) · (Ii ·Oi) · (hi · wi)
FC (Ii ·Oi) +Oi (2Ii − 1) ·Oi

LSTM LgOi · (Ii +Oi + 1) (2LgOi(Ii +Oi) + 4Oi)s
GRU GgOi · (Ii +Oi + 1) (2GgOi · (Ii +Oi) + 5Oi)s

(b) After factorization and using minimal gated unit
Conv (Ii · (fi · gi) ·Ri) +Ri ((fi ·gi)·(hi ·wi)+1+Oi)Ri

FC (Ii ·Ri) +Ri ((2Ii − 1) +Oi) ·Ri

LSTM Lg
′Oi · (Ii +Oi + 1) (2Lg

′Ol
i · (Ii +Oi) + 4Oi)s

GRU Gg
′Oi · (Ii +Oi + 1) (2Gg

′Oi · (Ii +Oi) + 5Oi)s

(a) Weight factorization: This paper uses the weight factor-
ization technique [22] to reduce the parameters and FLOPs
involved in convolutional and fully connected layers. The
weight factorization technique introduces an intermediate mul-
tiplexing layer between two layers of the dropout DNN.
This factorization of layers (convolutional or fully connected)
reduces the computation requirement: if the size of the inter-
mediate layer (denoted by Ri) � Ii×Oi

Ii+Oi
[22]. Ri is obtained

using a heuristic approach, where we start our factorization
with Ri <

Ii×Oi

Ii+Oi
and estimate weight reconstruction error.

Next, we iteratively decrease Ri and estimate reconstruction
error at each iteration. Finally, we obtain Ri with minimum
reconstruction error upon successful execution of this heuristic
approach. The number of parameters and FLOPs at layer i
after the weight factorization are given in Table II(b).

(b) Reducing gated operations: The parameters and FLOPs
involved in the LSTM and GRU directly depend upon the
gated operations. Therefore, we use the concept of MGU in-
spired from [40] to reduce the resource requirements of DNN.
MGU relies on the basic principle that the gated units play
a significant role in achieving higher performance, whereas
incorporating several gated operations increases computation

complexity. Hence, a wiser selection of gates that persist in
the network leads to comparable accuracy and low execution
complexity. Let Lg

′ and Gg
′ denotes the reduced gates in

LSTM and GRU, respectively. We replace LSTM with coupled
LSTM and GRU with MGU to reduce the gated operations.

Procedure 2: Reducing resource of dropout DNN.
Input: Dropout model with Qb connections;

1 Initialize: i← 1, j ← 0, dropout applied on l layers;
2 do
3 for i, j ∈ {1 ≤ i, j ≤ l} and j ← i+ 1;
4 do
5 if i = Conv. or i = FC then
6 Estimate reduced dimension Ri;
7 Perform factorization ;
8 Parameters and FLOPs using Table II(b);

9 if i=LSTM then
10 Replace LSTM with coupled LSTM;
11 Estimate parameters and FLOPs

(Table II(b)) with updated gate Lg
′ ;

12 else
13 Replace the GRU cells with MGU;
14 Estimate parameters and FLOPs

(Table II(b)) with updated gate Gg
′ ;

15 Solve optimization problem in Eq. 1;
16 i← i+ 1

17 while (Eq. 1 is not satisfied);
18 return Ms with reduced parameters and FLOPs;

B. Training of lightweight DNN
This section covers the details about the training of

lightweight DNN (or student) obtained in Section IV-A. The
student (Ms) is trained using the knowledge distillation tech-
nique, where we involve two teachers, i.e., a pre-trained large-
size DNN (M tr) and an un-trained large-size DNN (M te).
Further, we introduce the early halting technique for reducing
the resource requirements for training Ms. Finally, this section
derives the expression for optimal loss functions involved in
the training. The main components of the training are: 1)
knowledge distillation using early halting technique and 2)
sharing layers of student and teacher.

1) Training Ms using knowledge distillation with early
halting: Knowledge distillation from M tr to Ms, while
training of Ms on raw data improves its generalization ability.
This improvement helps in enhancing the performance of Ms.
In KD, the fine-tuned logits of M tr is compared against the
logits of Ms, which are generated from raw data. Thus, the
logits of M tr become a hard target for Ms. It also hinders
the sufficient improvement in the performance of Ms. Thus,
it could be beneficial to train an un-trained teacher (M te)
alongside Ms, where logits of M te is a soft target for Ms . It
provides soft-target during logits comparison. M tr and M te

have same structural configuration. However, the un-trained
teacher may sometimes undergo wrong random initialization,
which leads to performance deterioration of Ms.
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Moreover, if we use both M tr and M te during training of
Ms then the problems, i.e., hard logits target and performance
diminution due to random initialization is solved [8]. It also
leads to significant improvement in the performance of Ms.
Despite the successful training of Ms due to appropriate
matching of student and teachers logits, the simultaneous
consideration of Ms, M tr and M te during training of Ms

demands colossal resources. As it requires three models to
be trained, i.e., M tr followed by M te and Ms. The shared
architecture reduces the training epochs and also ensures the
student training follows the optimal loss propagation direction
by avoiding poor initialization of the lightweight student.

