CONTENTS

Contents			i-iv
List of abbreviat	ions a	nd symbols	v-vi
List of Figures			vii-xii
List of Tables			xiii-iv
Preface			xv-xxi
CHAPTER 1	INT	RODUCTION	01-04
CHAPTER 2	LITERATURE REVIEW		
	2.1	Composite materials and their classification	05
		2.1.1. Classification based on the reinforcement	05
		2.1.2. Classification based on the matrix	05
		2.1.3. Classification of reinforcements used in metal	07
		matrix composites	0.7
		2.1.4. Advantages of metal matrix composites	07
	2.2	Processing routes to develop copper based metal matrix composites	07
		2.2.1. Liquid phase processes	08
		2.2.2. Solid phase processes	09
		2.2.3. Two-phase processes	09
		2.2.4. Deposition techniques	10
		2.2.5. In-situ process	10
	2.3	Powder metallurgy method	11
		2.3.1. Powder metallurgy processing	11
		(a) Mixing and blending	12
		(b) Compaction	13
		(c) Sintering	14
	2.4	Copper based metal matrix composites and their properties	14
		2.4.1. Physical properties	14
		2.4.2. Mechanical properties	21
		Frictional behavior of composite materials	28

	2.5	2.5.1. Theories of Friction	28
		2.5.2. Factors affecting the friction behavior of composites Types of wear	29 31
	2.6	2.7. Dry sliding wear of composite materials	32
	2.0	2.7.1. Factors affecting sliding wear composites	32
		2.7.2. Sliding wear of Cu-TiC composites	•••
		Predictions of wear properties using response surface	38
	2.8	methodology	41
		Formulation of the problem	45
	2.9	*	
CHAPTER 3	EXI	PERIMENTAL PROCEDURE	46
	3.1	Raw materials	46
		3.2. Composite preparation	47
		3.2.1. Blending	48
		3.2.2. High-energy ball milling (Mechanical	48
		alloying) and drying	
		3.2.3. Pressing	48
		3.2.4. Sintering	49
	3.3	Characterization of composites	50
		3.3.1. X-ray Diffraction analysis of composites	51
		3.3.2. Electrical resistivity measurement	51
		3.3.3. Measurement of density of composites	52
		3.3.4. Hardness Measurement	52
	3.4	Microstructural Studies	53
	3.5	Dry Sliding Friction and Wear Testing	54
	3.6	Examination of worn surfaces	55
CHAPTER 4		MICROSTRUCTURE AND PROPERTIES	56
	4.1	RESULTS	56
		4.1.1 Microstructure of mechanically alloyed (MA)	56

ii

		powder	
		4.1.2 Compressibility behavior	64
		4.1.3 Microstructure	68
		(a) Optical Microscopy	68
		(b) Scanning electron microscopy	68
		4.1.4 XRD analysis	72
		4.1.5 Density measurement	72
		4.1.6 Hardness measurement	74
		4.1.7 Electrical resistivity measurement	76
	4.2	DISCUSSION	77
CHAPTER 5		TRIBOLOGICAL BEHAVIOR OF COMPOSITES	85
	5.1	RESULTS	85
		5.1.1 Dry Sliding Friction and Wear	85
		(a) Dry Sliding Friction	85
		(i) Variation of coefficient of friction with sliding distance	85
		(ii) Variation of average coefficient of friction with normal load	87
		(iii) Variation of average coefficient of friction with sliding speed	88
		(iv) Variation of average coefficient of friction with hardness	89
		(v) Variation of average coefficient of friction with amount of TiC	90
		(b) Dry Sliding Wear	91
		(i) Variation of cumulative wear volume with sliding distance	91
		(ii) Variation of wear rate with normal load	94
		(iii) Variation of wear rate with sliding speed	94
		(iv) Variation of wear coefficient with hardness	95
		(v) variation of wear rate with amount of TIC	96
		5.1.2 Examination of Sliding Surfaces	97
	5.2	DISCUSSION	105
CHAPTER 6		MODELING DRY SLIDING WEAR BEHAVIOR	114
	6.1		
		RESULTS	114

	6.1.1 Design of experiment	114
	6.1.2 Response surface methodology and optimization	115
	6.1.3 Design of experiment (DOE) for volume loss	117
	6.1.4 Design of experiment (DOE) for coefficient of	117
	friction	
	6.1.5 Regression analysis	117
	6.1.6 Confirmation test	118
	6.1.7 Effect of process parameters on volume loss and	123
	coefficient of friction	
	6.1.8 Optimization, of responses	126
6.2	DISCUSSION	128
CHAPTER 7	CONCLUSIONS	133
	References	137
	List of publications	148
	Reprints of published research papers	
	Personal profile	