LIST OF FIGURES

No.	Title	Page No.
Fig. 2.1	Classification based on the matrix used	6
Fig. 2.2	Classification of the processing routes to develop MMCs	8
Fig 2.3	Various stages of powder metallurgy process	11
Fig. 2.4	Schematic diagram of high energy ball milling	12
Fig. 2.5	Relationship of green density and compacting pressure	13
Fig. 2.6	A schematic diagram of sintering	14
Fig. 2.7	Microstructure showing the dispersion of TiC in Cu matrix	25
Fig. 3.1	Process flow chart of the composite preparation and its characterization	47
Fig. 3.2	Schematic diagram of the compaction press	49
Fig. 3.3	Schematic diagram of the furnace used in the present investigation	50
Fig. 3.4	Schematic diagram of the pin on disk testing rig	55
Fig. 4.1	(a) The morphology and (b) X-ray diffraction pattern of as-received Cu powder	56
Fig. 4.2	(a) The morphology and (b) X-ray diffraction pattern of Ni powder	57
Fig. 4.3	(a) The morphology and (b) X-ray diffraction pattern of TiC powder	57
Fig. 4.4	The SEM morphology of (a) Cu4Ni, (b) Cu4Ni-2TiC, (c) Cu4Ni-4TiC, (d) Cu4Ni-6TiC and (e) Cu4Ni-8TiC composite powders milled for 6 h	58
Fig. 4.5	Particle size distribution of (a) Cu4Ni, (b) Cu4Ni-2TiC, (c) Cu4Ni-4TiC, (d) Cu4Ni-6TiC and (e) Cu4Ni-8TiC composite powder milled for 6 h	59

- Fig. 4.6 The morphology of Cu4Ni-4TiC composite powder after (a) 0 h, (b) 2 60 h, (c) 4 h and (d) 6 h of milling
- **Fig. 4.7** Particle size distribution of Cu4Ni-4TiC composite powders as a 61 function of the milling times (a) 0 h, (b) 2 h, (c) 4 h and (d) 6 h
- Fig. 4.8 The EDS spectra of Cu4Ni-4TiC composite powder milled for 6 h 61
- Fig.4.9 XRD patterns of Cu4Ni–x wt. % TiC composite powders after 6 h MA 62
- Fig. 4.10 XRD patterns of Cu4Ni–4TiC composite powders after 0, 2, 4 and 6 h 63 of MA
- Fig. 4.11 Compressibility curves of Cu4Ni-4TiC composite powder at different 65 compaction pressure
- Fig. 4.12 Compressibility curve of experimental data of Cu4Ni-4TiC composite 67 powder fitted by (a) Panelli and Ambrosio Filho, (b) Heckel and (c) Ge's compaction equations
- Fig. 4.13 Optical micrographs of sintered materials after 2 h milling showing 69 microstructure of (a) Cu4Ni, (b) Cu4Ni-2TiC, (c) Cu4Ni-4TiC, (d) Cu4Ni-6TiC and (e) Cu4Ni-8TiC
- Fig. 4.14 SEM micrographs of (a) Cu4Ni matrix alloy, (b) Cu4Ni-2TiC, (c) 70 Cu4Ni-4TiC, (d) Cu4Ni-6TiC and (e) Cu4Ni-8TiC
- Fig. 4.15 EDS analyses of (a) Cu4Ni alloy, (b) Cu4Ni-4TiC and (c) Cu4Ni-71 8TiC.
- Fig. 4.16HR-SEM micrograph of (a) Cu4Ni, (b) Cu4Ni-4TiC, (c) Cu4Ni-8TiC72and (d) EDS analysis of Cu4Ni-4TiC composite
- Fig. 4.17 XRD patterns of Cu4Ni–x wt. % TiC (x = 0, 2, 4, 6 and 8) composites 73 sintered at 850°C

Fig. 4.18	Micro-hardness of Cu4Ni-4TiC composite with milling time	75
Fig. 4.19	Variation of micro-hardness of composites with TiC content	76
Fig. 4.20	Variation of electrical resistivity with TiC content	76
Fig. 5.1	Variation of coefficient of friction with sliding distance at normal load of (a) 5 N, (b) 10 N, (c) 15 N and (d) 20 N at a constant speed of 1.25 m/s	86
Fig. 5.2	Variation of coefficient of friction with sliding distance at normal load of (a) 5 N and (d) 20 N at a constant speed of 1 m/s	87
Fig. 5.3	Variation of coefficient of friction with sliding distance at normal load of (a) 5 N and (d) 20 N at a constant speed of 0.75 m/s	87
Fig. 5.4	Variation of average coefficient of friction with normal load	88
Fig. 5.5	Variation of average coefficient of friction with sliding speed at normal load of (a) 5 N and (b) 20 N	89
Fig. 5.6	The variation of the average coefficient of friction with hardness under 5 N and 20 N for Cu4Ni, Cu4Ni-2TiC,Cu4Ni-4TiC,Cu4Ni-6TiC, and Cu4Ni-8TiCcomposites	90
Fig. 5.7	Variation of coefficient of friction with TiC reinforcement at normal load of 5 N,10 N, 15 N and 20 N for a constant sliding speed of 1.25 m/s	91
Fig. 5.8	Variation of cumulative volume loss with sliding distance at normal load of (a) 5 N, (b)10 N, (c) 15 N and (d) 20 N for a constant sliding speed of 1.25 m/s	92