We introduce the technique for early halting of M te training
after halting epoch h, where h < E and E denotes the
total required epochs for the training, to reduce the resource
consumption during training of Ms. This work randomly
assigns a higher value of E, which follows the following
hypothesis, where E starts with a value three times the number
of columns in the dataset. If we find the model is still
improving after all epochs are complete, we try again with
a higher value. Else if we find the model stopped improving
before the final epoch, try again with a lower value. Further,
the early halting saves the device’s resources during training of
Ms and therefore fasten the training. Hereafter, the training
of Ms continues only under the guidance of trained M tr,
Fig. 2(a). The early halting technique uses cross-entropy loss
LCE(·), attention loss LAL(·), and distillation loss LDL(·),
as shown in Fig. 3. These loss functions are discussed in
supplementry file in detail [41]. The performance of Ms can
be improved in the supervision of trained M tr that compares
output at each epoch. The combined loss (Lcb(·))is defined as:

Lcb(·) =

λ1L
s
CE(·) + λ2LAL(·) + λ3LDL(·) + λ4Lte

CE(·),
till training of un-trained Mi,

λ1Ls
CE(·) + λ2LAL(·) + λ3LDL(·).

(3)

where λ1, λ2, λ3, and λ4 are the fractional contribution of
different loss functions, 0 < {λ1, λ2, λ3, λ4} ≤ 1. We only
optimize the combined loss of Ms, as the contribution of the
loss of untrained M te is uniform through the training of Ms.

min Ls
cb(·) (4a)

s.t., λ1 + λ2 + λ3 = 1, 0 < {λ1, λ2, λ3} < 1. (4b)

To achieve the halting epoch h < E, we check the variance
of combined loss Ls

comb(·) after each epoch. If the variance is
nearly equal or shows a marginal change then the training of
M te un-trained teacher is halted.

Lemma 1. The optimization problem in Eq. 4 holds a near
optimal solution.

Proof. The first second order derivatives of Ls
cb(·) (Eq. 4).

dLs
cb(·)

dxij
= λ1

dLs
CE(·)

dxij
+ λ2

dLAL(·)
dxij

+ λ3
dLDL(·)

dxij
. (5)

d2Ls
CE(·)

d2xij
=

1(·)w2
ije

(wijxij+bj)

n
∑k

j=1 e
(wijxij+bj)

(
1− e(wijxij+bj)∑k

j=1 e
(wijxij+bj)

)
.

d2LAL(·)
d2xij

=
2

n

( wij

||Ts(Fs
ij)||

)2
,

d2LDL(·)
d2xij

=
2

n
(wij)

2.

As d2LCE(·)
d2xij

> 0, d2LAL(·)
d2xij

> 0, and d2LDL(·)
d2xij

> 0,
therefore, LCE , LAL, and LDL are independently convex.
However, their results are calculated from a feed-forward net-
work that involves layer-by-layer non-linear activation, which
lacks convexity. The proof for linear convergence is discussed
in supplementary file [41].

(a)

Early halting Layer sharing among 

Pre−trained large−size DNN
Un−trained large−size DNN

Lightweight DNN

(b)

and Ms

epoch= 0

epoch= E

(Mtr)
(Mte)

epoch= h

(Ms)

Mte

Mte

Ms

Mtr

Fig. 2: Training of lightweight DNN (Ms) : (a) early halting of Mte training
and (b) layer sharing among Ms and Mte.

2) Sharing layers of teacher and student: Inspired by
the concept of layer sharing among student and teacher, as
discussed in [9]; in this work, we share the first i layers of
Ms and M te. In other words, first, i layers of Ms and M te

are the same, as shown in Fig. 3. Layer sharing can be better
visualized using Fig. 2(b), where, Ms is derived from M te.
The layer sharing improves the performance of the trained Ms

and provides less variation in its output predicted probabilities.
The layer sharing also preserve resources during training of
Ms. In this work, we use sensory data for DNN training;
thus, the complexity of large-size DNN is low. This lower
complexity helps in obtaining lightweight DNN with minimal
compression of large-size DNN. Through experimental analy-
sis, we obtained that even at 50% layer sharing, the resource
constraints of edge devices are satisfied. Thus, we are using
50% common layers of Ms and M te.

C. EarlyLight algorithm

Algorithm 1 illustrates different steps involved in the Early-
Light approach to design and train lightweight DNN satisfying
α and β constraints of edge devices. The complexity of the
proposed EarlyLight algorithm depends upon the complexity
of Procedure 1, Procedure 2, epoch E, and halting epoch h.
To determine the complexity of Procedure 1, let us consider
m1 as the maximum iteration run of the procedure and then its
time complexity of order O(m1). Similarly, let m2 denotes the
maximum steps required for solving Eq. 1 in Procedure 2; thus,
its time complexity is of order O(m2). Further, let O(Xa) and
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Attention loss

Ls

Lt

Lt

Large-size DNN (Trainee Mte)

Shared layer
Compressed DNN (Student Ms)

Large-size DNN (Teacher Mtr)

Fig. 3: Training of Mte and Ms under guidance of Mtr .

Algorithm 1: EarlyLight algorithm.
Input: Dataset D, M tr, M te, available space α, MAP

time β, halting epoch h, epoch E;
1 Select a DNN with Qa connections and L layers;
2 Identify L′ layers that are not to be shared;
3 δL ← 0, l← L′/2; /*50% of non-shared layers*/
4 do
5 l← l + δL;
6 Call Procedure 1;
7 Apply dropout on l layers of M te;
8 Obtain dropout model with Qb connections;
9 Call Procedure 2;

10 Solve optimization problem in Eq. 1;
11 Obtain compressed model Ms from dropout;
12 for epoch e ≤ E do
13 if e ≤ h then
14 Train Ms using M te and M tr;

15 else
16 Train Ms using M tr;

17 Solve optimization problem in Eq. 4;
18 Obtain optimal value of λ1, λ2, and λ3;
19 P ← append(Lcb(·)), preserve Ms, δL ← L′/10;
20 while (l ≤ L′);
21 a← arg min{P};
22 Obtain lightweight model Ms for Lcb(·) at P[a];
23 return Optimal lightweight model Ms;

O(Y b) denote the complexity of training M te and Ms for one
epoch. Hence, the complexity of the EarlyLight algorithm can
be given as O((m1 +m2 +Xa + Y b) ∗ h) +O((m1 +m2 +
Xa) ∗ (E − h)) = O((m1 +m2 +Xa) ∗ E + (Y b) ∗ h).

V. EMPIRICAL EVALUATION

This section evaluates the proposed work on publicly avail-
able datasets, existing large-size DNN, and edge devices.

A. Evaluation setup

1) Large-size DNN M t architectures: We considered six
existing DNN, including DeepZero [11], DeepFusion [12],
DeepSense [13], DT-MIL [15], MFAP [14], and Human Activ-
ity Recognition using Multiple sensors fusion (HARM) [16],
as shown in Fig. 4. These large-size DNN use sensory data for

recognizing locomotion modes and human activities with high
accuracy but require colossal parameters and FLOPs during
their execution, as given in Table III.

TABLE III: FLOPs and parameters (prms) of large-size DNN, (A,B) =
A× 10B .

DNN Number of DNN layers FLOPs PrmsConv FC LSTM GRU
DeepZero [11] 15 5 2 — (1.2, 10) (3.8, 7)

DeepFusion [12] 18 3 — 1 (8.5, 11) (5.4, 8)
DeepSense [13] 12 — — 2 (7.5, 11) (1.0, 7)

DT-MIL [15] — 20 — 1 (2.4, 7) (2.9, 4)
MFAP [14] — 2 2 — (3.7, 7) (1.2, 7)
HARM [16] 6 2 — — (7.6, 10) (1.2, 9)

2) Datasets: We select four publicly available sensory
datasets, which are typically used in IoT applications, e.g.,
locomotion mode recognition (LMR) [42], driving behaviour
(DB) [43], river pollution monitoring (RPM) [44].

3) Edge devices for running lightweight Ms: We consider
five different edge devices for deploying the lightweight DNN,
i.e. trained student models (Ms), to verify the performance of
the proposed approach. The devices include Intel edition kit
(d1), Raspberry Pi 2 (d2), Raspberry Pi 3 (d3), Huwaie smart-
phone (d4), and Samsung smartphone (d5). The processing
speed of the devices d1 to d5 are 11×108, 3×109, 5×1010,
18× 1010, and 29× 1010 FLOPs/second, respectively.

4) Baseline schemes for ablation studies: Table IV sum-
marizes the architecture of different lightweight Ms and the
training process for the ablation studies. S5 is the same as the
proposed technique S6 with no early halting while training.

TABLE IV: Baseline schemes for ablation studies, where, Ms (student) is
lightweight DNN, and Mtr (teacher) and Mte (trainee) are large-size DNN.

Scheme Description

S1 [7] Ms and Mtr are independent
Training of Ms guided by pre-trained Mtr

S2 [30] Ms and Mte are independent
Ms and Mte are trained simultaneously

S3 [9] Ms is sub-model derive from Mte

Ms and Mte are trained simultaneously

S4 [8] Ms is independent of Mtr and Mte

Ms and Mte are trained under guidance of Mtr

S5
Ms is sub-model derive from Mtr or Mte

Ms and Mte are trained under guidance of Mtr

S6

(proposed)