- Fig. 5.9Variation of cumulative volume loss with sliding distance at normal93load of (a) 5 N and (d) 20 N for a constant sliding speed of 1 m/s
- Fig. 5.10Variation of cumulative volume loss with sliding distance at normal93load of (a) 5 N and (d) 20 N for a constant sliding speed of 0.75 m/s
- Fig. 5.11Variation of wear rate with normal load94
- Fig. 5.12 Variation of wear rate with sliding speed at normal load of (a) 5 N and 95 (b) 20 N
- Fig. 5.13 Variation of wear coefficient with TiC reinforcement at constant 96 sliding speed of 1.25 m/s
- Fig. 5.14Variation of wear rate with TiC reinforcement at normal load of 5, 10,9615 and 20 N for a constant sliding speed of 1.25 m/s
- Fig. 5.15 SEM micrographs of worn surface of (a) Cu4Ni matrix alloy, (b) 97
 Cu4Ni-4TiC and (c) Cu4Ni-8TiC composite at load of 5 N and sliding speed of 1.25 m/s
- Fig. 5.16 SEM micrographs of worn surface of (a) Cu4Ni matrix alloy, (b) 98
 Cu4Ni-4TiC and (c) Cu4Ni-8TiC composite at load of 10 N and sliding speed of 1.25 m/s.
- Fig. 5.17 SEM micrographs of worn surface of (a) Cu4Ni matrix alloy, (b) 99
 Cu4Ni-4TiC and (c) Cu4Ni-8TiC composite at load of 15 N and sliding speed of 1.25 m/s
- Fig.5.18 SEM micrographs of worn surface of (a) Cu4Ni matrix alloy, (b) 100Cu4Ni-4TiC and (c) Cu4Ni-8TiC composite at load of 20 N and sliding speed of 1.25 m/s

- Fig.5.19 EDS of worn surface of (a) Cu4Ni matrix alloy, (b) Cu4Ni-2TiC (c)
 Cu4Ni- 4TiC, (d) Cu4Ni-6TiC, and (d) Cu4Ni-8TiC composite at load 101
 of 20 N and sliding speed of 1.25 m/s.
- Fig.5.20 SEM micrograph of worn surface of (a) Cu4Ni, (b) Cu4Ni-4TiC and 102
 (c) Cu4Ni-8TiC composite at sliding speed of 0.75 m/s and at load of 5
 N
- Fig.5.21SEM micrograph of worn surface of (a) Cu4Ni, (b) Cu4Ni-4TiC (c)103Cu4Ni-8TiC composite at sliding speed of 0.75 m/s and at load of 20 N
- Fig.5.22SEM micrograph of worn surface of (a) Cu4Ni, (b) Cu4Ni-4TiCand (c)104Cu4Ni-8TiC composite at sliding speed of 1 m/s and at load of 5 N
- Fig.5.23 SEM micrograph of worn surface of (a) Cu4Ni, (b) Cu4Ni-4TiC and 105
 (c) Cu4Ni-8TiC composite at sliding speed of 1 m/s and at load of 20
 N
 SEM micrographs of wear debris of (a) Cu4Ni matrix alloy and (b)
- Fig.5.24Cu4Ni- 4TiC105
- Fig. 6.1Face centered, central composite design114
- Fig. 6.2 (a) Measured and predicted values of the volume loss; and (b) 122 measured and predicted values of the coefficient of friction
- Fig. 6.3 Surface plots and contour plots of the combined effects of wt.% of TiC 124 and sliding distance on volume loss of composites
- Fig. 6.4Surface plots and contour plots of the combined effects of the wt.%124TiC and load on volume loss of composites
- Fig. 6.5 Surface plots and contour plots of the combined effects of the load and 125 sliding distance on volume loss of composites

Fig. 6.6	Surface plots and contour plots of the combined effects of the wt.% of	125
	TiC and sliding distance on coefficient of friction of composites	

- Fig. 6.7Surface plots and contour plots of the combined effects of the the wt.%126TiC and load on coefficient of friction of composites
- Fig. 6.8Surface plots and contour plots of the combined effects of the load and126sliding distance on coefficient of friction of composites
- Fig. 6.9 Optimal conditions of process variables on the responses of composites 127