Ms is sub-model derive from Mtr or Mte

Ms and Mte are trained under guidance by Mtr

up to some epochs then Mte training is halted

5) Implementation details: For implementing the
lightweight DNN transformed from large-size DNN, as
illustrated in Fig. 4, we incorporated the sequential model
and functional API of deep learning library Keras in Python
language. Next, Algorithm 1 and all the procedures are
implemented in Python. We adopt the differential evolution
technique for estimating the fractional contributions of
the different loss functions, i.e., λ1, λ2, and λ3. In the
experimental analysis, we randomly divide the datasets
into two sub-datasets, i.e., training and testing with 70%
and 30% data instances, respectively, using the function
sklearn.model selection.train test split() in Sklearn
model selection. We repeat each experiment 100 times and
calculate the average value. Further, α (memory size) is the
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Fig. 4: Illustration of different DNN architectures incorporating sensory data for recognizing locomotion modes and human activities. (a) DeepZero [11], (b)
DeepFusion [12], (c) DeepSense [13], (d) DT-MIL [15], (e) MFAD [14], and (f) HARM [16].

maximum available memory on the edge while requesting
the appropriate compressed DNN. β (maximum allowable
processing time) is estimated by analyzing the data processing
history of the devices. In other words, β is determined in
accordance with the processing speed (FLOPs/seconds)
achieved by the device in the past event of data processing.
β ≥ prior device processing speed × current FLOPs. The
lightweight DNN can be trained on a considered device
or server. To estimate the MAP time we use FLOPs and
relative memory modfel (DDR4 to TPU/accelerator FLOPs),
detailed in supplementary file [41]. We opt cross-validation
technique to achieve the best performance by tuning the
dropout ratio. We have also tuned the dropout separately
for each layer and also during training to achieve proper
loss on a higher dropout value. Furthermore, we have used
TensorFlow Lite for Microcontrollers (TFLM) library, which
provides optimized DNN operations for microcontrollers.

B. Validation metrics

This work used standard classification metrics to evaluate
and compare the performance: F1 score and accuracy. Let a
given dataset consists of a set of A classes, and |A| represents
the number of classes. Let TPi, TNi FPi, and FNi are the
true positive, true negative, false positive, and false negative
counts of a class i ∈ A, respectively. The accuracy metric
is computed as: 1

|A|
∑|A|

i=1
TPi+TNi

TPi+TNi+FPi+FNi
. Next, the F1

score is computed as: 1
|A|
∑|A|

i=1
2×TPi

2×TPi+FPi+FNi
.

C. Experimental results

1) Impact of different schemes on accuracy of DNN: First,
we performed the experiment to estimate the performance
of lightweight DNN train using different schemes S1-S6.
We considered different large-size DNN and d1 to d5 edge
devices. The value of constraints α = 0.65 and β = 197
ms. Table V illustrates the configuration of lightweight DNN

based on the available resources on edge. The result depict
that the accuracy of the lightweight DNN transform using
scheme S6 is almost equal to the scheme S5. However, S5

requires a large number of FLOPs and parameters during the
training of lightweight DNN. Due to the early halting of the
trainee model training, the scheme S6 achieves a significant
reduction in training time of lightweight DNN Ms. It is
interesting to observe that the transformed lightweight DNN
from large-size DNN using scheme S6 achieves high accuracy
within the constraints of edge device, take less time during
training of lightweight model and therefore saves the energy
and resources of training machine.

2) Impact of the loss functions on accuracy of DNN:
Table VI illustrates the fractional contribution of different
loss functions on the performance of the lightweight DNN
Ms using different edge devices. We used the devices and
available resources as shown in previous results. We consid-
ered DeepZero as a large-size DNN (teacher model). We can
observe from the result that with the increase in the device’s
resources, the accuracy and F1 score of the lightweight DNN
Ms improved, and the contribution of distillation loss (λ3)
increases. It is because when the difference between Ms and
M te is significant then simultaneous training deviates the
Ms from achieving optimal convergence point due to random
initialization of M te.

3) Impact of the training time on accuracy: In this exper-
iment, we determine the training time and accuracy achieved
under different schemes for Ms. We consider DeepZero as
large-size DNN M tr, whose lightweight variant is deployed
on device d3. Table VII illustrates the training time and
accuracy of different schemes for device d3 excluding the
training time of the pre-trained teacher model. As shown in the
previous result, S5 and S6 give the high accuracy as compared
with others. S5 trains both Ms and M te simultaneously and
therefore needs more FLOPs. The proposed S6 early halts
the training of M te and needs fewer resources. Therefore, an
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TABLE V: Illustration of accuracy (%) achieved by schemes (S1-S6) on device specific student from teacher (DeepZero [11], DeepFusion [12], DeepSense [13],
DT-MIL [15], MFAD [14], and HARM [16]). fConv and Conv are factorized and unfactorized Convolutional layers, fFC = factorized FC layer, cLSTM =
coupled LSTM, MGU= Minimal Gated Unit.

Device Student model specification Accuracy (%) in scheme

Number of DNN layers FLOPs Parameters S1 [7] S2 [30] S3 [9] S4 [8] S5
S6

(Proposed)

D
ee

pZ
er

o
[1

1]

d1 fConv = 5, fFC = 3, cLSTM = 2 2.8× 109 1.1× 107 75.43 79.27 82.23 87.27 89.41 90.53
d2 fConv = 7, fFC = 5, cLSTM = 2 4.3× 109 1.5× 107 79.42 83.19 85.19 89.13 91.21 91.08

d3
fConv = 12, Conv = 3, fFC = 5,
LSTM = 1, cLSTM= 1

6.5× 109 1.8× 107 82.31 85.11 87.93 90.97 92.54 92.32

d4
fConv = 1, Conv = 14, fFC = 3,
FC = 2, LSTM = 1, cLSTM = 1

8.4× 109 2.3× 107 85.41 87.29 88.71 92.23 93.51 93.33

d5
fConv = 1, Conv = 14, fFC = 1,
FC = 4, LSTM = 1, cLSTM = 1

9.3× 109 2.6× 107 86.21 87.45 88.92 92.71 93.44 93.57

D
ee

pF
us

io
n

[1
2] d1 fConv = 6, fFC = 2, MGU = 1 3.1× 1011 2.3× 108 85.93 88.81 89.78 90.07 91.13 91.19

d2 fConv = 6, fFC = 3, GRU = 1 4.3× 1011 2.9× 108 86.17 89.43 90.03 90.56 92.83 92.16
d3 fConv = 7, fFC = 3, GRU = 1 5.7× 1011 3.4× 108 88.29 90.97 91.07 92.43 94.07 93.23

d4
fConv = 12, Conv = 3, fFC = 3,
MGU = 1

6.6× 1011 4.1× 108 89.31 91.34 92.23 92.71 94.93 94.57

d5
fConv = 10, Conv = 5, fFC = 3,
MGU = 1

7.3× 1011 4.8× 108 89.73 91.47 92.31 92.97 95.03 94.63

D
ee

pS
en

se
[1

3] d1 fConv = 8, GRU = 1 3.3× 1011 3.6× 106 80.22 80.83 84.21 84.89 89.12 89.47

d2
fConv = 6, Conv = 4, GRU = 1,
MGU = 1

4.1× 1011 4.2× 106 81.29 81.92 87.20 87.62 92.53 92.21

d3 fConv = 6, Conv = 4,GRU = 2 4.9× 1011 5.7× 106 82.06 82.81 88.17 88.97 92.91 93.03

d4
fConv = 4, Conv = 8, GRU = 1,
MGU = 1

5.5× 1011 7.3× 106 82.72 83.09 88.51 89.23 93.09 93.20

d5 fConv = 4, Conv = 8,GRU = 2 6.3× 1011 8.1× 106 82.91 83.93 89.02 89.91 93.37 93.44

D
T-

M
IL

[1
5] d1 fFC = 12, MGU = 1 1.0× 107 1.2× 104 73.93 78.61 79.53 84.21 87.23 87.07

d2 fFC = 12, FC = 2, MGU = 1 1.2× 107 1.6× 104 74.27 78.83 80.27 84.61 88.73 88.26
d3 fFC = 12, FC = 6, MGU = 1 1.5× 107 1.9× 104 75.29 81.44 81.93 85.07 89.45 89.03
d4 fFC = 12, FC = 8, MGU = 1 1.8× 107 2.2× 104 75.89 81.87 82.29 85.27 90.83 90.85
d5 fFC = 8, FC = 12, GRU = 1 2.1× 107 2.6× 104 76.39 82.91 83.17 85.59 91.21 91.07

M
FA

D
[1

4]

d1 fFC = 1, FC = 1, LSTM = 1 2.1× 107 7.6× 106 79.17 82.08 83.07 84.21 85.37 85.16
d2 fFC = 1, FC = 1, LSTM = 1 2.1× 107 7.6× 106 79.29 82.31 83.26 84.53 85.81 85.23

d3
fFC = 1, FC = 1, LSTM = 1,
cLSTM = 1

2.4× 107 9.1× 106 80.17 83.23 84.11 85.38 87.47 87.13

d4
fFC = 1, FC = 1, LSTM = 1,
cLSTM = 1

2.4× 107 9.1× 106 80.41 83.63 84.61 85.83 87.65 87.29

d5 fFC = 1, FC = 1, LSTM = 2 3.2× 107 1.0× 107 81.01 84.33 85.07 86.51 88.27 88.02

H
A

R
M

[1
6] d1 fConv = 1, fFC = 2 4.7× 1010 6.2× 108 76.71 80.49 82.96 87.81 90.09 90.13

d2 fConv = 1, fFC = 2 4.7× 1010 6.2× 108 77.39 81.37 84.76 89.03 90.39 90.23
d3 fConv = 2, fFC = 2 5.4× 1010 7.1× 108 80.01 83.23 85.59 89.47 91.92 90.93
d4 fConv = 4 fFC = 2 6.1× 1010 8.5× 108 80.22 83.63 85.81 89.93 92.17 91.71
d5 fConv = 4, Conv = 1 fFC = 2 6.8× 1010 1.0× 109 80.71 83.61 86.21 90.21 92.19 92.34

TABLE VI: Fractional contributions (λ1, λ2, and λ3) of different loss
functions on the performance of Ms with d1 to d5 devices.

Device Fractional weights Accuracy F1 score
λ1 λ2 λ3

d1 0.5117 0.3972 0.0911 90.53% 91.21%
d2 0.4919 0.4523 0.0563 91.08% 92.74%
d3 0.3208 0.3563 0.3227 92.32% 93.98%
d4 0.3700 0.2965 0.3334 93.33% 94.90%
d5 0.3922 0.2717 0.3361 93.57% 95.13%

edge device with limited resources takes more time to train
S5 as compared to the proposed S6. Table VII illustrates S6

has the best accuracy within the given training time. This is
because other schemes either lack sufficient training or design
lightweight DNN randomly, resulting in lower accuracy.

4) Compression ratio of large-size DNN: In this section, we
illustrate the impact of the compression ratio (size of Ms/size
of M t (shared layer)) on the accuracy of the lightweight
DNN. Here, we consider 50% shared layers between teacher
and student models and assume only shared layers to de-
termine the model size. The compression ratio depends on
the available resources of the edge device. An edge device

TABLE VII: Training time and accuracy on different schemes for device d3

on large-size DNN (DeepZero). TT = Training Time and Acc = accuracy.

Schemes S1 S2 S3 S4 S5 S6

Part (a): Accuracy v/s required TT (in minutes)
Acc (in %) 82.31 85.11 87.93 90.97 92.54 92.32

TT ±5 95 231 206 251 217 185
Part (b): Accuracy on a given TT = 197 minutes

FLOPs×1013 1.09 2.37 2.37 2.37 2.37 2.15
Acc (in %) 82.03 69.95 82.03 70.88 80.47 92.32

requires a high compression ratio with low processing speed
(FLOPs) on a fixed MAP time β. Table VIII illustrates the
various compression ratios of DeepZero. As expected, the
high compression ratio gives low accuracy and F1 score. An
interesting observation from this result is that the accuracy
and F1 score go down sharply after a fixed compression ratio.
The lightweight DNN for the given compression has very
few layers and gated units. Thus, it shows incompetence in
successfully classifying the given classes. Additionally, F1

score is higher than the achieved accuracy due to the uneven
distribution of class labels.
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TABLE VIII: Different compression ratio of large-size DNN (DeepZero).

Compression
ratio ×60 ×50 ×43 ×18 ×13 ×4.8

Accuracy 67.43 70.17 73.22 87.21 90.23 92.16
F1 score 69.09 71.83 74.88 88.87 91.89 93.82

FLOPs (×109) 2.03 2.40 2.79 6.67 9.23 25.21

5) Impact of halting of M te on performance of Ms:
Further, we depict the impact of the halting time of M te on
the performance of lightweight Ms. We used the SHL dataset
and the DeepZero model. Table IX illustrates that after a fixed
duration of training of M te, the progress in the accuracy and
F1 score of Ms is almost constant. However, the required
resources for continuous training of M te is increased with
time. We, therefore, conclude that training of M te and Ms

till the end of processing does not provide high accuracy.
They only consume more resources. Fig. IX illustrates the
saturation in accuracy and F1 score after a certain epochs (60
for DeepZero). After this saturation point, we can quickly halt
the training of M te without compromising accuracy of Ms.

TABLE IX: Impact of halting training of trainee model on accuracy and F1

score achieved by Ms of DeepZero [11] for device d2.

Epochs 40 50 60 70 80 90
Training time
Mte (in min.) 161 174 185 202 213 225

Accuracy
Ms (in %) 78.51 83.02 91.08 91.37 91.53 91.97

F1 score
Ms (in %) 80.17 84.68 92.74 93.03 93.19 93.63

FLOPs
(×1013) 2.53 2.77 2.93 3.09 3.29 3.56

6) Impact of datasets on the accuracy of DNN: Finally, we
study the performance achieved by different schemes (S1-S6)
on selected datasets (SHL, VDB, DBD, and RWM). Fig. 5(a)
illustrates the average accuracy (in %) achieved on schemes
S1-S6. The result illustrates that for the DBD dataset, the
accuracy under each scheme is highest. It is due to the least
number of classes in the DBD dataset. Similarly, SHL achieves
the lowest accuracy due to the presence of a maximum 8
classes. Next, S5 and S6 achieve the highest accuracy on
all the datasets (i.e., SHL, VDB, DBD, and RWM). Scheme
S5 slightly supersedes the accuracy of scheme S6, as it
incorporates training of trainee for all epochs. However, S5

consumes higher resources than S6. Further, a similar variation
in F1 score is observed under schemes S1-S6 on different
datasets, as illustrated in Fig. 5(b). F1 score is higher than the
accuracy for all datasets. The class labels are not uniformly
distributed among all class labels in the considered datasets.
An interesting observation from the result is that if the number
of class labels in the dataset is small then the achieved
accuracy will be higher. Additionally, if the distribution of
class labels is non-uniform then F1 score will be higher in
contrast with accuracy.

7) Comparison with existing work: Table X illustrates that
the proposed EarlyLight approach and its modules (dropout
and reducing resources) individually outperform the existing
state-of-the-art techniques in terms of achieved performance.
During the experiment, we use the SHL dataset, DeepZero
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Fig. 5: Impact of datasets (SHL, VDB, DBD, and RWM) on accuracy and F1

score of different schemes.

model, device d4, and same lightweight DNN for evaluating
all KD-based approaches. Such consideration also makes
the FLOPs and parameters same for the student model in
KD-based technique, as shown in Table X. The optimal
dropout and resource requirement improve the accuracy of
the standalone modules. We also observed that the standalone
module for reducing resources requires least FLOPs due to
simultaneous consideration of convolutional, fully connected,
and recurrent layers. Moreover, the existing dropout technique
may reduce FLOPs and parameter more than the optimal
dropout but compromises accuracy. Finally, we observed that
on computing optimal dropout with reducing resources de-
creases both FLOPs and parameter. Additionally, KD improves
the obtained lightweight DNN.

TABLE X: Illustration of FLOPs , parameters, accuracy (%) of student model
on different approaches using SHL [42] dataset.

Module Existing
work FLOPs Parameter Accuracy

Dropout [20] 9.6× 109 3.6× 107 73.23%
[21] 9.1× 109 3.0× 107 70.62%

Proposed work
(Only optimal dropout) 9.4× 109 3.1× 107 77.23%

Reducing
Resources

[22] 8.8× 109 2.9× 107 76.47%
[23] 8.9× 109 3.0× 107 78.59%

Proposed work
(Only resource reduction) 8.7× 109 2.8× 107 81.73%

KD-based
training
(using same
lightweight DNN)

[7] 8.4× 109 2.3× 107 85.41%
[30] 8.4× 109 2.3× 107 87.29%
[9] 8.4× 109 2.3× 107 88.71%
[8] 8.4× 109 2.3× 107 92.23%

Proposed work
(Overall EarlyLight) 8.4× 109 2.3× 107 93.33%

VI. REAL-WORLD EVALUATION

A. Hardware and software
The prototype hardware is based on the NodeMCU ESP32

as data collection and processing unit. It is powered by
ESP8266 module that can wirelessly transmit data using
WiFi. Next, we attach the inertial sensors to measure angular
rate, force and magnetic field and transfer to the NodeMCU.
Further, the data is processed on NodeMCU using deployed
lightweight DNN to predict class labels (locomotion modes).
These labels are transferred to the server using the GSM
module. NodeMCU has 512 KB SRAM (with 4 MB flash
storage); therefore a high order DNN compressed is needed.
We considered two scenarios of locomotion mode recognition,
i.e., identifying locomotion modes using sensors deployed in
the shoes of the kids and the wrist band of a person.

We used DeepZero [11] as the large-size DNN upon which
transform is performed. Fig. 4(a) illustrates the architecture of
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the DeepZero. The lightweight DNN of DeepZero is exported
and loaded into the flash memory of the NodeMCU. The large-
size DeepZero is trained on the Dell PC with 32 GB RAM with
a clock speed of 2.4 GHz. The pre-trained model is further
transformed using the proposed scheme and deployed on
NodeMCU. Besides, the compressed DNN (from DeepZero) is
trained on the server, as the available memory on NodeMCU
is limited to store training data on its primary storage.

B. Data collection

We collected the sensory data of different locomotion modes
including bicycle (a1), bike (a2), car (a3), auto rickshaw (a4),
bus (a5), and train (a6). To facilitate the data collection,
we developed an android application that uses the Inertial
Measurement Unit (IMU) sensor of the smartphone. The
sampling rate of IMU is set to 100 Hz to record 6000 data
points per minute. We used an android smartphone, Samsung
Galaxy Alpha for collecting data against each locomotion
modes. The data was collected by the 10 volunteers (5 males
and 5 females). The android application consists of a menu
through which volunteers can select a locomotion mode. The
measurements of the IMU sensor is recorded for 60 seconds.

C. Evaluation methods

We considered the following four evaluation methods for
verifying the effectiveness of the proposed approach in the
real world scenario. First, we used Baseline method that is a
lightweight version of DeepZero [11] and NodeMCU ESP32
as edge device. Next, we used KD1 an extension of the
baseline method, where the lightweight DNN is trained under
the guidance of the pre-trained DeepZero model using the
knowledge distillation technique discussed in [7]. Next, KD2

method where some initial layers of lightweight DNN and
standard DeepZero are shared to improve the performance
of lightweight DNN. The lightweight and standard models
are trained simultaneously using the knowledge distillation
technique discussed in [9]. Finally, we used the proposed
approach, named as Proposed in the results. Apart from the
existing methods, we adopt an early halting technique for
training the lightweight DNN under the guidance of pre-
trained and untrained DeepZero. The initial layers of the
compressed DNN are shared with the large-size DeepZero.

D. Validation metrics

• F1 score and accuracy: The description of the validation
metrics F1 score and accuracy are discussed in Section V-B.
• Precision: Precision of a DNN is defined as the ratio of
correct positive observation to the total correctly predicted
observation, i.e., P3 = 1

|A|
∑|A|

i=1
TPi

TPi+FPi
.

• Leave-one-out test: This validation metric trains the DNN
for all class labels except for one randomly chosen class label.
However, during testing, the unseen class label is also supplied
for predicting the output. Thus, it evaluates the performance
of the classifier for unseen class labels.

E. Result 1: Impact of memory and execution time

We first study the impact of memory and execution time
on the validation metrics. Fig. 6(a1) illustrates the accuracy
achieved by the different methods with the change in memory
ratio. The memory ratio is the ratio of required memory to
the available memory of edge device. We can observe from
the results that the proposed work outperforms the exist-
ing methods and achieves significantly higher accuracy with
minimal energy consumption. The proposed work achieves
accuracy around 94% when memory ratio is just 0.65. Similar
observations can be made for other validation metrics, i.e.,
F1 score, and precision, as shown in parts (a2)-(a3) of Fig. 6,
respectively. Next, parts (b1)-(b3) of Fig. 6 illustrate the impact
of execution time on the validation metrics. The results depict
that the execution time also follows a similar pattern as mem-
ory consumption, where the proposed work outperforms the
existing methods and achieve maximal accuracy in minimum
execution time. It requires 197 ms to achieve the performance
of more than 93%. It is because of the involvement of multiple
teachers (teacher and trainee) and layer sharing in the proposed
scheme. Last, we study the impact of simultaneous change in
memory ratio and execution time on the validation metrics as
shown in parts (c1)-(c3) of Fig. 6. Similar as previous results,
the results demonstrate that the proposed work can achieve
accuracy of around 93% when the execution time (β) is just
197 ms, and memory ratio (α) is 0.65.
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Fig. 6: Impact of memory, execution time, and simultaneous change in
memory ratio and execution time on validation metrics.

F. Result 2: Class-wise accuracy

In this result, we fixed the value of edge constraints
α = 0.65 and β = 197 ms for estimating the class-wise
accuracy of different methods that were considered for real
world evaluation. Table XI illustrates the class-wise accuracy
of different methods in the real world evaluation. We can
observe from the result that the proposed method outperforms
all existing methods in achieving accuracy against each class.
Additionally, the class-wise accuracy of class a2 (bike) is
highest, as it holds the most identifiable features in the dataset.
Moreover, the number of instances for class a2 is highest.
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TABLE XI: Confusion matrix of [KD1,KD2,proposed] in %.

a1 a2 a3 a4 a5 a6

[70,73,89]
[76,84,96]

[71,80,94]
[72,78,92]

[75,79,91]
[75,82,93]

G. Result 3: Accuracy and F1 with unseen class

Finally, we study the performance of the proposed scheme,
when one class is unseen. In other words, we perform the
leave-one-out test in this result. Fig. 7(a) illustrates the accu-
racy and F1 score achieved by the proposed scheme, where
the instance of the given class is missing from the training
dataset, and the ratio of memory consumed (α) is 0.65 . Here,
we observe that the accuracy and F1 score decreases when
one class is missing. It is because, the built classifier does not
hold the features associated with the missing class. Further, the
impact of one unseen class varies over another because the
number of data instance that generates the most identifiable
feature by a classifier changes with the change in the unseen
class. Similarly, Fig. 7(b) illustrates the accuracy and F1 score
when instances of the given class are missing from the training
dataset and execution time (β) is 197 ms.
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VII. CONCLUSION

In this paper, we proposed an approach to design and train
a lightweight DNN using a large-size DNN, where trained
lightweight DNN satisfied the α and β constraints of the edge
devices, acronymed as EarlyLight. The approach used optimal
dropout selection and factorization for DNN compression. The
EarlyLight approach also incorporated knowledge distillation
to improve the performance of the lightweight DNN. Further,
we introduced an early halting technique to train lightweight
DNN, which saved resources; therefore, it speedups the train-
ing procedure. We also carried out several experiments to
validate the effectiveness of the EarlyLight. The results showed
that the approach achieved high accuracy on edge devices.

In this future work, we aim to expand the evaluations
beyond a limited set of edge devices, recognizing the potential
for extension. Furthermore, we acknowledge the need to
consider the dynamic workload experienced by edge devices,
as this is a common phenomenon that affects the determination
of compressed model sizes. Including dynamic load-based
compression as an additional dimension is an important aspect
of our future research. Moreover, our work lays the ground-
work for exploring a DNN compression technique capable of

handling noise in datasets caused by faulty sensors, which
presents an interesting direction for future development.
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